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Abstract: The deterioration of road conditions and increasing repair deficits pose challenges for the
maintenance of reliable road infrastructure, and thus threaten, for example, safety and the fluent flow
of traffic. Improved and more efficient procedures for maintenance are required, and these require
improved knowledge of road conditions, i.e., improved data. Three-dimensional mapping presents
possibilities for large-scale collection of data on road surfaces and automatic evaluation of mainte-
nance needs. However, the development and, specifically, evaluation of large-scale mobile methods
requires reliable references. To evaluate possibilities for close-range, static, high-resolution, three-
dimensional measurement of road surfaces for reference use, three measurement methods and five
instrumentations are investigated: terrestrial laser scanning (TLS, Leica RTC360), photogrammetry
using high-resolution professional-grade cameras (Nikon D800 and D810E), photogrammetry using
an industrial camera (FLIR Grasshopper GS3-U3-120S6C-C), and structured-light handheld scanners
Artec Leo and Faro Freestyle. High-resolution photogrammetry is established as reference based on
laboratory measurements and point density. The instrumentations are compared against one another
using cross-sections, point–point distances, and ability to obtain key metrics of defects, and a qualita-
tive assessment of the processing procedures for each is carried out. It is found that photogrammetric
models provide the highest resolutions (10–50 million points per m2) and photogrammetric and
TLS approaches perform robustly in precision with consistent sub-millimeter offsets relative to one
another, while handheld scanners perform relatively inconsistently. A discussion on the practical
implications of using each of the examined instrumentations is presented.

Keywords: laser scanning; photogrammetry; road maintenance; pavement defects; structured light;
reference measurements

1. Introduction

Road networks require large investments for construction, renewal and maintenance.
Growing networks demand increasing investments while repair deficits continue to grow.
In 2017, the repair deficit of the Finnish road network was approximately EUR 1.3 bil-
lion [1], while in the USA, it was USD 420 billion [2]. In the European Union, deficits have
grown since investments dwindled after the 2008 financial crisis, though exact figures are
unavailable [3]. Materially, deficits translate into pavement defects, caused by weathering,
wear, and structural problems, which in turn decrease safety, disturb traffic flow, increase
fuel use, and cause time delays and discomfort [4].

Hadjidemetriou et al. [5] outline four “diseases”, or distress types, for pavement
defect classification, presented in Table 1. In Finnish conditions, the Finnish Transport
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Infrastructure Agency [6] explains most of these defects, especially rutting and cracking,
with climatic reasons, specifically the use of studded tires in the winter and water freezing
under the pavement. In Nordic conditions, rutting has been explored by Lampinen [7],
while Belt et al. [8] have modeled the structural deterioration and predicted future condition
of roads. Automation and high-precision instrumentation can provide high-quality data
on road pavement conditions, allowing for accurate estimation of the maintenance needs
and prioritization of different targets.

Table 1. Pavement distress types [5].

Distress Type Mechanism Manifestation

Cracking Fractures of surface and
fundamental pavement layers

Transverse, longitudinal, edge,
block, alligator cracks

Disintegration Progressive division of pavement
into loose pieces Potholes, patches

Surface
deformation Change in pavement structure Shoving, rutting, distortion

Surface defects Loss of surface microtexture or
macrotexture Raveling, bleeding

Comprehensive knowledge about road conditions is necessary for planning timely
maintenance procedures [9,10]. However, many road quality surveying methods that are
currently in use appear out of date. Rutting is often measured using laser profilometers
with limited numbers of lasers, e.g., 17 [11–13], while cracking and potholes are identified
manually or using low-resolution images and rudimentary feature extraction algorithms
on limited areas [14]. Better coverage and more information on road quality allow for
more effective pavement management [15]. In fact, many proposals for crack and distress
detection have been made in recent years, as can be seen in multiple reviews [16–19]. In ad-
dition to detection and identification, some degree of information extraction is necessary to
determine the need for maintenance procedures. While some information can be extracted
from 2D images, 3D—and with time series, even 4D—data provide opportunities for more
accurate assessments.

Distress detection and analysis is only one aspect of effective pavement management.
In addition to pavement surface conditions, effective management requires knowledge
about the foundations of the road, such as structure bearing capacity and pavement
thickness [20]. While surface deformations and distress can reveal structural issues [21],
dedicated tools such as ground-penetrating radar and deflectometers are important in
establishing underlying structural conditions [22,23]. In some cases, embedded sensors are
used to continuously monitor structural conditions [24]. Through the use these kinds of
methods, possible structural failures can be predicted [22]. While possibilities for structural
evaluation beyond the visible surface exist, surface distress detection is an essential part
of a viable pavement management system [15]. Indeed, an effective approach integrates
different data sources to continuously monitor a road through its lifetime, model structural
responses to use, evaluate performance, and prompt maintenance [24].

The development of practically feasible and efficient—mobile, automated—distress
detection methods requires accurate information about road surfaces and defects. De-
fects vary in size, ranging from small cracks to large potholes. At the same time, asphalt
concrete surfaces are relatively coarse, and distinguishing small cracks can be challeng-
ing, depending on resolution and precision. High-resolution reference models allow the
identification and quantification of both small and large defects. These reference models
can then be used in the development of automated methods for defect detection, mea-
surement, and classification. However, the production of high-resolution models can be
laborious and time-consuming. This article aims to compare and contrast various methods



Sensors 2021, 21, 8190 3 of 24

for the production of such reference models in realistic circumstances, where conditions
are nonoptimal.

Point clouds are simple and common 3D model formats, and can be produced by
measurements with, for example, laser scanners and photogrammetry. Evaluating the
quality of point clouds produced by different methods is fundamentally a comparative
endeavor. Many different approaches have been proposed for comparing point clouds.
Lehtola et al. [25] divide point cloud quality evaluation into three approaches: (1) the
control point approach, where a distance between two control points is evaluated from
different point clouds; (2) the subset approach, where a subset of a point cloud is extracted
and evaluated, for example, by comparing the planarity of a subset representing a wall;
and (3) the full point cloud approach, where point clouds are taken in their entirety and
compared using an arbitrary metric. The nature of pavement defects and their measurement
places the evaluation of their quality in the second—subset—approach, since it makes sense
to extract, compare, and evaluate individual defects or areas of interest. Different aspects
of, and approaches to, point cloud quality have been investigated by many authors, for
example quality metrics [26,27], subjective assessment [28,29], interactive evaluation [30],
and color [31,32].

Considering the geometric accuracy of a given point cloud poses a challenge, as
this is typically done by comparing the cloud to another, one of greater accuracy, and
deviation determines the accuracy of the given cloud. Without an established reference
modeling method, there is no obvious way to determine ground truth. Nonetheless,
comparisons allow us to determine deviations between modeling methods and to establish
any systematic failures in instruments. Additionally, the use of established and well-
calibrated methods, such as terrestrial laser scanning (TLS), which can be considered
accurate within its calibrated accuracy, provides a reliable baseline [33]. However, TLS data
may be too sparse for accurate quantification of pavement defects. Various approaches have
previously been used for pavement modeling. Inzerillo et al. [34] modeled a large pothole
using both TLS and handheld photogrammetry, determining that the photogrammetric
model can be of higher precision. Knyaz and Chibunichev [35] constructed a stereo
camera system that uses structured light and used it to model the deformation of a paved
surface, reporting the measuring accuracy to be 0.1 mm, and 3D model resolution about
0.3 mm. Puzzo et al. [36] determined the accuracies of various cameras in photogrammetric
modeling of asphalt surfaces for roughness modeling, concluding that digital single-lens
reflex (dSLR) cameras outperform others.

This research examines three technologies (photogrammetry, terrestrial laser scanning,
and structured-light laser scanning with handheld scanners) and five instrumentations
for creating high-density and highly accurate point clouds of road surfaces for referential
use in the development of automated defect detection and analysis systems. These instru-
mentations, described in this article as methods, are examined in realistic circumstances;
that is, test plots are real road surfaces, defects are real defects, and measurements are
conducted alongside traffic in natural lighting and nonoptimal weather conditions. Com-
promises were made in measurements, and obtained measurements are nonideal. As a
result, results are nonuniversal, but provide a comparative case study of how different
approaches to road surface modeling perform. For ground truth, laboratory measurements
with pavement samples are conducted. A state-of-the-art TLS instrument is contrasted
with two photogrammetric approaches and two handheld structured-light scanners. Based
on reference measurements, photogrammetry based on high-resolution images is chosen
as a reference for further evaluation of other methods. Point clouds are compared directly
by utilizing cross-sections, other visualizations, and point–point distances between clouds,
and indirectly by comparing volume and maximum depth of defects as measured by the
different instruments.
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2. Materials and Methods

The measurements for this research were conducted in three separate settings. The
main contribution of this study consists of field measurements with various instrumenta-
tions and analysis on quantitative and qualitative difference between different approaches
from the perspective of their use as reference measurements. In addition to field mea-
surements, ground truth is established through the use of pavement samples that are
measured in laboratory conditions. In order to transfer this reference setup to realistic
conditions, control measurements are conducted using the same samples outdoors, in
conditions corresponding to field measurements on active roads. This section describes
the instruments that are being compared, as well as presenting the various measurement
scenarios. First, we present the test site and research plots where measurements were
conducted; second, we present instruments and how data is processed in each case; third,
we present the reference measurement setup in the laboratory and how this is generalized
to field measurements; finally, we present the quantitative and qualitative analysis that is
conducted to assess each instrument.

2.1. Test Site

Measurements were conducted in the summer of 2020, on eight selected plots of
Masalantie in Kirkkonummi, near Helsinki, Finland. The plots, pictured in Figure 1 and
identified in Table 2, were selected for quantity of, and variety in, pavement defects. They
are approximately 4 (width) × 3 (length) meters in size. Single defects (cracks, potholes,
deteriorations) were sectioned out of plots to increase the number of research areas and
because the modeling of these defects is of primary interest in this research, rather than the
modeling of nondamaged pavement.

Figure 1. Mosaic composed of orthoimages of examined 8 plots, top row plots 1–4, bottom row plots
5–8. The black stick with white targets that is visible in most images measures 2 m.

Table 2. Test plot locations.

Plot Number Location (ETRS-TM35FIN)

1 (363545, 6672374)
2 (363602, 6672639)
3 (363634, 6672740)
4 (363659, 6672781)
5 (363723, 6672860)
6 (363801, 6672933)
7 (363995, 6673252)
8 (363955, 6673569)
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2.2. Instruments and Data Processing

Three methods and five instrumentations were employed in field measurements: high-
resolution photogrammetry, industrial camera photogrammetry, terrestrial laser scanning,
and two handheld structured-light scanners (Artec Leo and Faro Freestyle).

2.2.1. High-Resolution Photogrammetry

Two cameras were used: Nikon D800E with a Nikkor AF-S 14-24 mm f/2.8 G lens
locked at 24 mm, and Nikon D810 with a Nikkor AF-S 50 mm f/1.4 G and Nikkor AF-S
60 mm f/2.8 G Micro objectives. The 60 mm lens was used on plots 1–2 and the 50 mm lens
on plots 3–8. Reference measurements were made using the 50 mm lens. Both cameras use
an FX format 35.9 × 24.0 mm CMOS sensor. Image size in pixels is 7360 × 4912. Table 3
describes the settings used in cameras.

Table 3. Camera settings.

Nikon D800E Nikon D810
24 mm Lens 50/60 mm Lens

Aperture 8 14
ISO 100–800 800–1600

Shutter speed 1/80–1/125 s 1/125 s

For field imaging, the camera was handheld at approximately 1.7 m from the road
surface, i.e., face level. The imaging geometry was designed to be slightly convergent—that is,
the camera was slightly tilted at different angles from the vertical in a locally near-parallel
manner—in order to mitigate systematic errors and prevent deformation as explained
by James and Robson [37]. Imaging was carried out under mostly diffuse illumination
conditions in the late evening and early morning to avoid traffic and direct sunlight.
Thus, lighting conditions also changed accordingly as the sun set and rose, and this is
apparent in ISO and shutter speed settings (Table 3). Some 170–350 images were taken
of each plot (see Table 2), with specific attention paid to photographing any defects as
thoroughly as possible. Ground sampling distance with the 50 mm lens was approximately
0.16–0.17 mm/px.

The images were aligned and processed into point clouds using RealityCapture [38].
RealityCapture allows the images to be processed alongside laser scanning data, which
provides georeferencing information. Attention was paid to achieve the highest qual-
ity possible. RealityCapture processing settings are shown in Table 4. High-resolution
photogrammetry is also referred to as Nikon photogrammetry in this paper, for brevity.

Table 4. RealityCapture image alignment and processing settings.

Alignment Settings

Engine RealityCapture
Mode High

Max features per Mpx 0
Max features per image 0

Detector sensitivity Medium
Preselector features 10,000

Image downscale factor 1
Maximal feature reprojection error [pixels] 3.00

Use camera positions True
Lens distortion model K + Brown3 with tangential2

Final optimization True

Model Generation Settings

Quality level High
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2.2.2. Industrial Camera Photogrammetry

Images were also collected using a Grasshopper3 USB3 industrial camera (model: GS3-
U3-120S6C-C, Teledyne FLIR LLC, Wilsonville, OR, USA). All plots were photographed
using a 1:1.4/12.5 mm Fujinon CF12.5HA-1 lens. Imaging was carried out manually by
holding the camera at approximately a height of 1 m while walking through the plot in
a back-and-forth manner. The camera was set to collect raw sensor data at 7 FPS, with
aperture value 8, gain 2.0, and automatic shutter speed. Approximately 500–1500 images
resulted from each plot (see Table 2. The large variance reflects the fact that measurements
were made manually at walking speed, and gait varied, and occasionally it was necessary to
wait for vehicles to pass for safety reasons. Ground sampling distance was approximately
0.25 mm.

Grasshopper (GH) imaging did not pay special attention to defects in the pavement
surface. Rather, the imaging method was designed to correspond to a rig of multiple
adjacent cameras sweeping the pavement surface, for example, installed onto a car. Of
course, walking speed is much slower than typical driving speed, meaning that images
collected from a car might have more motion blur and the amount of collected images was
large. The images were then aligned and processed into dense point clouds in Agisoft
Metashape [39] software, using parameters presented in Table 5.

Table 5. Agisoft Metashape image alignment and processing settings.

Alignment Settings

Accuracy Highest
Generic preselection Yes

Reference preselection Sequential
Key point limit 0
Tie point limit 0

Filter points by mask No
Mask tie points No

Guided image matching No
Adaptive camera model fitting Yes

Depth Map Processing Settings

Quality Ultra High
Filtering mode Aggressive

2.2.3. Terrestrial Laser Scanning

TLS data collection was conducted using a Leica RTC360 scanner [40]. Two scans were
taken from each plot, one on each side of the plot, moving in the direction of the road. For
each scan, the medium setting was used, corresponding to point resolution of 6 mm at a
distance of 10 m [41]. As the distance between the two scan locations was significantly
smaller, the point resolution was expected to be higher in the plot area. Images were taken
with the integrated camera of the scanner for coloring the point cloud (these images were
also used in georeferencing photogrammetric datasets), and each point was scanned twice
in order to ensure a correct return.

Using the aforementioned settings, each scan took roughly four minutes, when the
scanner captured a 360◦ horizontal area and a 300◦ vertical area. It was later noted that the
scan time could be reduced by limiting the scan to the plot area, as the plots were the only
area of interest. In order to georeference the point cloud, three target spheres on tripods
were used at each plot, and GNSS measurements were taken from each.

The scan data for each plot were registered in Leica Register 360 [42], where the point
clouds were automatically registered to each other using cloud-to-cloud alignment and
finding target spheres in both scans. The automatic registration can be improved through
manual alignment and reregistration in Register 360, if necessary, though with two scans
and the use of target spheres, the registration was found to be sufficiently accurate as



Sensors 2021, 21, 8190 7 of 24

provided. Thus, the registration process was conducted automatically, with the eight plots
requiring a total of two hours to register. The coordinates for the target spheres were
also entered in Register 360 to georeference the point clouds. The point clouds were then
segmented manually in CloudCompare 2.10.2 to separate the plots from the other areas of
the scan, as only the plot areas are considered in this study. The radiometric qualities of the
RTC360 have been examined in [31].

2.2.4. Artec Leo

Test plots were modeled using the Artec Leo handheld scanner [43] (see specifications
in Table 6). Due to practical reasons, measurements with the Leo were made 2.5 months
later than other measurements, in August 2020. The plots were scanned by holding the
scanner at waist height (approximately 0.9 meters), pointing it at the pavement, and
walking through the area in a back-and-forth manner. Measurements were made on an
overcast day, as sunlight disrupts the structured-light pattern of the scanner. The time
difference between Leo and other measurements means that some deterioration in the
pavement may have occurred in the meantime.

Scans were processed using Artec’s proprietary Artec Studio 15 software [44]. The
software has some black box functionalities, but processing mainly consists of the following
steps: alignment/registration; outlier removal; model “fusion”; and texturing. The qualita-
tive experience is that resulting models are rather smooth, and planar surfaces—lacking in
3D features—are challenging for the system. As will be seen later, the Leo occasionally lost
track of the surface and created slightly deformed (curved) surfaces in general.

2.2.5. Faro Freestyle

The test plots were scanned with the Faro Freestyle (FF) [45] handheld scanner, which
includes two infrared cameras, a color camera, and a laser unit. Some specifications are
available in Table 6. The measurement principle of the scanner is based on structured-light
technology, in which two infrared cameras are stereo-imaging a structured-light pattern
formed on a surface. Since sunlight interferes with the infrared sensors’ ability to detect the
pattern, measurement was performed at dawn, when there was enough light for the color
camera and minimal traffic flow. The measurement was performed by placing calibration
signs around the defects in each plot, after which the test area was scanned only from
the area around the calibration signs. The measurement was performed at a distance of
one meter from the ground surface by walking and by closing the loop, meaning that the
scanning process was begun and finished at the same point. In this way, it was ensured
that the scans were matched as well as possible and that the defects could be scanned from
at least two directions.

Table 6. Artec Leo and Faro Freestyle specifications as provided by the manufacturers. All informa-
tion is not provided for both. RMS: root mean square; VCSEL: vertical cavity surface-emitting laser;
LED: light-emitting diode; DOF: degree of freedom.

Specification Artec Leo Faro Freestyle

3D point accuracy 0.1 mm 0.5 mm
3D point resolution 0.2 mm 0.2 mm

RMS noise @ 0.8 m range – 0.8 mm
Working distance 0.35–1.2 m 0.5–3 m

3D reconstruction rate 22 fps –
Data acquisition speed 35 Mpts/s 88 kpts/s

3D light source VCSEL LED flash
Position sensing 9-DOF inertial system –

The point clouds were processed in the Faro Scene Process [46], where automatic
processing was performed for data optimization. During processing, the Faro Scene
Process combines Freestyle’s multiple scanframes into a single point cloud.
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2.3. Reference Measurements
2.3.1. Pavement Samples

In order to define a standard for comparing the instruments in the test site, as described
above, standard pavement samples were used to establish ground truth. A collection of five
different kinds of samples was used, with varying degrees of wear and various textures.
These are pictured in Figure 2 and described in Table 7.

Figure 2. Pavement samples used for reference measurement. Samples in ID number order, from left
to right, 1–5.

Table 7. Pavement samples used for reference measurements.

ID Diameter (mm) Height (mm) Description

1 102 31 Fresh, bituminous and coarse pavement
2 102 29 Heavily worn, low bitumen
3 102 29 Heavily worn and cracked
4 95 62 Slightly worn, large grain
5 153 59 Artificially smooth

2.3.2. Reference Measurement Setup

The samples were first measured using laboratory-grade structured-light scanner
Konica Minolta VIVID 9i Non-Contact 3D Digitizer. As per recommendations [47], mea-
surements were conducted indoors at room temperature, and natural light was blocked.
Calibration was conducted using the Field Calibration System for 744 mm TELE lens and
694 mm MIDDLE lens—the latter of which was need for the largest pavement sample.
Scanning mode was set to standard, and number of scans to four. Scans were saved using
Polygon Editing Tool [48] software with no hole filling and 1:1 reduction rate. Mesh models
were saved as OBJ files.

After laboratory measurements, the pavement samples were placed in a row on a
paved area outdoors in order to simulate realistic measurement conditions. Then measure-
ments were conducted with each instrument as described above. No special attention was
paid to the samples. The reference measurement test site is pictured in Figure 3.

2.3.3. Reference Measurement Analysis

After data processing, resulting point clouds and meshes were registered in Cloud-
Compare [49] (using georeferenced TLS and photogrammetric measurements to georefer-
ence other datasets). Registration was done manually at first and refined using the iterative
closest point (ICP) algorithm. Point clouds were manually segmented to only cover areas
that are included in reference meshes—that is, only the top surfaces of all samples are
included. Instruments were then compared against ground truth as established by the lab-
oratory scanner using point–point distances and standard deviations between individual
samples. Additionally, the number of points in the segmented clouds was observed to
indicate point cloud density.
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Figure 3. Reference measurement setup. Samples are in ID order 1–5 from left to right.

2.4. Data Analysis

The various colored point clouds were aligned first manually and then using ICP in
CloudCompare. The universally (across the entire test plot) aligned clouds were exported.
Individual defects were also sectioned from the point clouds manually using bounding
boxes and exported.

2.4.1. Plot-Level and Cross-Section Analysis

For a universal comparison, the point clouds were imported into Matlab [50] and
visualizations were made of overlaid clouds and cross sections. These were used for visual
comparisons of entire test plots. Cross sections can be used to identify discontinuities, noise
levels, and possible drift in point clouds. Visualizations of entire plots are often difficult to
interpret, especially if multiple point clouds are overlaid. More detailed comparisons were
made on the defect level.

2.4.2. Defect-Level Analysis: Point–Point Distances

On the single defect level, clouds were compared quantitatively using point–point
distances in CloudCompare, in addition to which some visualizations were produced
to gain qualitative understanding of the differences between various modeling methods.
While numbers reveal general levels of precision, visualizations help explain the reasons
for any particular offsets.

To quantitatively compare the different point clouds, it is necessary to establish a
reference point cloud that other clouds are compared to. In this study, the photogrammetric
point clouds created from Nikon images are used as references. This is based on reference
results and the fact that such photogrammetric modeling is an established method for
creating high-detail models [37]. Additionally, it can be visually confirmed that the pho-
togrammetric point clouds closely match the TLS point clouds, which can be assumed to be
geometrically accurate, while having higher point density and less noise (see Section 3.4).

However, since the photogrammetric method does not represent a real ground truth,
other methods can also be cross-compared. In this fashion, it is possible to examine the
other methods in a broader sense and understand more completely how the different
methods compare to each other. It also enables us to question and evaluate the validity of
the photogrammetric model as reference. This is why point–point distance comparisons
are made across all methods and evaluated holistically.

2.4.3. Defect Analysis: Volume and Maximum Depth

Some characteristics of defects were also calculated and used to categorize the defects
and further evaluate the possibilities of different sensors. In the geometric domain, measur-
ing various properties such as length, width, area, and volume is essential in determining
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the severity of a defect as well as the maintenance needs. Defects that cover a large area
are more susceptible to warping, which may happen when modeling planar surfaces. On
the other hand, more voluminous defects have stronger (i.e., less planar) geometry, which
might make them easier to model. In addition, defect volume can be a useful metric for
evaluating the need for maintenance.

The area covered by a defect can be roughly calculated by simply multiplying the
length of two sides of the manually-defined bounding box by which the defect is defined.
Of course, some of this area includes nondefective pavement, but since all of the area is
used to evaluate the point–point distances between point clouds, it is reasonable to include
it entirely. If another defect intersects with this area, the defect is discluded. In practice,
there is not always a clear delineation between defects or between defect and nondefective
pavement, and it is a matter of judgment to define the limits of a defect. To calculate the
volume of a defect, a plane can be fitted on the surface around the defect and then the
volume between the plane and the defect can be calculated. In CloudCompare, the plane
is fit using the Fit Plane tool (a least-squares approach) and volume calculated using the
2.5D Volume tool. It should be noted that road surfaces are not planar due to, for example,
rutting. This means that, especially in the case of defects with large surface areas, an ideal
plane may not correspond to the surface. At the same time, it could be argued that the
effect of this on the volume computation might be counteracted by differences in volume
due to nonplanarity being systematic, which means that as much volume should be added
as is removed by the effect of nonplanarity.

Volume, as measured by different instruments, can be employed as a further approach
to assessing the capabilities of each method to accurately measure defects. To use volume
and differences between volume measurements as a comparative metric, the volume of
a defect is calculated using each point cloud as described above, i.e., that the plane that
is defined as the surface is calculated separately for each method using measurements
made using that method. These volumes can then be compared to an assigned reference;
in this case, the Nikon point cloud and mean differences and statistical measures of these
differences can be computed.

Finally, the maximum depth of a defect—and differences in these—is employed as a
metric for point cloud comparisons. Using the planes defined by measured points near
but outside the defect, the maximum vertical difference between this plane and observed
defect points is found. Again, distances can be compared to one another and to an assigned
reference. This maximum depth of a defect and statistics about differences tell us about the
precisions of the modeling methods and the possible presence of outliers.

2.4.4. Qualitative Experiences in Usability and Efficiency

In addition to computationally comparing the accuracy and precision of modeling
methods, it is important to consider other factors such as usability, efficiency, and the user
experience. Such considerations are evidently less straightforward and require balancing
the values of qualities and properties that are not directly comparable. At the same
time, quantitative comparisons of efficiency can also be made, concerning, for example,
measurement and processing times. In this study, we provide some referential insight into
measurement and processing times, which were not measured or tested robustly, but, more
significantly, evaluate the practical implications of different approaches.

3. Results

This section presents results of reference measurements, photogrammetric reconstruc-
tion, other data processing, and analysis of field measurements.

3.1. Reference Measurement Results

Mean point–point distances and standard deviations across individual reference
samples are presented in Table 8. The table also presents the total number of points,
collected by each device, that covers the reference samples. This can be used as a measure
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of point cloud density. The results are very similar across photogrammetric and Artec Leo
point clouds, while TLS is slightly more noisy and the Faro Freestyle stands out as the most
noisy. At the same time, the differences in point density stand out relative to positional
errors. Notably, the reference measurement setup may favor structured-light scanners,
since the samples add geometry to the otherwise flat scene, making tracking more robust.
In later analyses, high-resolution photogrammetric point clouds are used as reference due
to their robust performance and high point density. While the industrial camera approach
obtains even higher density and precision in this comparison, later results show that it
can contain inconsistencies (see Section 3.5). Figure 4 shows point–point distance results
for Nikon measurements for sample 3, visualizing how the greatest errors are present in
the deepest crevices. At most surfaces, errors are practically nonexistent. Relative to the
laboratory scan, the Nikon point cloud shows the crevices as more shallow.

Table 8. Reference measurement results and point cloud sizes, where s is the mean distance to
nearest point for reference blocks separately and together, σ is standard deviation, and n the number
of points. Nikon: high-resolution photogrammetry; GH: industrial camera photogrammetry; TLS:
terrestrial laser scanning; Leo: Artec Leo; FF: Faro Freestyle.

Nikon GH TLS Leo FF

n 934,097 1,087,748 50,585 4480 8183

s1 (mm) 0.34 0.25 0.43 0.30 1.22
s2 (mm) 0.39 0.15 0.41 0.18 0.98
s3 (mm) 0.15 0.18 0.41 0.20 0.65
s4 (mm) 0.13 0.15 0.35 0.15 0.49
s5 (mm) 0.20 0.20 0.37 0.20 0.49

σ1 (mm) 0.24 0.19 0.31 0.21 0.74
σ2 (mm) 0.26 0.11 0.35 0.13 0.54
σ3 (mm) 0.10 0.14 0.31 0.14 0.46
σ4 (mm) 0.06 0.08 0.29 0.08 0.38
σ5 (mm) 0.08 0.07 0.22 0.10 0.33

smean (mm) 0.24 0.19 0.40 0.20 0.77
σmean (mm) 0.15 0.12 0.30 0.13 0.48

Figure 4. Difference image showing distance to reference model of pavement sample 3, as measured
using high-resolution photogrammetry. Reference model is pictured as transparent white.
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3.2. Photogrammetric Reconstruction

Table 9 presents the numbers of tie points and reprojection error in photogrammetric
processing for high-resolution and industrial camera photogrammetry. The reprojection
error metric is dependent on the software used.

Table 9. Photogrammetric reconstruction results for Nikon and GH measurements for each plot.

Plot
Number

Tie Points
(Nikon)

Nikon Mean
Reprojection Error

(Pixels)

Tie Points
(GH)

GH RMS
Reprojection Error

(Pixels)

1 9,708,844 0.39 10,144,098 0.33
2 13,903,757 0.38 3,203,031 0.54
3 15,743,599 0.46 15,101,018 0.35
4 11,888,215 0.43 15,381,474 0.47
5 9,893,413 0.51 12,773,785 0.54
6 16,196,109 0.43 4,469,455 0.71
7 14,784,526 0.39 11,174,053 0.47
8 15,778,640 0.43 15,778,194 0.42

3.3. Field Measurement Point Clouds

Tables 10 and 11 provide information on point cloud sizes and densities as produced
by different methods. As can be seen, point clouds produced photogrammetrically are
much denser than other point clouds. It should be noted that Faro Freestyle point clouds are
comparable mainly in terms of point density, since Freestyle measurements only included
defective areas of the plots. Grasshopper measurements resulted in the largest point clouds,
which is attributable to the large number of images. Point numbers varied especially
with handheld scanners, which can at least partially be explained by the measurement
mechanism, where a longer view of an area results in more measurements and a denser
point cloud. With the Artec Leo, it is also likely that the processing in Artec Studio software
influences point density, but the nature of this influence is outside the scope of this study.

Table 10. Final point cloud sizes as produced by different instrumentations, cropped to the research
plot. Due to misalignment, GH measurements for plot 5 were discarded.

Plot Number Nikon GH TLS Leo Freestyle

1 140,396,091 310,755,752 6,389,651 6,001,849 11,463,027
2 287,491,907 335,736,791 3,534,097 18,146,934 3,447,980
3 252,277,528 327,961,220 5,101,989 6,009,833 2,522,223
4 255,212,221 650,398,114 6,126,542 1,626,388 3,718,867
5 260,599,273 – 7,157,959 2,013,197 2,984,767
6 238,366,658 535,690,203 7,336,520 1,616,939 7,336,520
7 216,517,583 487,028,634 7,252,653 2,009,979 2,045,904
8 238,496,328 455,029,861 8,396,739 2,005,995 791,550

Table 11. Point cloud density expressed as mean horizontal distance to nearest point in millimetres.

Plot Number Nikon GH TLS Leo Freestyle

1 0.11 0.04 2.01 3.22 0.92
2 0.05 0.05 6.46 0.85 1.43
3 0.05 0.06 7.43 3.17 1.37
4 0.05 0.03 3.81 7.80 1.54
5 0.06 – 2.59 6.64 1.38
6 0.05 0.03 2.17 9.03 1.40
7 0.04 0.02 2.61 7.40 1.94
8 0.05 0.02 3.11 9.69 6.54



Sensors 2021, 21, 8190 13 of 24

For detailed comparisons around defects, a total of 34 defects were identified, sec-
tioned, and examined, and these are detailed in Table 12.

Table 12. Segmented individual defects and some of their properties. Defects 8 and 30 were discarded
during processing. Volume computation is described in Section 2.4.3.

Defect Number Plot Number Description Volume (mL)

1 1 pothole 13,361
2 1 longitudinal crack 1141
3 1 longitudinal crack & small pothole 3547
4 2 longitudinal crack 3806
5 2 longitudinal crack 626
6 2 alligator crack 1342
7 2 transverse crack 288
9 4 longitudinal crack 11

10 4 longitudinal crack 119
11 4 longitudinal crack 264
12 4 longitudinal crack 286
13 4 longitudinal crack 414
14 5 transverse crack 16
15 5 transverse crack 10
16 5 crack 151
17 5 raveling 3371
18 6 longitudinal crack 792
19 6 crack 19
20 6 crack 23
21 6 longitudinal crack 10
22 6 long central line pothole 2233
23 6 longitudinal crack 687
24 7 transverse crack 7
25 7 pothole and transverse crack 1504
26 7 longitudinal crack 141
27 7 longitudinal crack & filled pothole 543
28 7 wide longitudinal crack 5739
29 7 longitudinal crack 180
31 8 longitudinal/alligator crack 1627
32 8 longitudinal crack 40
33 8 longitudinal crack 507
34 3 crack network 4796
35 3 raveling 1506
36 3 wide longitudinal crack 784

3.4. Cross-Section and Graphical Analysis

Cross-section analysis reveals that TLS and Nikon point clouds are the most stable
(these are visualized in Figure 5). TLS can be considered precise to a noise level of some
millimeters, and similarly accurate. This means that there should be no significant distor-
tion or warping in the road surface as modeled by the TLS point cloud. The profiles in
Figures 6 and 7, chosen from two plots with large defects, illustrate how the point clouds
retrieved from handheld scanners have tendencies to drift and form hill-like or bowl-like
shapes, seen in the middle of the profile where the different point clouds form layers
around TLS and Nikon point clouds, according to the amount and direction of distortion.
A similar effect is observed with the GH point cloud in plot 7, though not in plot 1 (this
likewise occurs in other plots on occasion, but not systematically). In addition, this method
appears particularly noisy in plot 7. These observations speak to the inconsistency of the
imaging method using the GH (see Section 2.2.2). In both profiles, the Nikon and TLS
point clouds align very closely, with TLS appearing slightly more noisy. It is important
to remember that the various densities of the point clouds, photogrammetric point cloud
densities, are approximately hundredfold relative to other point clouds.
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Figure 5. A section of the road profile from plot 1 showing Nikon and TLS point clouds. Photogram-
metric data is 1 mm deep, while TLS data is 3 mm deep for visual clarity.

Figure 5 shows that the photogrammetric point cloud contains little noise as it densely
follows a surface. The photogrammetric point cloud reveals much smaller details than does
the TLS cloud. In addition, we can see some features in the photogrammetric point cloud
that are not clearly visible in the TLS point cloud, for example the crack at 16.65 m on the
x-axis, which only appears in a few points in the TLS cloud, or the multiple millimeter-sized
bumps along the profile. At the same time, many of the shapes in the photogrammetric
point cloud can be seen also in the TLS point cloud, if only as individual points slightly
offset from the main body of points. For example, the bends at around 16.45–16.48 m—
clearly visible in photogrammetric data—appear as a noisy wave in the TLS point cloud as
well. The close match of these point clouds sets them apart from the other instruments that
contain more noise (the GH and FF point clouds) or distortions (the GH, FF, and Leo point
clouds), as can be seen in Figures 6–9.

Figure 6. Three mm deep profiles of defect 1 as measured by all instruments in an arbitrary coordinate
system.
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Figure 7. Three mm deep profiles of plot 7 as measured by all instruments in an arbitrary coordinate
system.

A closer look at individual defects can be seen in Figures 8 and 9, the first of which
is a pothole in plot 1 and the second a partially filled crack intersection or pothole in plot
7. The images underline the distortions occurring in some of the point clouds, described
above, while also supporting the claim that Nikon point clouds closely follow TLS point
clouds while providing higher point density and precision. These images suggest that,
of the investigated instruments, photogrammetric and Artec Leo point clouds have sub-
millimeter noise levels while TLS and FF point clouds contain noise of some millimeters. At
the same time, Figure 8 shows large imprecisions in Leo data, possibly resulting from the
temporal difference in measurements, imperfect registration, or warping. TLS and Nikon
point clouds contain very little distortion (on this, the TLS point cloud acts referentially),
while other methods experience warping at least on occasion. These considerations further
support the use of the Nikon point clouds as reference in further point cloud analysis.

Figure 8. Three mm deep profiles of plot 1 as measured by all instruments in an arbitrary coordinate
system.
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Figure 9. Three mm deep profiles of defect 27 as measured by all instruments in an arbitrary
coordinate system.

3.5. Point–Point Distances

For 34 defects, average point–point distances and standard deviations of these between
all relevant methods (some defects were outside the measured area of some sensors, in
particular the Faro Freestyle) were calculated. Table 13 presents the averages of these
averages and standard deviations. As can be seen, values are lowest with high-resolution
photogrammetry and TLS.

Table 13. Average mean point–point distances and standard deviations as compared across all
methods. Numbers are in millimetres.

Nikon GH TLS Leo FF

Nikon mean 0.829 0.595 1.026 1.061
std dev 0.787 0.502 0.969 0.993

GH mean 0.829 0.613 1.005 0.994
std dev 0.787 0.529 0.972 1.016

TLS mean 0.595 0.613 1.458 1.429
std dev 0.502 0.529 0.930 0.928

Leo mean 1.026 1.005 1.458 1.840
std dev 0.969 0.972 0.930 1.109

FF mean 1.061 0.994 1.429 1.840
std dev 0.993 1.016 0.928 1.109

mean mean 0.878 0.860 1.024 1.332 1.331
std dev 0.813 0.826 0.722 0.995 1.012

Further examinations can be made by considering the effect of different kinds of
defects on these values. Figure 10 plots point–point distances to defect volume, which
illustrates two things and suggests a third: (1) that most defects are small (<1000 mL) in
volume; (2) that standard deviations from Nikon data are smallest in TLS, GH, Leo, and
FF data, respectively, though the two handheld scanners are quite equal in this regard;
(3) that differences between modeling methods seem to be smaller when comparing more
voluminous defects. This suggests that stronger geometry results in better models, since
larger defects are less planar. This seems plausible especially for the structured-light
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scanners. However, the amount of data for large defects is notably small and some of
the largest deviations happen in the largest defect, so definitive conclusions should not
be drawn.

Figure 10. Correlation between defect size and standard deviation in point–point distances.

Distances between point clouds can also be interpreted by visualizing pairs of point
clouds and differences between these. An example can be found in defect 27, which is
pictured in Figure 11 and point clouds of which are visualised in Figure 12, colored based
on their vertical distance to the Nikon point cloud. In the figure, it can be seen that there
are some noisy areas in the GH point cloud, seemingly a result of the overlapping seams
of the back-and-forth imaging process. In the TLS point cloud, there is a small amount
of evenly distributed noise, perhaps slightly concentrated in defect areas. The Artec Leo
cloud is similar, but the amount of noise is greater and it is less evenly spread. In the Faro
Freestyle point cloud, noise seems to be greater, but evenly distributed. This defect was
specifically chosen for this image, since it was found to represent the differences between
the methods rather well, but similar comparisons were made across different defects.

Figure 11. Orthoimage of defect 27 (plot 7).

3.6. Volume and Defect Depth

Comparisons of defect volume provide similar results to other comparisons. That
is, we find that Nikon and TLS point clouds align best, with GH photogrammetry and
handheld scanners following suit. The statistics of volume comparisons (with Nikon
measurements as the reference) are in Table 14. The table contains statistics on absolute
and relative differences between the methods as compared to Nikon point clouds. Here,
relative differences refer to the size of the offset relative to the size of the defect (difference
in volume to volume as measured by Nikon cameras). Large standard deviations reveal



Sensors 2021, 21, 8190 18 of 24

that there are large differences in volume offsets between defects. That is, none of the
methods records the volumes of defects reliably and precisely similarly to high-resolution
photogrammetry.

Figure 12. Point clouds of defect 27 (plot 7), colored based on vertical distance to nearest point in
Nikon point cloud.

Table 14. Offsets and standard deviation of offsets of defect volumes compared to volume measured
from Nikon point cloud.

Method Mean Offset
(mL)

Standard Deviation
(mL)

Mean Relative
Offset (%)

Std. Dev of
Relative Offset (%)

GH 145 356 5.8 18.7
TLS 31 183 3.7 15.6
Leo 189 530 5.4 32.8
FF −103 539 −15.4 25.2

In addition to volume offset, we compare maximum depth as measured by each
method. Table 15 presents these results. This comparison reveals the presence of occasional
noisy areas in GH point clouds, which have performed better than the handheld scanners
so far. This is a result of the same effect that was observed in Figure 12, where “seams”
resulting from low overlap in back-and-forth imaging result in noisy areas. It also is
evident that the Faro Freestyle point clouds are very noisy, with maximum depths varying
significantly from Nikon point clouds.

Table 15. Offsets and standard deviations of offsets of defect maximum depth as compared to
maximum depth measured from Nikon point clouds. Relative values are excluded due to large
variety in defects’ depth but comparatively constant values in offset, which lead to large relative
offsets that do not reflect real inaccuracies.

Method Mean Offset (mm) Standard Deviation (mm)

GH 4.0 5.0
TLS 0.7 1.1
Leo 1.9 2.9
FF 7.0 22.4
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4. Discussion

In order to extract necessary geometric information about various types of pavement
distress, the necessary level of detail is highly varied depending on the defect. In this
study, some defects were only some milliliters in size (Table 12), while others were multiple
liters. While larger defects can be identified in rather low-resolution data of sufficient
accuracy, identification and extraction of defect properties, such as depth, width, and
volume, requires reliable data of sufficient resolution. To identify and extract information
about a 1 mm wide crack, sub-millimeter accuracy is necessary. Potholes, which are
typically over 10 cm in diameter and multiple cm deep, can be robustly identified with
centimeter-level accuracy. El Issaoui et al. [33] deem a 1.4 mm error level adequate for
operational rut depth measurements. For reference use, sub-millimeter levels of accuracy
and precision are necessary to reliably evaluate various defect types. As seen in Table 11,
of the methods investigated here, only photogrammetric approaches provide this level
of detail.

Carefully photographed high-resolution images that are carefully processed into high-
density point clouds provide 3D models of higher precision and density than is available
from terrestrial or handheld structured-light laser scanning. A lower-resolution industrial
camera is also capable of providing high-density models, but imprecisions are more likely
to remain, especially when the imaging process is not carefully planned and executed. It
is reasonable to assume that a more careful imaging process, perhaps carried out on a
moving platform from constant height and with higher overlap would provide results
with less noise. TLS modeling is reliable and straightforward, and processing is quick.
However, it is insufficient for millimeter-level precision and detail as point densities are very
low relative to photogrammetry. While all investigated instrumentations achieved high
precision in reference measurements (Section 3.1), photogrammetry delivered unrivaled
point density, which is vital for reference use. At the same time, the use of photogrammetry
is always a compromise, as choices have to be made about the level of detail and processing
settings. It would, for example, be possible to image a research plot with smaller ground
sampling distances and larger numbers of images, which might result in higher point
densities. In this study, the chosen measurement approaches can be justified as being
reasonable for the acquisition of reference data. Closer-range imaging or more delicate
measurement conditions would increase the workload in ways that do not reflect realistic
measurement conditions.

While photogrammetry seems to perform well, results from handheld structured-light
scanners are less straightforward. The measurements used in this study were nonoptimal,
with Artec Leo measurements being made 2 months later than other measurements, and
Faro Freestyle measurements not covering all defects that were used for comparisons. Some
properties of these methods are evident nonetheless. Figures 6, 7 and 12 and Table 15 show
that the Freestyle produces very noisy point clouds, which largely disqualifies the scanner
from being used to precisely map road defects for reference purposes. The Freestyle also
performed poorest in reference measurements. The Leo seems quite capable of producing
precise point clouds, but scanning without targets or other ground control points causes
drift and bending, as seen in Figures 6 and 7. It was also rather poor at capturing the
volume of defects, perhaps because the drift makes creating reference surfaces inaccurate,
while obtaining the maximum depth of defects very accurately. Other possible reasons
for this are smoothing or hole-filling happening during data processing as a result of
some areas being occluded or poorly scanned for other reasons. Another drawback to
handheld scanners is that they have limited possibilities for further development, and
cannot, for example, be implemented on a mobile platform. With both handheld scanners,
point density varied quite a lot, which suggests that human factors in the measurement
process—and, with the Artec Leo, the processing process—have a significant effect on this
quality. Furthermore, it is unclear whether higher point density—resulting, perhaps, from
slower measurements—provides higher accuracy or precision, or whether, indeed, the
opposite occurs. The latter could be the case if the tracking of the scanner is noisy. Further
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investigation into the effects of different measurement techniques with structured-light
scanners is required to assess these questions.

4.1. Reference Measurements and Systematic Error

Significantly, the largest errors in reference measurements seem to occur at points in
the targets where there are the deepest cracks, holes, or crevices (Section 3.1 and Figure 4).
Similar results appeared across all instruments. This implies that all of the modeling
methods may underestimate defect depth and volume. While the displacement shown
in the figure is small, it may have consequences for modeling large, long, or deep cracks,
which may as a result be underestimated in size and, therefore, significance, and need
repair, especially by algorithmic evaluation. In other words, this suggests that defects are
larger than they appear.

4.2. Evaluating Usability and Efficiency
4.2.1. Measurement and Processing Times

Table 16 presents approximations of measurement and processing times for a single
measurement instance, i.e., plot. It also reports the need for targets in measurement, which
contributes to measurement times and preparation needs. These are indicative of what
will result in reproductions, but, as will be discussed in Section 4.2, there are many factors
affecting these times. Data processing was decentralized across multiple computers with
different specifications, making direct comparisons difficult.

Table 16. Measurement and processing times and target requirements for each method. The numbers
are approximate and referential, and real results will differ with circumstances.

Method Measuring Time
(Minutes)

Processing Time
(Minutes) Requires Targets or Markers

Nikon 10 1400 For scale
GH 5 1400 For scale
TLS 20 120 For registration
Leo 2 300 No
FF 4 1 For drift prevention

The fastest measurements were performed with the handheld Artec Leo scanner,
which was able to scan a plot in approximately one or two minutes with practically no
preparation. Supplementary scanning (the Artec Leo user interface allows the user to stop
and resume scanning) was found to be unhelpful, likely because the simple geometry of
the road surface makes it difficult to register multiple scans, compared to one continuous
scan. The use of markers, which might improve scanning results with the Leo, would
increase preparation time significantly. Nikon imaging took some 5–10 min for a single plot
(200–250 images with two cameras). Grasshopper imaging took 1–4 min for actual imaging
(500–1600 images per plot at 7 frames per second), but took some additional minutes for
setup with a computer and imaging software, focusing, etc. TLS measurements require
some 5 min per measurement, and in this study we measured each plot twice, giving a total
of 10 min, to which setup times for target spheres, including tripod leveling and GNSS
measurements, should be added. Specifying more exact scan areas would reduce this time;
that is, not doing complete 360◦ scans, but only scanning the relevant section. The scanning
time on the Faro Freestyle handheld scanner was 1–2 min, making it approximately as fast
as the Leo. However, in this study, calibration signals were used to improve the geometry,
which increased the total measurement time to 3–4 min, including the placement of the
calibration signals, the scanning time, and the removal of the signals. Although only the
damaged pavement and surrounding area were scanned with the Freestyle scanner, it
would not have taken significantly longer if the entire test area had been scanned.
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While the Artec Leo scanned the plot quickly, it required long processing times.
The proprietary Artec Studio software that must be used functions similar to a black
box, and it is difficult to know what processing is taking place and how much time
it requires. Generally, when using nonoptimal settings, a plot was processed in about
5 h. However, using the best possible settings caused extensive processing times (days
or weeks), especially in texturing. In this case, where interests are strictly in geometry,
texturing could be foregone to accelerate processing, but due to lack of georeferencing in
Artec Leo data, texturing (which, in this case, translates to a colored point cloud) made
manual registration with other point clouds easier and more reliable. At the same time,
improvements in point clouds were hard to find, based on a few computational and visual
comparisons. In stark contrast, processing times for individual test plot data from the Faro
Freestyle were less than one minute each.

TLS processing required approximately two hours to process all eight plots. Pho-
togrammetric processing times depend on software and hardware being used, number of
images, image resolutions, and choices of algorithms for interest point detection, among
other factors. A reasonable estimate is that processing a set of images from one research
plot into a high-density point cloud takes approximately a day. There are, however, many
ways to improve processing times for photogrammetry, such as limiting the number of
images, using optimized imaging patterns, using optimal interest point detection, and
other algorithms based on the target and limiting the examined area. All measurement
methods require a length of time for processing, and in all examined cases, this means
hours of passive work. The practical result is that most processing is run overnight, and
differences become less consequential. In addition, the time cost is of less importance in
the case of reference modeling compared to deployed methods.

4.2.2. Other Considerations

Besides examining the time cost, other factors influence usability and efficiency as
well. All discussed methods require a level of sophistication in instrumentation, though
the cameras are the most affordable. Collecting images on a dSLR camera is straight-
forward, though photogrammetric applications require some well-known considerations
in imaging, [51,52] (for example). Imaging using the Grasshopper industrial camera as
described in Section 2.2.2 is a nonstandard and somewhat complicated approach, and the
study of this camera should be considered as a trial for a more systematic approach or
rig where several such cameras are installed. As presented, the GH imaging method was
unstable and prone to nonoptimal imaging, though it performed well on average. It also
results in a deluge of images, most of which do not provide additional information. TLS
measurement is straightforward and a well-established surveying method. It requires the
use of targets for cloud alignment, but this cost is significant only insofar as it requires more
time. The Artec Leo is easy to use and fast to operate, but quality control during operation
is challenging, as quite little information is available to the user. Though the instrument
notifies the user if tracking is lost, some errors in registration may be revealed only in
postprocessing, which is impractical to do onsite. Using targets or signals would make
measurement more cumbersome. In processing, the proprietary Artec Studio software is
nonideal for research purposes, as the workings of different procedures and algorithms are
not clear. Faro Freestyle measurements are quick to produce and process, but seem to be
too imprecise and noisy for reliable use in reference modeling. In other use cases, its speed
may be a decidingly favorable property as compared to the other instruments discussed
here, especially if steps are taken to denoise resulting point clouds. The use of markers is
not strictly necessary, but experientially helps prevent drift and distortions.

4.3. Future Research

As measurement and modeling technologies continue to develop and improve, further
research can provide insight into how new instruments and methodologies compare to
existing and established ones. The objective of this study was to determine which method
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is sufficiently accurate and efficient for use as reference in the study of more versatile
pavement defect detection and analysis methods. As such, future research will focus on
these methods, which are likely to be mobile and autonomous to varying degrees. Reference
measurements remain necessary for benchmarking and evaluation. As research and
development are focused mainly on mobile mapping of road defects, reference modeling
can be mobilized as well, for example by constructing rigs with high-resolution cameras
capable of imaging the entire width of a lane at high resolution. Such rigs can facilitate
processing, since initial camera positions can be pre-estimated quite accurately. In addition,
they can provide constant quality across different plots as images are not being taken by
hand, and alleviate the amount of tedious manual measurement labor in general.

5. Conclusions

As the development of increasingly sophisticated defect detection and analysis tech-
niques continues, evaluating these techniques is a necessary component of their devel-
opment. This research contributes a case study of various state-of-the-art methods for
producing close-range, static, high-resolution, three-dimensional reference measurements
of pavement defects, investigating three technologies in five instrumentations in real mea-
surement conditions. Such reference measurements can be used to provide ground truth to
automated defect detection methods and less-accurate, precise, or dense sensors. The study
finds that carefully measured, high-resolution photogrammetric point clouds are the most
reliable, detailed, and precise without losing accuracy, providing mean distances between
points of down to 0.04 mm and mean accuracies and precisions of 0.2 mm. Industrial
camera photogrammetry can provide similar densities, accuracy and precision, but due
to the imaging method deployed here, can retain distinct erroneous areas. Terrestrial
laser scanning is likewise accurate, but much less dense. Of the investigated handheld
structured-light scanners, the Artec Leo provides high accuracy and precision but only on
a small scale, and has much lower point density (1–10 mm between points on average),
while the Faro Freestyle creates quite noisy point clouds (almost 1-millimeter errors in
reference measurements) with only slightly better densities than the Leo. While the pho-
togrammetric approaches were superior in density, accuracy, and precision, other factors,
such as measurement and processing time cost, may favor the other approaches. TLS
holds the middle ground for both accuracy and precision and efficiency concerns, while
the handheld scanners provide quick measurements and, specifically in the case of the Faro
Freestyle, processing. Due to the requirements for reference measurements in developing
and evaluating defect detection methods, photogrammetric or TLS approaches provide
the most reliable reference datasets, with the choice depending mainly on required level
of detail.
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