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Abstract

Abnormal electrical activity from the boundaries of ischemic cardiac tissue is recognized as one of the major causes in
generation of ischemia-reperfusion arrhythmias. Here we present theoretical analysis of the waves of electrical activity that
can rise on the boundary of cardiac cell network upon its recovery from ischaemia-like conditions. The main factors included
in our analysis are macroscopic gradients of the cell-to-cell coupling and cell excitability and microscopic heterogeneity of
individual cells. The interplay between these factors allows one to explain how spirals form, drift together with the moving
boundary, get transiently pinned to local inhomogeneities, and finally penetrate into the bulk of the well-coupled tissue
where they reach macroscopic scale. The asymptotic theory of the drift of spiral and scroll waves based on response
functions provides explanation of the drifts involved in this mechanism, with the exception of effects due to the
discreteness of cardiac tissue. In particular, this asymptotic theory allows an extrapolation of 2D events into 3D, which has
shown that cells within the border zone can give rise to 3D analogues of spirals, the scroll waves. When and if such scroll
waves escape into a better coupled tissue, they are likely to collapse due to the positive filament tension. However, our
simulations have shown that such collapse of newly generated scrolls is not inevitable and that under certain conditions
filament tension becomes negative, leading to scroll filaments to expand and multiply leading to a fibrillation-like state
within small areas of cardiac tissue.
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Introduction

Heart is a remarkably reliable machine whose function is to

pump the blood as required by the organism. An important part of

its work is the orderly propagation of electrical signal, that is the

wave of excitation passing through cardiac muscle, which

subsequently triggers its ordered contraction. Abnormalities of

the excitation wave propagation, known as arrhythmias, are

precursors of sudden cardiac arrest and other life-threatening

pathologies. This paper focuses on mathematical analysis of

arrhythmogenic conditions associated with cardiac tissue recovery

from acute ischemia, also known as reperfusion arrhythmias. Such

recovery can be more dangerous then ischemia itself and often

leads to ventricular fibrillation and sudden cardiac death [1].

Reperfusion can be spontaneous (relief of coronary spasm,

dislodging of a thrombus) or externally imposed (antithrombolitic

therapy, angioplasty). It can also occur on a microscopic scale

during ischemia itself as a result in shifts in microcirculation [2]. As

of today, the exact mechanisms of reperfusion arrhythmias remain

poorly understood. This is because the inner layers of ischaemic

boundary are inaccessible for live visualization on a spatial scale

required to distinguish behaviour of individual cells. Therefore, in

order to understand how the abnormal activity spreads from single

cells to the bulk of cardiac tissue, we and others had to rely on

either in vitro experimental preparations or on computer modeling.

Our work builds on the experimental data acquired from

monolayers of cardiac myocytes under conditions that mimicked

the ischaemic boundary [3–5], and the results of direct numerical

simulations that closely matched these experimental observations

[5–7]. The in silico modelling provided an explanation to several

experimental findings, including the dependence of drift of

boundary-bound spirals on their chirality, pin-drift-pin type of

spiral tip motion and the effect of boundary movement on spiral

detachment [6,7].

The rotating waves of activity to be discussed in this paper,

occur on a much smaller spatial scale as compared to classical

cardiac reentry [8–12], see figure 1. Specifically, we are focusing

on a dynamically and spatially changing set of conditions which

can occur within a thin layer of cells sandwiched between intact

healthy tissue and the recovering ischaemic areas. Myocytes within

such layers can become spontaneously active as a result of calcium

overload and/or local noradrenaline release. The impact of

intrinsic myocyte heterogeneity on network behaviour is markedly

enhanced due to decrease in electrical coupling between the cells.

It gets even more complicated as the physicochemical factors that

create the boundary, such as low pH, lack of oxygen,

hyperkalemia, noradrenaline, move in space due to the dynamic

nature of reperfusion. Altogether the moving boundary, hetero-

geneous substrate, steep gradient of coupling and self-oscillatory

activity of individual cells can give rise to a rich network behaviour
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discussed in our previous paper [7]. A continuous generation of

mini-reentries from individual ectopic sources occurs within the

least coupled cells layers, and then the activity spreads towards the

better coupled layers of the boundary [8]. This scenario was

suggested by our experiments in neonatal rat cardiomyocytes and

was later supported and expanded upon using the in silico

approach. Yet, numerical modelling of cellular behaviour has its

limitations, and there is a need to understand how much of the

phenomena observed in the simulations are generic and how

much of it depends on the specifics of the model. Further still,

cardiac tissue is three-dimensional, whereas our experiments and

simulations reported previously were conducted using two-

dimensional cell networks. Extrapolation of the two dimensional

data into three dimensions requires additional theoretical

understanding.

In the present paper, we use an asymptotic theory of spiral and

scroll waves’ drift together with the recently developed numerical

technique to compute the response functions of spiral waves [13–

15] to provide theoretical analysis of our experimental and

numerical data. We then use this theoretical framework to predict

behaviour of the scroll waves in an ischaemic border zone in 3D,

where such experiments are not currently feasible. Finally we

confirm theoretical 3D predictions by numerical simulations of cell

network behaviour.

Specifically, we address the following questions:

1. In both experiments and numerical simulations, spiral waves

were not static within the border zone. What determines the

components of the drift velocity, and why the spiral cores can

be dragged together with the moving border zone?

2. In both experiments and numerical simulations, the drift of the

spirals was interrupted by their ‘‘pinning’’ to clusters of cells.

We have shown numerically that these can be cell clusters of

either elevated or suppressed excitability. What is the

mechanism of such pinning?

3. In both experiments and numerical simulations, the episodes of

spiral drift and pinning alternated. What is the mechanism by

which pinning can give way to further drift?

4. One of arrhythmogenic scenarios proposed in [6,7] involved

pinning of a spiral wave to a local heterogeneity which persists

long enough until the border zone passes and the spiral gets

into the better coupled tissue. Is this scenario viable in 3D?

Methods

Direct Numerical simulations: tissue model
The mathematical model mimicking the conditions when tissue

recoveres from acute ischaemia, and its experimental foundations

are described in detail in our previous works [7] and references

therein. To capture the complexity of pathophysiological conditions

associated with reperfusion arrhythmias, we use a simplified kinetic

model of individual cells, and enrich it by adding individual cell

heterogeneity, different course of recovery of cell coupling and

excitability, and spatial arrangement of conditions on the boundary

of ischemic tissue. The importance of the latter three factors, cell

heterogeneity, individual cell excitability and cell-to-cell coupling,

for the cardiac network behaviour was studied in our previous paper

[6]. The arguments and experimental evidence presented there

suggest that from the network/tissue perspective, it is not very

important exactly how these properties are altered. In this paper,

we model a tissue recovering from acute ischaemia as

a three-layered slab made of a heterogeneous mix of cells, subject

to a vertical gradient of average cell excitability and a vertical

gradient of cell-to-cell coupling strength. The 2D and 3D versions of

the model are illustrated in figure 2. In terms of the parametric

diagram described in [6] and shown in figure 3, the bottom layer

corresponds to the parametric region IV. It has low excitability and

weak coupling which result in the quiescent state where propagation

is not possible. The outer layer with high excitability and strong

coupling is in the parametric region V of the digram, corresponding

to the quiescent state where wave propagation is possible. The

middle, or transitional, layer is sandwiched between inner and outer

layers, so, from bottom to top, it starts in region III (high excitability

and weak coupling resulting in spontaneous fragmented waves) and

then via a gradual increase in coupling strength proceeds to region

V (high excitability, strong coupling, quiescent state where wave

propagation is possible) characteristic of the upper layer. The layers

are not static but move downwards through the slab, which

represents the reperfusion, or wash-out, of the agents affecting the

relevant tissue properties. Depending on type of reperfusion, blood

flow can recover within seconds (cases of resolved coronary spasm,

spontaneous dislodging of thrombi, angioplasty) or within minutes

(cases of changes in coronary flow due to gradual accumulation of

metabolites or pharmacological interventions). Therefore, the

dynamics of moving border zone can vary in a rather wide range,

from cm=s to mm=min. We select the values of the border zone

speed that produce interesting effects.

We assume that the cells are arranged in a rectangular grid of

Nx|Nz (in 2D) or Nx|Ny|Nz (in 3D) cells connected to each

other via Ohmic resistances. Properties of the cells and resistivities

of the contacts are varied in time an space. The cells are assumed

to have linear size of 30mm which serves as a space scale to endow

the voltage diffusivity and other space-related quantities with

suitable dimensionality. The cells are connected to the nearest

neighbours, so an internal cell has four contacts in 2D and six

contacts in 3D.

The excitable dynamics of cells is described by the Beeler-

Reuter-Pumir [6] (BRP) model of a neonatal cardiac myocyte.

The BRP model is based on the generic Beeler-Reuter [16] model

Figure 1. We consider excitation dynamics on a microscopic spatial scale, in areas of cardiac tissue with severely suppressed cell-to-
cell coupling superimposed with elevated cell excitability.
doi:10.1371/journal.pone.0024388.g001
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of a cardiac myocyte, which contains an explicit, albeit simplified,

description of individual ionic currents, and was slightly modified

to match the ionic currents reported for neonatal cardiac cells used

in our experiments [6]. The complete set of the BRP model

equations is given the Appendix S1; here we only outline the

modifications. The affected equations are

Figure 3. The parameter space diagram of the numerical model (1, 2) heterogeneity) [6]. The parameter regions I-V correspond to
distinctive regimes of wave initiation and propagation, observed in simulations where a and D were maintaned constant throughout the simulations.
The panels on the sides show representative snapshots of solutions, corresponding to regions I, III, IV and V.
doi:10.1371/journal.pone.0024388.g003

Figure 2. Schematic of numerical protocols. Top row: 2D setting [7]. Distribution of the diffusivity D and excitability/automaticity a across the
border zone. The three colour panels are representative snapshots of solutions at different values of a, as it was slowly growing at a fixed profile of D.
Here and below we use the red colour component to show the excitation wave (transmembrane voltage), blue component for the cell excitability/
automaticity (denoted as a, see definition in the text) and the green component for the cell electrical coupling strength (denoted as D for
transmembrane voltage diffusivity). E.g. yellow is a sum of green and red, and magenta is a sum of red and blue. Bottom row: 3D setting for this
paper. The transition zone moves downwards.
doi:10.1371/journal.pone.0024388.g002
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_VV~{(1=Cm)(iK1
zix1

ziNazis)zIext,

m~am=(amzbm),

iK1
~0:35(0:3{a)

4 e0:04(Vz85){1

e0:08(Vz53)ze0:04(Vz53)
z

0:2(Vz23)

1{e{0:04(Vz23)

� �
,

Iext~+ D(z,t)+Vð Þ:

ð1Þ

The last equation in (1) is written, for brevity, as the continuous

limit, whereas actual calculations of the inter-cellular currents were

discrete, as described in more details in the Appendix S1. The

coupling strength between the cells is represented by the voltage

diffusion coefficient D(z,t), and some of the values of D we use here

are too low to hold the continuous limit of the (1). Note that as far as

the continuous limit is concerned, the voltage diffusivity D is the

only quantity in the model related to space, so while within this

limit, all results are easily rescaled from one value of D to another.

The maximum permeability of the fast inward current gNa is

60% of the standard (2.4 vs 4), and that of the slow inward current,

gs, is 50% of the standard (0.045 vs 0.09).

We also have altered the balance between inward and outward

currents by inhibiting the inward potassium rectifier current, iK1

[6,17,18]. Suppression of iK1
to 30% of the standard value mimics

its smaller contribution reported for neonatal cardiomyocytes

[19,20] as compared to the original Beeler and Reuter values for

adult ventricular cells [16]. We use this supressed value of iK1

(a~0) for the bottom layer of the ischemic slab. In the upper

layers, further suppression, represented by the factor (0:3{a),
aw0, enhances excitability. For high enough values of a, this leads

to spontaneous firing of individual cells, i.e. makes them automatic

[6]. In [6] we considered a values that led to the in silico network

behaviour closely matching the behaviour of neonatal cardiomy-

ocyte layers. The excitability of the latter cells was increased using

beta-adrenergic stimulation with isoproterenol [5] and ischaemia-

reperfusion protocol [4]. Compared to [6], here we only consider a

narrow range of values of a, where phenomena interesting for our

present study are observed. In our previous paper [7], parameter

a~a(x,y,z,t) varied in space and time and it was essential that it

covered both excitable and automatic regimes, so it was called

both ‘‘automaticity’’ and ‘‘excitability’’. Here we concentrate

mostly on the events happening in the excitable regime (aƒ0:13,

within the range of intermediate coupling values, or region V in

the parametric space, shown in figure 3), hence for brevity we

mostly refer to parameter a as ‘‘excitability parameter’’ or simply

‘‘excitability’’. It should be kept in mind, however, that due to the

above ambiguity, this usage may differ from the meaning of

‘‘excitability parameter’’ in other studies.

Heterogeneity of individual cells’ excitability is described as

a(x,y,z,t)~a(z,t) (1zdag(x,y,z)), ð2Þ

where g(x,y,z) is the Gaussian distributed uncorrelated random

variable with unit dispersion, and parameter da represents the

intensity of heterogeneity.

Space-time variations of D and a are defined as

D(z,t)~

Dmin, zƒz1,

Dmin

z2{z
z2{z1 Dmax

z{z1
z2{z1 , z1ƒzƒz2,

Dmax, z§z2,

8><
>: ð3Þ

and

a(z,t)~
1

2
1ztanh

z{z1

w

� �� �
amax, ð4Þ

where z is the coordinate across the boundary, z1~z1(t) and

z2~z2(t) are the limits of the steepest part of the coupling

gradient, Dmax is the diffusion coefficient in the upper, well-

coupled layer, Dmin corresponds to the bottom, uncoupled layer,

and amax is the highest level of excitability within the slab. We used

the boundary width w~3|30 mm in all simulations. Parameters

z1, z2 vary linearly in time, z1~z1,0{ct, z2~z2,0{ct.

Thus, the recovering ischaemic tissue is modelled as layers with

imposed excitability and coupling profiles as shown in figure 2.

Specifically, we are modelling experimental conditions when

previously severely uncoupled ischaemic areas are reperfused with

agents which elevate cell excitability.

Finally, we also made simulations with deliberately arranged

parametric distributions not exploiting random number genera-

tors. The details of those are given where the results are described.

Asymptotic theory of drift
The asymptotic theory of spiral and scroll dynamics under small

perturbations [13,15,21–23] is formulated for the ‘‘reaction-

diffusion’’ system of partial differential equations (PDEs),

Ltu~f(u)zD+2uzEh, u,f,h [R‘, D [R‘|‘, ‘§2, ð5Þ

where u(~rr,t)~(u1, . . . u‘)
T is a column-vector of the reagent

concentrations, f(u)~(f1, . . . f‘)
T is a column-vector of the

reaction rates, D is the matrix of diffusion coefficients, ~rr [Rm

(m~2 or 3) is the vector of coordinates, and Eh~Eh(u;~rr,t) is some

small perturbation of the right-hand side, jEj%1. For the Beeler-

Reuter-Pumir model, ‘~7, and D~Dn, where n~½ni,j �, n1,1~1

and ni,j~0 otherwise.

The theory assumes that spiral wave solutions to equations (5)

for m~2 are stationary rotating, not meandering. This is indeed

satisfied for BRP model for all a values considered. Mathemat-

ically, the assumption means that a spiral wave solution to (5) for

m~2 in the (x,z)-plane has particular dependence on space and

time, so it rotates around a center of rotation ~RR~(X ,Z) with

angular velocity v and fiducial phase W

u(~rr,t)~U(r(~rr{~RR),q(~rr{~RR)zvt{W), ð6Þ

where r(~rr{~RR),q(~rr{~RR) are polar coordinates centered at ~RR. A

spiral wave can of course rotate in either direction; we assume

vw0 for clockwise rotation.

In presence of a small perturbation, E=0, a spiral wave

preserves the pattern, only slowly changing its frequency and

location of the core. It actually behaves as a localised object, only

sensitive to perturbations affecting its core. The localised sensitivity

to perturbations is mathematically expressed in terms of the spiral

wave’s response functions, that is the critical eigenfunctions of the

adjoint linearised operator, which are essentially nonzero only in

the vicinity of the core and exponentially decay with distance from

it. Knowledge of the response functions allows quantitatively

accurate prediction of spiral waves drift due to small perturbations

of any nature, which makes the response functions a property that

is as fundamental for spiral waves as mass is for matter. In

particular, the ~RR-drift velocity, i.e. the velocity of the drift of the

position of the core of the spiral, is defined, in the first order in E,

Evolution of Spiral and Scroll Waves
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by an integral of the perturbation h,

_RR~E
ðwzp

w{p

e{ij W , ~hh(U; r,h,j)
� �dj

2p
zO(E2), ð7Þ

where R~Xzi Z is the complex coordinate of the instant spiral

centre, inner product : , :h i stands for the scalar product in

functional space,

w , vh i~
ð

R2

wz(~rr) v(~rr) d2~rr~

þ ð?

0

wz(r,h) v(r,h)r dr dh,

function ~hh is perturbation h of the right-hand side in (5) , re-written

in the ~RR-centered corotating frame of reference (r,h), where

h~qzvt{W(t) is the polar angle in the corotating frame of

reference, and w~vt{W(t) is the time measured in terms of the

spiral rotational phase. The kernel W(r,h)[C of this integral is the

(translational) response function which characterizes the unper-

turbed spiral wave solution (6) and can be calculated numerically

together with it. Given the dependence of the perturbation ~hh on

the current position of the spiral R, equation (7) is a closed system

of ordinary differential equations (ODEs) for the coordinates of the

instant centre of rotation of the spiral wave.

A more detailed exposition of the theory and description of the

method of calculating the response functions are given in [14,15].

In the present study we use the same method with the

modifications relevant to the BRP model, which has l~7 as

opposed to simplified l~2 models considered in [14,15]. Figure 4

shows density plots for the spiral wave, U, and its response

functions, W, in BRP model for a~0:115; for other values of a the

plots look qualitatively similar. The important property is that all

components of the response functions are large only in the core of

the spiral and quickly decay beyond it.

Scroll waves are three-dimensional analogues of spiral waves.

They rotate around curves called filaments, as spiral waves rotate

around points called centres. In general, scroll filaments are not

fixed in space but move, typically on a slow timescale relative to

the rotation period. Hence, in addition to whatever dynamics 2D

spiral waves might have, scroll waves exhibit additional dynamics

associated with filament motion [24–31]. Working in Frenet

coordinates, the motion may be conveniently expressed in terms of

the velocities VN and VB in the normal and binormal directions,

respectively, at each point along the filament. Motion along the

tangential direction is of no physical significance and is equivalent

to reparametrization of the filament.

Then, the motion equation for the filament, in the assumption

of small filament curvature, k~O(E), and slowly varying phase,

has the form [21,32–34]

_RR~VNziVB~ckkz . . . , ck[C, ð8Þ

where omitted are terms representing effects of the perturbations

of the right-hand sides, if any (which may be of the same order as

that shown), and higher-order terms. The complex coefficient ck in

the equation (8) is calculated using the same response functions as

for the underlying spiral wave, as

ck~{
1

2
W(r,h) , De{ih Lr{

i

r
Lh

� 	
U(r,h)


 �
, ð9Þ

and the positive sign of Re ckð Þ means movement towards the local

centre of curvature.

Following [32], some publications use the notation ck~b2zic3.

As shown in [21,33], the real component b2~Re ckð Þ has special

importance: if b2w0, the overall length of the filament becomes

shorter with time, and if b2v0, the filament lengthens with time,

as long as the asymptotic description remains valid. Hence this

coefficient is sometimes called filament tension of the scroll wave.

The coefficient c3 is the binormal drift coefficient and describes the

drift of a scroll ring filament perpendicular to the plane of the ring,

or more generally, the velocity component orthogonal to the local

plane of the filament.

Superposition principle. Since the right-hand side of (7) is

linear in Eh, the 1st-order asymptotic theory obeys a superposition

principle: if the overall perturbation is a sum of several

components,

Eh~
X

j

Ejhj , ð10Þ

Figure 4. Density plots of the components of a spiral wave solution U and its translational response function W. Parameter a~0:115.
The radius of the disk is 4 mm assuming D~10{2 cm2=s. In each plot, white corresponds to a value A and black corresponds to {A where A is
chosen individually for each plot, e.g. for the V -component of U, A~74:6 mV. The grey periphery of the W plots, the second and third rows,
corresponds to 0.
doi:10.1371/journal.pone.0024388.g004
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then the overall drift velocity is determined by the sum of the

corresponding partial ‘‘forces’’,

_RR&
X

j

cjEj , ð11Þ

where Ej is the magnitude of the j-th perturbation, and cj is the

force produced by a unit perturbation of that sort, hereafter

referred to as ‘‘specific force’’, given by

cj~

þ
e{ij W , ~hhj

� �dj

2p
: ð12Þ

In the setup of our present study, the forces acting on a spiral or

scroll wave of excitation within the recovering ischaemic tissue are

caused by the filament curvature (described by specific force ck),

the localised inhomogeneities and the smooth gradient of

parameter a (ci and ca respectively), and the gradient of

diffusivity (cD). We shall now present the explicit form of the the

relevant perturbations and the forces.

2D curvature drift. It had been shown [25] that due to the

axial symmetry of a scroll ring solution, there is a strong

connection between the scroll ring filament’s motion in 3D and

drift of the core of a spiral wave in response to applied electric field

(electrophoretic drift) in 2D. For the corresponding perturbed 2D

reaction-diffusion equation,

Ltu~f(u)zD+2uzErhr, hr~hr½u�~DLxu, ð13Þ

the specific force cr of the electrophoretic drift is given by [15,23]

cr~
1

2
W(r,h) , De{ih Lr{

i

r
Lh

� 	
U(r,h)


 �
, ð14Þ

which is exactly the opposite of ck given by (9) . The opposite sign

can be understood if one remembers that the positive sign of

Re ckð Þ means movement towards the local centre of curvature of

the filament, and the form of the perturbation (13) with positive Er

corresponds to the centre of curvature located at the line

({1=Er,0), i.e. in the negative x direction with respect to the

current spiral centre [25].

This equivalence of ck and cr up to the sign allows us to use the

2D simulations of system (13) to estimate the drift velocity of a 3D

scroll ring, and hence estimate the 3D coefficient ck~{cr.

Subsequently, these 2D estimations can be used to verify/confirm

both drift velocities cr and ck obtained using the response functions

in (14) and (9).

Smooth gradient of excitability. We suppose that the

excitability kinetic parameter a varies in space,

f~f(u,a), a~a(~rr), ð15Þ

and, further, that the profile a(~rr) is smooth enough and can be

approximated by a linear spatial gradient, within the spiral core

where the components of the response functions are essentially

non-zero,

a(~rr)&a0z~EEa
:(~rr{~RR), a0~a(~RR), ~EEa~+a(~rr)j~rr~~RR: ð16Þ

Then, the velocity of the drift induced by the parameter a gradient

works out [15] as

_RR~caEa,

ca~
1

2
W , e{ih Laf(U; a0)
� �

,

Ea~ LxziLzð Þp(~rr)j~rr~~RR:

ð17Þ

The real part of ca gives the component of the drift velocity along

the gradient of a and is positive if the drift is towards higher values

of a. The imaginary part of ca describes the drift across the

gradient of a; it is positive if the lateral component of the drift

velocity is counter-clockwise with respect to the direction of +a.

Localized inhomogeneity of excitability. As can be seen

from figure 4, the core size of the spiral wave in BRP model is

*1mm for D~10{2 cm2=sec. A 1000-fold decrease of D down to

10{5 cm2=sec implies shrinkage of the core to the size of one cell,

*30 mm. Hence for the coupling values at the lower end of the

range, localized heterogeneities of a become of principal

importance, and they cannot be considered as smooth gradients.

To elucidate possible role of the localised inhomogeneities, let us

consider the case when the continuous limit is still applicable, but

the spiral core size is comparable with the size of a localized

inhomogeneity, or the magnitude of such inhomogeneity is so

significant it affects the spiral dynamics despite the small geometry

size. This can happen when the random distribution of properties

produces relatively large lumps of cells with local average

excitability deviating from the overall average. Let’s consider an

idealized situation when the parametric inhomogeneity is localized

in a disk of radius Ri centered at~rrc~(xc,zc) and is uniform within

it, so

a(~rr)~a0zEia1(~rr), a1~
1

pR2
i

H(Ri{j~rr{~rrcj), ð18Þ

where H(x) is the Heaviside step function. Then for a small

enough Ri, the velocity of the drift induced by the localized

inhomogeneity is defined as [15,35]

_RR~ciEi, ci~{
R{rc

jR{rcj
F (jR{rcj), ð19Þ

where rc~xczizc and

F (r)~

þ
e{ih W(r,h)½ �z Laf(U(r,h); a0)

dh

2p
zO(Ri): ð20Þ

Here Re Fð Þ is the radial component of the drift velocity, positive if

the spiral moves towards the centre of the inhomogeneity, and

Im Fð Þ is its azimuthal component, positive if clockwise with

respect to the centre of inhomogeneity.

Gradient of the diffusivity. We also deal with the drift

caused by a gradient of the diffusivity, so that

Ltu~n+ D(~rr)+uð Þzf(u) ð21Þ

Suppose the diffusivity varies smoothly, so it can be approximated

by a linear function within the core of the spiral,

D(~rr)&D0z~EED
:(~rr{~RR), D0~D(~RR), ~EED~+D(~rr)j~rr~~RR: ð22Þ

Substituting this into (21) , we get the perturbed reaction-diffusion

equation of the form (5) with D~D0 and the perturbation
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EDhD~D0(~EED
:+)nuz(ED

:(~rr{~RR))D+2nu: ð23Þ
This leads to the expression for the specific force induced by the

gradient of the diffusivity in the form

cD~c(1)
D zc(2)

D ð24Þ

where

c
(1)
D ~

1

2
W(r,h) , nD0e{ih Lr{

i

r
Lh

� 	
U(r,h)


 �
, ð25Þ

and

c(2)
D ~

1

2
W(r,h) , r e{ih nD0+2U(r,h; a0)
� �

: ð26Þ

It is easy to see that the specific force c
(1)
D in (25) coincides with the

2D electrophoretic drift specific force cr given by (14) up to the

substution D~D0. On the other hand, Dierckx [34] has shown

that the problem of drift in the gradient of diffusivity is equivalent

to the problem of 2D electrophoretic drift, up to a transformation

of coordinates. This implies that cD~cr, and since c
(1)
D ~cr, the

integral (26) should be zero. In our calculations using response

functions, the values of jc(2)
D j do not exceed 3|10{6 for the whole

range of a0 considered, which is indeed small compared with

typical values of jcDj shown in figure 5 (a) (note that jcDj~jckj).
This small deviation of the calculated value of c

(2)
D from zero serves

as a measure of accuracy of the response function and the integrals

based on it. Note that specific forces correspond to the limit of

Ej?0. Direct numerical simulations presented in [36], performed

at finite values of ED and in a different model, show empirical

values of cD and cr differing by as much as 10%.

Results

Continuous limit: predictions from the asymptotic theory
Effects of elementary perturbations. Based on the response

functions shown in Figure 4 , we have computed the values of the

specific forces acting on spiral (2D) and scroll (3D) waves under

conditions associated with recovering ischaemic border. These

forces include the specific force ck caused by the curvature of the

vortex filament, the specific force cD caused by the gradient of

diffusivity, the specific force ca caused by the gradient of parameter

a and the specific force ci caused by a localised inhomogeneity of

parameter a.

Figure 5 (a) shows the theoretical predictions for the components

of the specific force ck caused by the curvature of the vortex

filament. That panel also shows an excellent agreement of these

predictions with the results of the direct numerical simulations of

electrophoretic drift (13) (remember that ck~{cr). The compo-

nents of ck correspond to the two filament’s drift coefficients: the

‘‘filament tension’’ b2~Re ckð Þ, and the binormal drift coefficient

c3~Im ckð Þ. The binormal drift coefficient c3 determines e.g. the drift of

scroll rings along their axis. The filament tension b2 is usually much

more important for a scroll’s dynamic, as the positive filament

tension means that the filament will tend to straighten or collapse if

geometry allows it. Negative filament tension means that the

filament will tend to spontaneously lengthen and curve and can

produce ‘‘scroll wave turbulence’’ which is phenomenologically

similar to fibrillation [21,25,33,37,38]. An important observation

from Figure 5 (a) is that in the shown interval of parameter a,

filament tension b2~Re ckð Þ changes the sign and is overall smaller

than the binormal drift coefficient c3.

As discussed above, the drift caused by the curvature of the

filament is equivalent to the drift caused by the gradient of the

diffusion coefficient, so the same coefficients, though taken with the

opposite sign, will describe the drift of the spiral core or scroll

filament in response to gradient of diffusivity. Namely, coefficient

Re cDð Þ~{Re ckð Þ~{b2 will determine the component of the

drift along the gradient of diffusivity and Im cDð Þ~{Im ckð Þ~{c3

across it. Following figure 5 (a), Re cDð Þ~{Re ckð Þv0 at higher

values of a, and Re cDð Þ~{Re ckð Þw0 at lower values of a. So, at

higher values of a the negative specific force of the gradient of

diffusivity will drag the spirals towards poor coupled regions with

smaller diffusion, while at lower values of a the positive specific force

of the gradient of diffusivity will drag the spirals towards better

coupled regions with higher diffusion. Thus, the fact that b2 changes

sign in the relevant range of parameters, means that the diffusivity

Figure 5. Dependence of the specific forces ªk and ªa on the unperturbed value of the excitability parameter a0. Diffusion coefficient
D~10{2 cm2=s. (a) Specific force ck caused by filament curvature k. Note that ck~{cr~{cD . Symbols ‘‘+’’ and ‘‘�’’ show estimates of {cr from
direct numerical simulations of (13) , for comparison. The difference between predicted and simulation values is smaller than 0:005 at all points. (b)
Specific force ca caused by the gradient of excitability parameter a. Red solid lines: real parts, the longitudinal components. Dashed blue lines:
imaginary parts, the lateral components. The meanings of the vertical axes are different for different curves and are designated in the legends.
doi:10.1371/journal.pone.0024388.g005

Evolution of Spiral and Scroll Waves

PLoS ONE | www.plosone.org 7 September 2011 | Volume 6 | Issue 9 | e24388



gradient can either drag spirals towards the pourly coupled bottom

layer or repell them into the better coupled upper layer, depending

on the local value of excitability parameter a. Also, the fact that

jb2jvjc3j means that the spirals should move preferentially across

the diffusivity gradient that is along the border zone, which agrees

with the numerics and experiments.

Figure 5 (b) shows the theoretical predictions for the drift

coefficients in response to a smooth gradient of parameter a. Here,

an important feature is that the longitudinal coefficient Re cað Þ is

negative in the whole range of a0. This means that the spirals

should drift towards areas with lower excitability. This agrees with

the general rule noted e.g. in [39,40].

Figure 6 shows the theoretical prediction for interaction of a

spiral wave with a point-like heterogeneity in parameter a. Here,

the interaction force depends on the distance between the spiral’s

centre and the heterogeneity. The negative sign of the radial

component Re F(r)ð Þ, observed for all distances r and all values of

a considered, means that a localized inhomogeneity with lowered

excitability, Eiv0, should attract spiral waves, and those with

higher than the background excitability, Eiw0 should repel them.

This is also intuitively consistent with the predictions for the linear

gradient of a given by figure 5 (b).

The constant sign of the inhomogeneity specific force ci radial

component Re F (r)ð Þ in figure 6 (a) is not a general case, and in

other models the sign of interaction with a localized inhomoge-

neity may depend on the distance to it, which may lead to

‘‘orbital’’ motion around such inhomogeneity, with orbit radii at

the zeros of Re F (r)ð Þ [35]. So, following the graphs in figure 6 (a)

and the shown constant sign of the radial component Re F (r)ð Þ,
we should not observe an orbital motion in our present BRP

model.

Complex perturbations and pinning/unpinning in

2D. We shall now use the superposition principle to analyse

the 2D drift of a spiral wave subject to a combination of forces

caused by a smooth gradient of diffusivity, a smooth gradient of

the excitability parameter a and a localised inhomogeneity in

parameter a. In a system of reference with the origin at the centre

of the disk inhomogeneity, ~rrc~~00, the equation of motion for a

complex coordinate of spiral wave rotation centre R is

_RR~{Ei

R

jRjF (jRj)zG ð27Þ

where F is the force induced by the localised inhomogeneity and

G is the constant dragging force due to the smooth gradient of

parameter a and/or the diffusivity gradient. We use polar

coordinates for the instant centre position, R~reih, and also set

G~geiw where g and w are the magnitude and direction of the

gradient force. Further, we separate the radial and azimuthal

components of force F , F (r)~a(r)zis(r). Then, the equations of

motion in the two real dynamic variables are

_rr~{Eia(r)zgcos(w{h),

r _hh~{Eis(r)zgsin(w{h):
ð28Þ

An equilibrium in the system (28) may be observed at a radius r
satisfying

E2
i (a2(r)zs2(r))~g2: ð29Þ

It is easy to see that equilibria will not exist, that is, the smooth

gradient force will definitely tear a spiral off from the localized

inhomogeneity, if

jgjwgcrit~jEijmax
r

a2(r)zs2(r)
� 
1=2

~jEijmax
r
jF(r)jð Þ, ð30Þ

that is, if the gradient force exceeds the maximal force of

interaction with inhomogeneity, including both radial and

azimuthal components (see also [41] where a special case with

s(r):0 was considered).

Following (29) , for every jgjvgcrit there are at least two equilibria

at different values of r. Note that jgjvgcrit can happen at either

sign of a, i.e. both for attracting and repelling inhomogeneities.

Standard calculations give that an equilibrium at a distance r�
from the inhomogeneity will be stable in linear approximation if and

only if the following two conditions are satisfied simultaneously:

d

dr
a2(r)zs2(r)
� 
����

r~r�
w0,

d

dr
Eira(r)ð Þ

����
r~r�

w0:

ð31Þ

Figure 6. Interaction with point-like inhomogeneity. Dependences of (a) radial and (b) tangential components of the specific force caused by
point-like inhomogeneity of excitability a, on the distance from instant spiral rotation centre to the inhomogeneity, at selected values of background
excitability a0 as indicated in the legends. The scale of r is given in mm assuming D~10{2 cm2=s.
doi:10.1371/journal.pone.0024388.g006

Evolution of Spiral and Scroll Waves

PLoS ONE | www.plosone.org 8 September 2011 | Volume 6 | Issue 9 | e24388



The stability conditions (31) can be easily checked graphically, and

the graphs of the two functions involved are shown in figure 7.

These conditions require that both functions should be increasing at

r~r�. The first inequality does not depend on the sign of Ei, and it

therefore demands that r� is smaller than the position of the

maximum of a2(r)zs2(r) (the blue dashed curves). For the second

inequality the situation is more complicated as it depends on the sign

of Ei. For the case Eiw0, i.e. repelling inhomogeneity with

excitability higher than a0, the second stability condition demands

that the position of the equilibrium is to the right of the minimum of

ra(r), which is shown by the solid red curve. For both values of a0

shown in figure 7, and also for all a0 in between, as we have checked,

this is incompatible with the first condition, as the red minimum

always happens to the right of the blue maximum. For Eiv0, i.e.

attracting inhomogeneity with excitability lower than a0 around it,

the second stability condition demands that the position of the

equilibrium should be to the left of the red minimum, which is a

requirement that is weaker than the first condition, as all points to

the left of the blue maximum are also to the left of the red minimum.

So, in our model there cannot be a stable equilibrium near a

repelling inhomogeneity, but only near an attractive inhomogene-

ity. Intriguingly, if the relative position of the two extrema was

different, i.e. the red minimum was to the left of the blue maximum,

it would create a paradoxical possibility of a stable equilibrium

occuring due to interaction with a repelling inhomogeneity. We are

not aware of any reasons why this could not happen in some models,

but it does not happen in our present model in the range of

parameters that we are interested in.

Thus, these theoretical predictions based on the response

functions of the vortices suggest that stable pinning of a spiral wave

in our model may be to lowered-excitability sites only, while in the

experimental and simulations described in [7] the pinning to

inhomogeneities of either sign was observed. We have a closer look

at this seeming contradiction below.

Firstly, the pinning observed in experiments and simulations

was not permanent but temporary. An explanation for that could

be that the pinning persisted only until the gradient force exceeded

the tear-off threshold (30). However, it is also possible that the

pinning was temporary because it was really a slow-down near an

unstable equilibrium in the vicinity of a repelling inhomogeneity.

Panel (a) in figure 8 reproduces the tip trajectory in a ‘‘pinning’’

event from [7], revealing that it was actually only a temporary stall

between two fast-drift episodes. Panel (b) illustrates that this sort of

stalling is easily reproduced in deliberately arranged simulations

and is well described by the ODE model (27).

Secondly, a certain mutual allocation of repelling heterogene-

ities may cause ‘permanent’ pinning, again until the parameters

change. This is illustrated in figure 8 (c). There are two identical

repelling inhomogeneities. For the given initial position of the

spiral wave, if only the lower inhomogeneity was present, the drift

would proceed along a trajectory similar to that in panel (b).

However this drift is disallowed by the presence of the upper

repelling inhomogeneity, hence the spiral stops at a point

of equilibrium of three forces: the constant dragging force and

the two repulsion forces from the two localized repelling

inhomogeneities.

Panel (d) in figure 8 is given for completeness, to illustrate the

more straightforward case of pinning in the vicinity of an

attracting inhomogeneity. It is worth noticing a simple

phenomenological difference between pinning to a repulsive

inhomogeneity and to an attractive one: for the former, the

spiral wave stops in front of the inhomogeneity, and for the latter,

behind it.

There are several factors responsible for the quantitative

discrepancies seen in figure 8(b–d) between the theoretical

predictions for the trajectories of the spiral drift and the

trajectories obtained from direct numerical simulations: large

value of Ei affecting the applicability of the asymptotic theory, the

crudeness of the cell structure affecting the behaviour of the

direct simulations as compared to the continuous limit, and also

the finite Ri used in simulations as compared to the small-Ri limit

assumed in the theory. However, the theoretical trajectories and

those obtained from direct numerical simulations are in good

qualitative agreement, so the asymptotic theory works really well

for this complicated arrangement, despite all the simplifications

made.

Naturally, with the random distribution of heterogeneity, as

present in the experiments and the numerical simulations of the

ischaemic border zone, all of the above scenarios with pinning to

inhomogeneities of either sign could take place from time to time.

In some experiments the pinning locations subsequently became

sources of ectopic waves of excitation and therefore were

associated with points of higher excitability. In other experiments,

the pinning locations never produced the ectopic waves, which

suggested that the pinning inhomogeneity had the lowered

excitability. Understanding that there are different mechanisms

of pinning to attractive inhomogeneity with lowered excitability

and to a (group of) repelling inhomogeneity(s) with elevated

excitability provides an explanation for these seemingly contra-

dicting experimental observations.

Figure 7. Graphs for graphical solution of stability of ‘‘pinning equilibrium’’. (a) a0~0:10, (b) a0~0:13. Diffusivity is assumed
D~10{2 cm2=s. The meanings of the vertical axes are different for different curves and are designated in the legends.
doi:10.1371/journal.pone.0024388.g007
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Generation of a 3D turbulent pattern
The asymptotic theory of spiral and scroll drift is valid for PDEs,

describing continuous media. The theory might not be applicable if

the discreteness of the cell structure is significant when the diffusivity

is small. Thus our findings here are purely empirical, based on direct

numerical simulations. The role of discreteness in 2D dynamics was

extensively analysed in [6,7] so here we concentrate on 3D aspects.

The effect of dicreteness is to a certain extent similar to that of

heterogeneities, i.e. it can hinder the drift caused by the smooth

parametric or diffusivity gradient. This is illustrated in figure 9,

where we present simulations of 2D curvature-induced (electro-

fophoretic) drift, for different values of diffusivity at a~0:13 and

positive er. As can be seen from Figure 5 (a), at a~0:13 Re ckð Þw0,

so Re crð Þ~{Re ckð Þ is negative which corresponds to the drift in

the negative x direction in figure 9.

It can be seen that in figure 9 , in line with continuous limit

predictions, as diffusivity decreases, so does the spatial scale of the

spiral tip trajectory. Further still there is another effect which has

an entirely discrete nature: as diffusivity becomes too small, the

drift of the spiral stops altogether. Panel (b) indicates that there is a

range of diffusivities at which the longitudinal component of the

drift (which corresponds to the filament tension b2 and is smaller in

absolute value than the lateral component, see Figure 5 (a)),

‘freezes out’, while the lateral component is still observed, so the

drift proceeds along the vertical grid line.

Note that change of filament tension due to relatively small

discreteness is a generic feature of excitable media, and has been

reported in FitzHugh-Nagumo [23] and Barkley [42] models.

Another important effect of the tissue discreteness is due to the role

of microscopic heterogeneities of parameter a, defined by equation

(2) , in the generation of ectopic foci and breakup of excitation waves.

In presence of the microscopic heterogeneity, daw0, a macroscop-

ically homogeneous tissue, with D~Dmin~Dmax, z1~{? in (3)

and (4) , may either show spontaneous focal sources or be quiescent

Figure 8. Pinning of spiral wave’s drift to localized inhomogeneities. (a) An extension of the drift trajectory shown in figure 8D in [7] with
temporary pinning to a high-a cluster. This is a 25|25-cell fragment of a tip path in a simulation in a box of 100|100 cells, a~0:12,
Dmin~5:10{5 cm2=sec, Dmax~2:10{3 cm2=sec, c~1=6 cell=sec. The colour background shows distribution of g(x,y), smoothened by sliding
averaging, (greenish) dark corresponds to high a and (blue) light corresponds to low a. (b) Drift caused by a repelling circular inhomogeneity (green
dots show affected cells) of radius of Ri~5 cells. Red solid line is the tip trajectory in a 100|100-cell simulation, a~0:13 in the bulk of the medium
and a~0:15 within the disk, and diffusivity D~10{3exp(b(y{y0)) cm2=sec, where b~0:7 mm{1 and y0 is the middle of the box. The arrows
represent the corresponding direction field in the ODE model (27) . The small blue open circles are the instantaneous centres of rotation of the spiral
predicted by the ODE model and shown at intervals corresponding to one rotation period of the spiral. These instantaneous centres of rotation of the
spiral can be thought of as sliding period-averaged positions of the tip, and make a drift trajectory as predicted by the ODE model. (c) Two repelling
inhomogeneities of the same kind as in (b) can stop the drift altogether. (d) Attractive inhomogeneity with lowered excitability, a~0:11, within the
disk of the same size as in (b). Now the spiral is permanently stalled behind the heterogeneity. Here and elsewhere, the tip of the numerical spiral at
any given moment of time is defined as an intersection of isolines V~{35 mV and f ~0:85 (f is the dimensionless inactivation gating variable for
the slow inward current).
doi:10.1371/journal.pone.0024388.g008
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depending on particular combination of D, a and da. The critical

curves in the (D,a) plane, separating the automatic and exctiable

regimes (corresponding to the zones III and V in figure 3 and

transition between them), are shown in figure 10 , for 2D and 3D

cases. We obtained the 3D curve from direct simulations on a thin

three-dimensional grid of 40|60|5 cells at da~0:5. The transition

curve obtained from 2D simulations, as in [6], is shown on the same

graph for comparison. One can see that position of the 3D

transitional curve is elevated compared to the 2D transitional curve.

This elevation is due to the fact that every cell in 3D is connected to

more neighbours, which increases the load on the automatic cells

surrounded by non-automatic environment. Therefore, in 3D it

takes more automaticity to overcome the coupling with the quiescent

neighbours, so in 3D simulations the same regimes are observed at

different values of parameters a and D than in 2D simulations.

We performed numerical simulations of the 3D tissue slab with

diffusivity and excitability profiles shown in figure 11 (c). The

lower layer contained fully uncoupled cells with excitability a~0.

This layer corresponded to the region IV in figure 3 , ‘‘a quiescent

state where wave propagation is not possible’’. To reveal the above

described effects of tissue discreteness, we performed simulations

using three different sets of parameters D, a and da defining

properties of the upper layer. We used Dmin~Dmax=100 in all

cases.

The first, ‘‘toy’’ set of parameters (figures 11 and 12) was

Dmax~5:10{5 cm2=s, amax~0:13, da~0:1. At the small da~0:1
the number of cells getting above a~aosc line will be small,

resulting in further elevation of the 3D transitional curve

compared to the da~0:5 shown in figure 10 . Therefore, the

upper layer with this set of parameters D, a and da still

corresponded to the region V ‘‘a quiescent state where wave

propagation is possible’’, which ensured a transition from what is

described as region III ‘‘fragmented ectopic waves ‘‘ within the

middle layer to region V in the top layer. The value

Dmin!10{7 cm2=s was below the physiologically meaningful

range, so simulations with the smaller D were more of a

mathematical excercise, which allowed however, due to the

smaller spatial scales involed, to perform a relatively detailed study

despite the computational expences of the three-dimensional

model. The principal conclusion was then tested with the more

physiologically relevant set of paramers.

The two ‘‘more realistic’’ sets of parameters (figure 13) were

Dmax~10{3 cm2=s, da~0:5, with either amax~0:105 or

amax~0:115, both corresponded to the region V ‘‘a quiescent

state where wave propagation is possible’’ (below the critical line in

figure 10), which also ensured the transition from region III to

region V within the middle layer. This sets of parameters were

‘‘more realistic’’ in terms of the value of diffusivity more relevant to

physiologically meaningful range.

Figure 11 presents a simulation with the ‘‘toy’’ set of parameters

in a box size 40|30|60 cells and a relatively slow border speed

of c~1=6 cell=s. Panel (a) shows small ectopic sources giving rise

to multiple ectopic ‘‘bubbles’’ in 3D, also shown in cross-sections

from the model’s cube of cells in figure 11 (b). The wavefronts

from multiple smaller ectopic sources fused into larger wavefronts

which were spreading toward the upper, better coupled layers of

the border zone. No scroll wave activity is observed in the upper

zone. When the transitional border zone has passed down, the

cube is left without ectopics and all activity is ceased.

Figure 11 (c) illustrates the probability of the spirals’ escape as a

function of the speed of the border in a thin 3D grid of cells. When

the border moves too slow, it tends to ‘‘drag’’ the spiral waves with

it, so none penetrate into the outer zone, as was the case in the

simulation shown in panels (a,b). When the border speed is too

high, then again no spiral waves are observed in the better coupled

upper layer, as they do not have enough time to develop. So, as

can be seen from the far right graph in Figure 11 (c), the escapes

are possible when the transitional middle layer moves faster than

a typical velocity of a spiral wave drift, but slower than the

conduction velocity (both speeds are measured for the conditions

Figure 9. Two-dimensional curvature drift. a~0:13, Er~0:1 mm{1. Shown are tip trajectories in system (13) in 100|100-cell box for various D,
as shown under the panels, in cm2=sec. Smaller diffusivity means stronger effect of the discreteness of the tissue, which can stop the drift altogether
(the grid of dotted lines designates individual cells).
doi:10.1371/journal.pone.0024388.g009

Figure 10. The transition curves obtained in simulations of a
2D and a thin 3D layer of cells. da~0:5. Below each corresponding
curve, the system is quiescent, above the curve and below the a~aosc

line, focal sources are observed. We also show the best fits, with the
weight !D2 , by the theoretical dependence a&aosc{B2=D suggested
in [6].
doi:10.1371/journal.pone.0024388.g010
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of suppressed coupling which can be found in the border zone). In

particular, the maximal number of spirals was observed at the

border speed of c~4 cell=s. A snapshot half way through a

simulation with c~3 cell=s, with a few spirals that have already

penetrated the outer zone, is shown on the leftmost panel. As we

noted earlier, in reality the border zone speed may vary in a very

broad range.

Simple escape into the well-coupled upper layer is not enough

for the scrolls to cause fibrillation in 3D. Scroll waves are typically

born as ‘‘scroll rings’’ with closed filaments. As shown above, in

our model, negative filament tension is predicted by the theory for

the smaller values of excitability parameter a. Moreover, the

effects of filament tension of either sign can be obstructed by the

discrete structure of the model tissue, which is particularly essential

in the conditions of the suppressed coupling.

Figure 12 presents a simulation with the ‘‘toy’’ set of parameters

in a box size 40|30|60 cells and a higher border speed of

c~3 cell=s, when moving border zone led to generation of

multiple scrolls which stayed in the medium after the zone was

gone (see also the Supplementary Video S1). Figure 12 (a) shows

the top view of the 3D box at four selected instants. To a viewer

this will appear as small ectopic sources developing into larger

spiral waves. Figure 12 (b) reveals the underlying 3D waves as they

would look on the side faces of the box. The 3D scrolls originate

deep within the poorly coupled layers of the ischaemic tissue and

are spreading upwards as the border zone moves downwards.

Figure 12 (c) shows in transparent colors the wavefronts of these

newly born scrolls. Finally, figure 12 (d) shows scroll filaments

visualized as phase singularities defined as the points where

simultaneously V~{35 mV and f ~0:85. The dense cloud of the

singularities corresponds to the area where the microscopic

heterogeneities cause multiple wavebreaks. Some of them develop

into fully fledged scroll waves, which do not collapse and spread

through the whole network of cells to instigate persistent, self-

supporting fibrillatory activity. Note that at the value of a used

here, the filament tension is positive, and the scrolls in the upper

layer would tend to collapse were it not for the effect of the

medium discreteness which according to figure 9 (c,d) is very

essential at this artificially low value of Dmax~5:10{5 cm2=s. This

simulation shown in figure 12 confirms the main conclusion based

on the two-dimensional tissue culture experiments and simulations

[6,7]. That is that the key factors of the ischaemic border zone,

Figure 11. The ischaemic border zone in three dimensions. ‘‘Toy’’ set of parameters: Dmax~5:10{5 cm2=s, amax~0:13, da~0:1. (a,b) Box size
60|60|60 cells, border speed c~1=6 cell=s. (a) Snapshot of activity on the surface and inside the box (red semi-transparent surfaces are excitation
fronts). (b) Activation patterns on a middle cross-section of the box. (c) Schematic of the study of spirals’ probability to escape to the well coupled
zone: a snapshot through the middle of a thin 3D layer of cells (box size 40|5|60, border speed c~3 cell=s); corresponding distribution of D, a and
a; movement of boundaries with time; and average number of spirals left in the box after passing of the border zone, as function of the its speed.
Here cdrift is a typical drift velocity and CV is a typical conduction velocity.
doi:10.1371/journal.pone.0024388.g011
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such as the gradient of coupling strength together with the

microscopic heterogeneity and macroscopic gradient of excitabil-

ity, generate organizing centres of sub-millimeter scale, which then

penetrate into the bulk of the well coupled tissue, where the re-

entry reaches macroscopic scales.

This main conclusion is supported and reinforced by simula-

tions at larger, more realistic values of D, shown in figure 13 (see

also the Supplementary Video S2). Stronger coupling results in

stronger effective averaging of the microscopic heterogeneities.

Hence, for the more realistic 3D similutions, we have increased

both the coupling strength D and the microscopic heterogeneity

da. At this bigger Dmax value, the filament tension is already

essential, as evidenced by figure 9 (a). We have chosen two values

of a which correspond to a negative and a positive tension of the

generated vortex filaments (cf figure 5 (a)). The upper row in

figure 13 shows results of simulations with a negative filament

tension (a~0:105). In this simulation, the scroll that penetrated

the bulk of the tissue has persisted after the ischemic border zone

had disappeared. On the contrast, the lower row in figure 13

shows that for a~0:115, when the scrolls in the upper layer had

a positive filament tension, they did not persist, but moved

together with the moving border zone. Continuation of the

simulation figure 13 (b) led to complete elimination of all activity

(not shown). All that is in full agreement with what could be

expected from the predictions of the asymptotic theory.

Discussion

We have considered the quantitative predictions of the

asymptotic theory for the forces acting on rotating waves of

activity that can form within a recovering ischaemic border. The

direct numerical simulations with deliberately arranged conditions

confirmed the theoretical predictions for the evolution of the

vortices. Now, we can answer the specific questions posed in the

Introduction as follows.

Figure 12. Moving border zone in 3D: vortex formation. ‘‘Toy’’ set of parameters: Dmax~5:10{5 cm2=s, amax~0:13, da~0:1, box size
40|30|60 cells, border speed c~3 cell=s. Left to right: successive moments of time. (a) Activation patterns at the top face of the box. (b) 3D view of
activation patterns at the surfaces of the box. (c) Excitation fronts as semi-transparent surfaces. (d) Vortex filaments visualized as phase singularities
where simultaneously V~{35 mV and f ~0:85. See also the Supplementary Video S1.
doi:10.1371/journal.pone.0024388.g012
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1. ‘‘In both experiments and numerical simulations, spiral waves were not

static within the border zone. What determines the components of the drift

velocity, and why the spiral cores can be dragged together with the moving

border zone?’’

- The theoretical analysis of the acting forces shows that regions

with suppressed excitability a are attracting for spirals, both if

applied as a smooth gradient, or as a localized heterogeneity.

Conversely, if the upper layer of the boundary layer has a higher

excitability, it tends to repel spirals. This implies dragging the cores

of the newly born re-entries by the moving transitional border

zone down towards the bottom layer with the lowered excitability,

and preventing them from escaping into the upper layer and

ultimately into the normal tissue with higher excitability.

- At the relatively low values of excitability a in the upper layer

corresponding to b2~Re ckð Þv0, the spirals are repelled from the

transitional border layer into the better coupled upper layer with

higher diffusivity. This case corresponds to the simulation with

a~0:105 shown in figure 13 (a). In this simulation, the newly born

scroll penetrated the bulk of the tissue and persisted even after the

recovering border zone ceased to exist.

At the relatively high values of excitability a in the upper layer

corresponding to b2~Re ckð Þw0, a gradient of diffusivity drives

spiral waves towards areas of smaller diffusivity, i.e. towards the

poor coupled bottom layer. This case corresponds to the

simulation with a~0:115 shown in figure 13 (b). In this

simulation, the newly born scroll filaments never managed to get

far into the upper layer, where the positive filament tension further

helped to complete their elimination.

Hence, a relatively high excitability in the upper layer will

suppress the transition to fibrillatory-like state for two reasons: the

gradient of excitability will prevent the cores of spirals or filaments

of scrolls from escaping into the more excitable outer zone; and at

higher excitability, the gradient of coupling will also drag them

away from the better coupled outer zone.

2. ‘‘In both experiments and numerical simulations, the drift of the spirals

was interrupted by their ‘‘pinning’’ to clusters of cells. We have shown

numerically that these can be cell clusters of either elevated or suppressed

excitability. What is the mechanism of such pinning?’’

- The theoretical analysis shows that a combination of acting

forces generated by smooth gradients of tissue properties and

a localized inhomogeneity in excitability parameter a may lead to

temporary or permanent pinning of drifting spirals. The chances

of pinning depend on the trajectory of the drifting spiral and

geometry of the heterogeneity, and it may happen at either sign of

the inhomogeneity (i.e. locally increased or decreased excitability).

- There is more than one mechanism of pinning. Apart from

pinning to an attracting inhomogeneity, the drift can also be

stopped by a certain spatial arrangement of repelling inhomoge-

neities. Even if ‘‘permanent’’ pinning is not achieved, a temporary

pinning still may be observed for some finite time if the trajectory

of the spiral core passes near an unstable equilibrium. There is also

a theoretical possibility of ‘‘orbital motion’’ which however is not

realized in the present model at interesting values of parameters.

3. ‘‘In both experiments and numerical simulations, the episodes of spiral

drift and pinning alternated. What is the mechanism by which pinning can give

way to further drift?’’

- Correspondingly, there is more than one mechanism of

unpinning. One is that due to the border zone dynamics,

parameters of the tissue may change in such a way that

gradient-induced force exceeds the tear-off threshold. The other

is that the spiral wave core drifts away from the pinning site

because its position there was unstable in the first place.

4. ‘‘One of arrhythmogenic scenarios proposed in [6,7] involved pinning of

a spiral wave to a local heterogeneity which persists long enough until the border

zone passes and the spiral gets into the better coupled tissue. Is this scenario

viable in 3D?’’

- In 3D, in addition to whatever dynamics 2D spiral waves

might have, scroll waves exhibit additional dynamics associated

with the motion of filament, and characterized by the filament

tension and the binormal drift coefficient. In the considered tissue

model, the filament tension is small compared to the binormal drift

coefficient, and changes sign in the relevant range of excitability

Figure 13. Vortex formation by moving border zone. ‘‘More realistic’’ sets of parameters: Dmax~10{3 cm2=s, da~0:5, box size 120|90|180
cells, border speed c~3 cell=s. 3D views of activation patterns as in figure 12 (c): (a) amax~0:105; (b) amax~0:115. See also the Supplementary Video
S2.
doi:10.1371/journal.pone.0024388.g013
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parameter. This means that scroll waves that managed to escape

into the well coupled upper zone, might not necessarily

immediately collapse.

- The scroll filaments that managed to stay until the tissue is

recovered, may not collapse but survive, if the filament tension is

negative. These filaments may subsequently generate scroll wave

turbulence. Note a nontrivial coincidence following from the

asymptotic theory: excitability of the upper layer at the lower

range of parameter a ensures the negative filament tension and

hence is a condition of survival of scrolls in that zone, and it also

ensures that the specific force caused by the coupling gradient

repells the scrolls into the upper, better coupled layer. So here we

have a third reason a relatively high excitability in the outer layer is

‘‘anti-arrhythmic’’: at higher excitability, the scrolls in the outer

layer are less likely to survive due to 3D effects.

- Further, there are some features revealed by the 2D

simulations which are beyond direct applicability of the asymptotic

theory. That is the effect of the dicreteness of the medium, which

particularly matters at low values of diffusivity. The discretness of

the medium can arrest the drift of spiral cores, and when applied

to 3D scrolls, the filaments can freeze as long as their curvature is

not too high, and the ‘‘filament tension’’ component of their drift

freezes sooner than the ‘‘lateral binormal drift’’ component.

Therefore, the scroll filaments that managed to stay until the tissue

is recovered, may not collapse but survive, as their filament tension

is frozen due to low diffusivity. In that case of the ‘‘frozen’’, zero

filament tension, the regime might rather look like a persistent

tachycardia similar to the pinned 2D spiral regime.

To summarize, we explored a biophysically plausible mecha-

nism as to how ectopic beats and spreading scrolls of abnormal

activity can be generated from the recovering boundary of acutely

ischaemic tissue. Complex boundary behaviour in heterogeneous

cell network was modeled with certain assumptions and simplifi-

cations, extensively discussed in our previous publications [6,7].

With all the assumptions and limitations, the following

combined conclusions can be made based on the in vitro and in

silico data from our previous publications and the current study.

First, the data suggested that the combination of the two gradients

(i.e. the spatial gradient in cell-to-cell coupling and the temporal

gradient in excitability/automaticity) ensured that somewhere

within the border zone there was a region where multiple ectopic

sources were continuously being formed. They were highly

localized focal points of activity, with activation spreading only

to a few surrounding cells. Number of ectopic sources and specific

window of conditions when they occured were affected by the

degree of the network heterogeneity. Secondly, the data argued

that if the ectopically active layer was sufficiently wide and/or the

overall cell automaticity rose, ectopic sources developed into

target-like waves. If coupling gradient and automaticity levels

remained spatiotemporally fixed, the pattern of target-like sources

persisted and no spiral activity was observed. However, when cell

automaticity rose and/or border zone moved in space, the

propagation patterns became non-stationary. This led to multiple

wavebreaks resulting in spiral generation activity. The spiral waves

typically demonstrated start-stop drifting behaviour, as a result of

competing forces between pinning force due to local heterogeneity

and a gradient-induced directional drift. The likelihood of a spiral

escape into the better coupled upper tissue zone depend on the

speed at which the border zone moves in space.

Our extrapolation of 2D events into 3D is more theoretical, as

tissue culture experiments similar to those described in [5,6] are

not feasible in 3D. Still, this extrapolation has shown that the

border zone can give rise to 3D analogues of spirals, the scroll

waves. If a scroll wave escapes into a better coupled tissue it will

not necessarily cause fibrillation, because the scroll wave with

positive filament tension have tendency to collapse. However, our

simulations have shown that this collapse of newly generated

scrolls is not inevitable and, instead, scroll filaments can stabilise

or, in case of negative filament tension, expand and multiply

leading to a fibrillation-like state.

In this study, we considered the asymptotic theory’s quantitative

predictions for the forces acting on a cardiac re-entry, and causing

its drift, in the vicinity of the ischaemic border zone. The

theoretical predictions allow to tell apart and highlight different

mechanisms of arrythmogenesis by the ischaemic boder zone in

three-dimentiontional settings. The direct numerical simulations

with deliberately arranged conditions confirmed the theoretical

predictions for the drift.

We fully realize that in vivo, the above considered scenarios will

be affected by multiple additional factors. These might include

excitability kinetics different from the simplified generic model we

used here, presence of highly excitable Purkinje fibers, macro-

scopic myofiber orientation, coronary vessels, fibrous or fat

deposits, transmural differences in myocytes metabolic activity

and their sensitivity to ischaemia. Yet, with all its limitations, this

study represents one of the first attempts to theoretically explore

a very complex set of highly arrhythmogenic conditions that can

occur on the boundary of the recovering ischaemic tissue.
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