
polymers

Article

Potency of Urea-Treated Halloysite Nanotubes for the
Simultaneous Boosting of Mechanical Properties and
Crystallization of Epoxidized Natural Rubber Composites

Indra Surya 1 , Kamaruddin Waesateh 2, Sitisaiyidah Saiwari 3,4 , Hanafi Ismail 5, Nadras Othman 5

and Nabil Hayeemasae 3,4,*

����������
�������

Citation: Surya, I.; Waesateh, K.;

Saiwari, S.; Ismail, H.; Othman, N.;

Hayeemasae, N. Potency of

Urea-Treated Halloysite Nanotubes

for the Simultaneous Boosting of

Mechanical Properties and

Crystallization of Epoxidized Natural

Rubber Composites. Polymers 2021,

13, 3068. https://doi.org/10.3390/

polym13183068

Academic Editor: Domenico Acierno

Received: 12 August 2021

Accepted: 7 September 2021

Published: 11 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara,
Medan 20155, Sumatera Utara, Indonesia; isurya@usu.ac.id

2 Islamic Sciences Demonstration School, Prince of Songkla University, Pattani Campus,
Pattani 94000, Thailand; qamarud@hotmail.com

3 Research Unit of Advanced Elastomeric Materials and Innovations for BCG Economy (AEMI), Faculty of
Science and Technology, Prince of Songkla University, Pattani Campus, Pattani 94000, Thailand;
sitisaiyidah.s@psu.ac.th

4 Department of Rubber Technology and Polymer Science, Faculty of Science and Technology, Prince of
Songkla University, Pattani Campus, Pattani 94000, Thailand

5 School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia,
Nibong Tebal, Penang 14300, Malaysia; ihanafi@usm.my (H.I.); srnadras@usm.my (N.O.)

* Correspondence: nabil.h@psu.ac.th; Tel.: +66-73-312-213; Fax: +66-73-331-099

Abstract: Halloysite nanotubes (HNTs) are naturally occurring tubular clay made of aluminosilicate
sheets rolled several times. HNT has been used to reinforce many rubbers. However, the narrow
diameter of this configuration causes HNT to have poor interfacial contact with the rubber matrix.
Therefore, increasing the distance between layers could improve interfacial contact with the matrix.
In this work, Epoxidized Natural Rubber (ENR)/HNT was the focus. The HNT layer distance was
successfully increased by a urea-mechanochemical process. Attachment of urea onto HNT was
verified by FTIR, where new peaks appeared around 3505 cm−1 and 3396 cm−1, corresponding
to urea’s functionalities. The intercalation of urea to the distance gallery of HNT was revealed by
XRD. It was also found that the use of urea-treated HNT improved the modulus, tensile strength,
and tear strength of the composites. This was clearly responsible for interactions between ENR and
urea-treated HNT. It was further verified by observing the Payne effect. The value of the Payne
effect was found to be reduced at 62.38% after using urea for treatment. As for the strain-induced
crystallization (SIC) of the composites, the stress–strain curves correlated well with the results from
synchrotron wide-angle X-ray scattering.

Keywords: epoxidized natural rubber; halloysite nanotubes; urea; tensile properties; wide-angle
X-ray scattering

1. Introduction

Incorporation of fillers into rubber has been a major ingredient for rubber compounds.
They are added to rubber for many purposes, such as improving durability, thermal
stability, and even to cheapen the manufacturing costs [1]. So far, special awareness has
been given to the addition of nano-fillers because they effectively boost the performance
of rubber vulcanizate even at very low content. The factors affecting such enhancement
are mainly due to the aspect ratio, degree of dispersion, and orientation of high aspect
ratio filler particles [2]. Halloysite nanotubes (HNT) are a type of naturally occurring
nano-filler composed of aluminum, silicon, oxygen, and hydrogen. Being an economically
viable material, HNT has been available in many interesting research works; the novel
properties and related applications of HNT have been successively reported over decades.
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For instance, the use of HNT as a viable nanoscale container in drug delivery, their usage
as controlled release [3], as well as other specific applications, namely an ion adsorbent,
ceramic materials, especially biocompatible implants, and as template for synthesis of
rod-like nanoparticles [4].

HNT have recently been added in various types of rubber matrices [5,6]. However,
HNT are not compatible with non-polar rubbers due to its polarity in nature [7,8] and are
especially not compatible with natural rubber (NR). Scientists have been trying to solve
this problem and improve their compatibility using several methods. These cover using
silane coupling agents, optimizing the preparation methods, and modifying the chemical
structure of rubber matrix. The last approach might be of great practical relevance to ensure
the compatibility at any location along the polymer molecular chain [9,10]. In this work, an
Epoxidized Natural Rubber (ENR) was introduced for preparing the composite to assure
filler–matrix compatibility. However, there are still concerns regarding the characteristics
of HNT itself. HNT is made of aluminosilicate kaolin sheets rolled several times. The
narrow layer distance in such rolled sheet gives HNT poor interfacial contact with the
rubber matrix during processing. Therefore, increasing the layer separation distance could
improve the interfacial contact.

Recently, increasing the basal distance of the HNT layers has been one of the major
approaches to improve the interfacial adhesion between HNT and rubber matrix [11].
Nicolini et al. [12] observed that urea can increase the basal spacing through a mechano-
chemical process. It was reported that the basal distance shifted from 7.4 Å to 10.7 Å when
the urea percentage increased and stabilized when the amount of urea approached 18%. It
is claimed that the layers of HNT were intercalated by urea, making a material with a basal
distance of 10.68 Å and with an expansion of 3.5 Å [13]. By increasing interlayer separation
in HNT, easier intercalation of a polymer inside the HNT lumen and/or in HNT interlayer
is assumed. This study only focused on the treatment of HNT itself without any inclusion
of a polymer matrix.

Therefore, the aim of this study is to use urea-treated HNT in the ENR matrix to
improve the overall properties of the composites. With this idea, the interfacial adhesion
between HNT and ENR may be improved, while good rubber-filler interactions are assured
by the polarity of ENR. The filler modification is expected to improve the compatibility and
homogeneity of filler dispersion in the composites and to thereby enhance the reinforcing
efficiency of HNT in filled ENR composites. This study proposed certain methods of
evaluating the reinforcing efficiency of the composites, namely mechanical properties,
dynamic properties, and SIC. The latter method is considered an interesting route, and
not many reports have been focused on it. This can only be correlated for certain types of
rubber, such as NR [14–16]. This is because NR has a very long chain that has an ability
in arrangement and orientation for crystallization under stretching [17]. This ability to
crystallize under strain is explained by the high regularity of molecular structure that is
almost 100% of cis-1,4-polyisoprene [18].

Many studies of NR have been carried out together with in-situ deformation through
in-situ X-ray diffraction techniques. Tosaka et al. [19] studied the effect of the different
crosslink density on the SIC of vulcanized rubber, and they found that faster development
in crystallinity was observed in the sample with higher crosslink density but at limited
amounts. Toki et al. [20] indicated that the crystallinity increased with strain. They
considered that stretched rubber can be differentiated into three phases: (i) an un-oriented
amorphous phase, (ii) an oriented amorphous phase, and (iii) a crystalline phase. In ENR,
the SIC lattice parameters of ENR were found to be crosslink independent regardless of
quantity and method of crosslink. Higher crosslink density may induce faster SIC, and the
volume of unit cell is larger than the reported values for NR, which is simply due to the
epoxide group at the main chain [21].

SIC of unfilled and filled NR has also been focused by Poompradub et al. [22]; they
found out that the onset strain for SIC decreased after adding filler. The degree of lat-
tice deformation decreased with filler content, especially in the carbon black (CB)-filled
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composite. Chenal et al. [23] further explained that onset strain for SIC is ruled by the
strain amplification induced in the presence of filler. Furthermore, different fillers behave
different characteristics associating to the formation of rubber-filler interaction/reactions.
This can be either accelerate or slow down SIC depending on NR matrix–chemical crosslink
density. Similar observation was observed in vulcanized NR containing CB particles by
Candau et al. [24].

From the reports above, the rubber–filler interactions may speed up the crystallization
process at the certain network chain density. In this report, we presented parallel wide-angle
X-ray scattering and tensile measurement on urea-treated HNT-filled ENR composites. To
date, no reports have been revealed of detailed investigations regarding the relationship
between mechanical and dynamic properties with SIC of rubber composites. The results
explored from this work aim to give a scientific understanding of how the role of urea
affects the overall properties of ENR/HNT composites and will be useful for manufacturing
of rubber products based on ENR/HNT composites

2. Experimental Details
2.1. Materials

High ammonia centrifuged latex (HA) with 60% of dry rubber content (DRC) was
used to prepare ENR. This latex was centrifuged and supplied by Chalong Latex Industry
Co., Ltd., Songkhla, Thailand. The chemicals involved in the synthesis of ENR were Teric
N30 as non-ionic surfactant, Formic acid and hydrogen peroxide for performic acid reaction
were purchased from Sigma Aldrich (Thailand) Co. Ltd., Bangkok, Thailand. The HNT was
mined and supplied by Imerys Ceramics Limited, Matauri Bay, New Zealand. HNT consists
of the following components: SiO2 (49.5 wt%), Al2O3 (35.5 wt%), Fe2O3 (0.29 wt%), TiO2
(0.09 wt%), as well as CaO, MgO, K2O, and Na2O as traces. Stearic acid was supplied by
Imperial Industrial Chemicals (Thailand) Co., Ltd., Bangkok, Thailand. ZnO was supplied
by Global Chemical Co., Ltd., Samut Prakan, Thailand. N-cyclohexyl-2-benzothiazole
sulfenamide was obtained from Flexsys America L.P., Akron, OH, USA, and soluble sulfur
was purchased from Siam Chemical Industry Co., Ltd., Samut Prakan, Thailand.

2.2. Preparation of Epoxidized Natural Rubber

The synthesis of ENR was done by diluting DRC of latex to 15%. Next, 1 phr of non-
ionic stabilizer (10% Teric N30) was added while stirring for 30 min at ambient temperature
to expel the ammonia dissolved in HA. The epoxidation was performed using formic acid
and hydrogen peroxide at 50 ◦C in a 10-L glass container under a stirring rate of 30 rpm.
The total reaction time was fixed to obtain ENR with 20 mol% epoxide. The resulting ENR
was coagulated with methanol followed by washing with water. Finally, it was dried in a
vacuum oven at 50 ◦C prior to use.

2.3. Preparation of Urea-Treated HNT

As for the urea-treated HNT, it was prepared according to Nicolini et al. [12]. The
contents of urea varied among 10%, 14%, 18%, and 20% of HNT. Later, the samples were
labeled as ENR20 for untreated HNT and as ENR20U10–ENR20U20 for the urea contents
from 10% to 20%, respectively. The intercalation of urea into the interlayer of HNT was
enabled mechano-chemically. Firstly, HNT was mixed with the urea and ground by ball
milling in a ceramic container. The urea-treated HNT was purified by washing with
isopropanol and dried in an oven at 70 ◦C for 12 h. The urea-treated HNT was finally
ground in a mortar prior to use in compounding.

2.4. Preparation of ENR/HNT Composites

The recipe for the preparation of ENR/HNT composites is given in Table 1. ENR with
20 mole% epoxide was compounded with HNT (e.g., untreated and urea-treated HNT
depending on the formulation) and other ingredients except for the curatives (CBS and
sulfur) in a Brabender plasticorder. The initial mixing temperature was set at 50 ◦C with
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a rotor speed of 60 rpm. The compound was then sheeted on a two-roll mill while the
curatives were incorporated. Finally, samples of the various compounds were later tested
for curing characteristics.

Table 1. Formulation of ENR composites filled with untreated and urea-treated HNT.

Raw Material Amount (phr)

ENR 100.0
Stearic acid 1.0
Zinc oxide 5.0

HNT * 5.0
CBS 2.0

Sulfur 2.0
Remark: * HNT was treated with various content of urea.

2.5. Measurement of Curing Characteristics

The curing properties of the composites were measured according to ASTM D5289
using a moving die rheometer (Rheoline, Mini MDR Lite, Prescott Instruments Ltd., Tewkes-
bury, UK). The operating temperature was set at 150 ◦C. The data in terms of torques, scorch
time (ts2), and curing time (tc90) were recorded. The ts2 and tc90 were used in calculating
the curing rate index (CRI) as follows:

CRI =
100

tc90 − ts2
(1)

2.6. Fourier Transform Infrared-Spectroscopic Analysis (FT-IR)

Attachment of urea onto HNT was confirmed by Fourier transform infrared-spectroscopy
(FTIR) using FTIR spectroscope model TENSOR27 (Bruker Corporation, Billerica, Mas-
sachusetts, USA). The spectra were recorded in transmission mode with a 4 cm−1 resolution
over 4000–550 cm−1.

2.7. X-ray Diffraction Analysis (XRD)

The XRD analysis of pure HNT and urea-treated HNT was carried out by using
PHILIPS X’Pert MPD (Eindhoven, Netherlands) with CuKα radiation (λ = 0.154 nm) at
40 kV and a current of 30 mA and Bruker D2 Phaser (Billerica, MA, USA) with CuKα

radiation source (λ = 0.154 nm) and a current of 10 mA. The diffraction patterns were
scanned in the diffraction angles 2θ of 5–30◦ with a step size of 0.05◦ and 3◦/min scan
speed. The d-spacing of HNT layers in particles was estimated from Bragg’s equation.

2.8. Measurement of Mechanical Properties and Hardness

Measurement of tensile properties was done according to ASTM D412. The sample’s
dimension was based on Die C dumbbell shape. The test was performed using a universal
testing machine (Tinius Olsen, H10KS, Tinius Olsen Ltd., Surrey, UK) at a crosshead speed
of 500 mm/min. The determinations recorded were the modulus at 100% (M100) and 300%
(M300) strains, tensile strength, and elongation at break. The tear strength of the respective
composites was tested using the same machine and crosshead speed according ASTM
D624. A type C (right angle) test piece was selected for experiment. The last measurement
was the hardness property of the samples. It was performed according to ASTM D2240
using a Shore A type manual durometer.

2.9. Determination of Crosslink Density

The crosslink density of the composite was determined by equilibrium swelling
method as described in ASTM D6814. The specimens were cut into a circular shape and



Polymers 2021, 13, 3068 5 of 19

weighed before and after immersing in toluene for 72 h. The modified Flory–Rehner
equation was implemented for calculating the cross-link density (υ) [25]:

ν =
1

2Mc
(2)

Mc =

ρ ·V0 ·
(

V
1
3

r − Vr
2

)
ln(1−Vr) + Vr + µ ·V2

r
(3)

where Mc is the number-average molecular weight of the rubber chains between crosslinks,
µ is the parameter for rubber-toluene interactions (µ = 0.42), ρ is the bulk density of the
specimen, V0 is the molar volume of the toluene (V0 = 106.2 cm3/mol), and Vr is the
volume fraction in the swollen specimen, defined as follows [26]:

Vr =
(D− FT) · ρ−1

(D− FT) · ρ−1 + A0 · ρ−1
s

(4)

where T is the weight of the specimen, D is the weight of the de-swollen specimen, F
is the weight fraction of the insoluble parts, A0 is the weight of the toluene absorbed in
swollen specimen, ρ is the density of the specimen, and ρs is the density of the toluene
(0.886 g/cm3).

2.10. Scanning Electron Microscopy

The freshly fractured surfaces of samples from tensile testing were used to observe
the dispersion of untreated and urea-treated HNT in the rubber matrix. The morphology
was captured using a scanning electron microscope (SEM; FEI Quanta FEG 400, Thermo
Fisher Scientific, Waltham, MA, USA). A layer of gold/palladium coated the specimen to
eliminate charge built during imaging.

2.11. Dynamic Properties

The dynamic properties of the composites were analyzed using a Rubber Process
Analyzer (RPA), model D-RPA 3000 (MonTech Werkstoffprüfmaschinen GmbH, Buchen,
Germany). At first, the tested samples were cured at 150 ◦C based on the tc90 tested
by the same RPA. The samples were then cooled down to 60 ◦C. At this time, at 10-Hz
fixed frequency, the strain was varied from 0.5 to 90%. This was to determine the storage
modulus (G′) as function of strain in the composites. The raw G′ record was further used
to study the filler–filler interactions via a so-called Payne effect. The Payne effect was
calculated as follows:

Payne effect = G′I − G′f (5)

where G′i and G′f were the G′ at 0.5% and 90% strains, respectively. A larger Payne effect
indicates weaker rubber–filler interactions.

2.12. Wide-Angle X-ray Scattering

The SIC of the composite was correlated with the stress-strain curves of the composite.
SIC and other related results were obtained from a synchrotron wide-angle X-ray scattering
(WAXS) analysis. The experiment was carried out using Beamline 1.3 W at the Siam Photon
Laboratory, Synchrotron Light Research Institute (SLRI), Nakhon Ratchasima, Thailand.
The distance between sample and detector was 115.34 mm, measured using a wavelength
of 0.138 nm. A CCD detector (Rayonix, SX165, Rayonix, L.L.C., Evanston, IL, USA) with a
diameter of 165 mm was equipped to capture the WAXS profile. The scattering angle was
calibrated using 4-Bromobenzoic acid as a standard material.

Prior to the testing, a Die C type dumbbell specimen was held on the grips of a
stretching apparatus. The sample was stretched at a crosshead speed of 50 mm/min to a
given strain and was then relaxed in the deformed state for 30 s. WAXS was recorded and
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stretching then continued to the next predetermined strain until the characterization was
complete. The degree of crystallinity (Xc) was calculated based on the data obtained from
the WAXS profiles using the following equation:

Degree of crystallinity (Xc) =

(
Ac

Ac + Aa

)
× 100 (6)

where Ac is and Aa are the areas under the crystalline peak of interest and the amorphous
halo, respectively.

The orientation parameter (OP) was also determined from the Hermann equation,
as follows:

OP =
3[cos2 ϕ]− 1

2
(7)

where ϕ is the azimuthal angle related to the direction of strain. The mean value of cos2 ϕ
is calculated as follows:

[cos2 ϕ] =

∫ π
0 Ic(ϕ) · cos2 ϕ · sinϕ · dϕ∫ π

0 Ic(ϕ) · sinϕ · dϕ
(8)

where Ic (ϕ) is the scattering intensity of the crystal at ϕ. Ic (ϕ) is normalized by subtracting
the minimum scattering intensity of the amorphous component of the original WAXS
intensity [27,28].

3. Results and Discussion
3.1. Curing Characteristics

Curing curves of the composites in the presence of untreated and urea-treated HNT
are shown in Figure 1. The raw data are summarized in Table 2. It was found that the
scorch time (ts2) and curing time (tc90) decreased, while CRI increased with urea con-
tent. Theoretically, an alkaline chemical substance relatively accelerates the vulcanization
process, while an acidic compound would retard it. Urea is an amine substance with
alkaline characteristics [29,30]. Therefore, increasing urea content contributed to the rate
of vulcanization.

Table 2. Scorch time (ts2), cure time (tc90), minimum torque (ML), maximum torque (MH), delta
torque (MH–ML), and CRI for the ENR/HNT composites made with untreated or urea-treated HNT.

Sample ts2 (min) tc90 (min) ML
(dN.m)

MH
(dN.m)

MH–ML
(dN.m)

CRI
(min−1)

E20 2.29 4.75 0.76 8.40 7.64 40.65
E20U10 1.38 3.51 0.71 7.92 7.21 46.95
E20U14 1.42 3.52 0.68 8.35 7.67 47.62
E20U18 1.02 2.82 0.64 7.84 7.20 55.56
E20U20 1.18 3.06 0.63 7.74 7.11 53.19

It was observed that the use of urea-treated HNT slightly changed in ML, while the
MH increased to its maximum at 14% of urea. This increase in MH of the composites was
attributed to the interactions of HNT and ENR with urea. Above 14% urea content, MH
decreased again, which can be attributed to the plasticizing effects of the urea. Similar
observation was made regarding the delta torque (MH–ML), indicating that urea plays an
important role in these composites.
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3.2. FT-IR Analysis

The FTIR spectra of urea, raw HNT, and urea-treated HNT are given in Figure 2.
For the pure urea, peak absorption at 3432 cm−1 is assigned to N-H out-of-plane stretch-
ing vibrations and the bands at 3336 cm−1 and 3258 cm−1 are formed by N-H in-plane
stretching vibrations. The N-H bending vibrations are also absorbing at 1619 cm−1 and
1592 cm−1. The peak at 1460 cm−1 is assigned to the stretching vibrations of C-N, while
the NH2 rocking vibrations give absorption at 1152 cm−1 [31]. This clearly corresponds to
the chemical structure of urea. The increased transmittance in the ranges 3500–3300 cm−1

and 1800–1400 cm−1 was clear as the level of urea was increased, corresponding to the
reference band of pure urea. This corroborates that the urea was attached on the surfaces
of HNT. The inner surface OH was represented at 3694 cm−1 and 3622 cm−1.

To ensure that intercalation of urea to HNT was happening, the spectrum in the
range 1800–1400 cm−1 was considered. Basically, the amine group available in urea can
form hydrogen bonds with the hydroxyl groups on HNT. This could have caused the an
amine band from 1618 cm−1 for pure urea to 1625 cm−1, 1624 cm−1, and 1624 cm−1 for
urea-treated HNT. This happens together with the appearance of new peaks at around
3505 cm−1 and 3396 cm−1 [8] and also with shifting of carbonyl peak at 1680 cm−1 to
1674 cm−1, 1670 cm−1, and 1668 cm−1 [32]. Such findings are in good agreement with
the report of Makó et al. [33], showing that the kaolinite–urea complex was formed after
modification. Since HNT is chemically similar to clay, its interaction mechanisms with urea
are expected to be similar.
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The FTIR spectra of the ENR composites filled with untreated and urea-treated HNT
are shown in Figure 3. The hydrocarbon characteristics absorption peaks at 1662 cm−1,
1448 cm−1, 1375 cm−1, and 837 cm−1 relate to the stretching vibrations of C=C bonds,
bending vibrations of CH2 and CH3 groups, and out-of-plane deformations of =C-H
group, respectively. The epoxide ring absorption took place at 873 cm−1 and 1250 cm−1.
Interestingly, the absorption at 3694 cm−1 and 3622 cm−1 was assigned to inner surface OH,
and the outer OH groups are reduced with increasing urea contents [34,35]. Broadened
shoulder peak at 1152 cm−1 and weakened peak absorption at 3694 cm−1, 3622 cm−1,
and 912 cm−1 were also found. This is a clear indication that the treatment of HNT with
urea reduced transmittance of the inner surface hydroxyl groups on HNT, the interactions
formed between HNT and urea. It is worth noting that the location of the Si–O stretching
in the region of 1100–1000 cm−1 was shifted with the addition of urea. This suggests that
ENR interacted with the surfaces of HNT through its epoxide groups, making hydrogen
bonds with hydrogen attached to electronegative N atom in urea-treated HNT [36].
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3.3. X-ray Diffraction Analysis

The XRD patterns of the untreated and urea-treated HNT are shown in Figure 4. The
untreated HNT shows a 001 reflection at 2θ of 12.05◦, indicating basal distance of 7.33 Ǻ,
which is characteristic of dehydrated Halloysite. This peak tended to disappear as the
amount of urea was increased. All the HNT crystals were fully intercalated with urea,
resulting an increase in basal distance from 7.33 Ǻ (2θ = 12.05◦) to 10.72 Ǻ (2θ of 8.49◦

and 8.23◦). This is verified by shifting of the 001 peak from 2θ of 12.05◦ to 8.49◦ and 8.23◦.
One important feature of intercalated HNT is the development of two peaks at 21.54◦

and 22.53◦ in the range with saw tooth diffraction peaks. These may be associated with
decreased lattice strain and/or increased crystallite size [33]. A schematic model proposed
for the interactions in urea-treated HNT is shown in Figure 5. This scheme demonstrates an
increase of basal distance between layers of HNT due to the penetration of urea; hydrogen
bonds are formed between the hydroxyl groups of HNT and amine contained in urea.
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from Yuan et al. [37].

Figure 6 shows the XRD patterns of the ENR composites filled with untreated and
urea-treated HNT. The diffraction peak at 2θ of 12.05◦ (d is 7.33 Ǻ) related to 001 plane
and is absent after urea-treatment of HNT. This peak is shifted to the lower 2θ at 8.30◦,
8.06◦, 9.41◦, or 8.60◦, which correspond to basal gallery sizes of 10.64 Ǻ, 10.95 Ǻ, 9.38 Ǻ,
and 10.27 Ǻ, respectively. The modification of HNT by mechano-chemical processing
altered the crystal lattice of HNT. The modification with urea of HNT increased the basal
distance, and hence, a lesser 2θ is presented due to the intercalation of ENR molecules
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to the gallery of HNT [38,39]. Once the intercalation occurred, possibly there were also
further interactions between ENR and HNT in the system.
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3.4. Dynamic Properties

One approach to assessing possible interactions in a composite is by use of the dy-
namic properties. In this study, storage modulus and the Payne effect of the ENR/HNT
composites made with untreated or urea-treated HNT filler were analyzed to assess the
rubber–filler interactions. The results are presented in Figure 7. The storage modulus (G′)
of the composites was constant in the low strain region but slightly decreased with strains
larger than 50%. This is common for a viscoelastic material and is due to the molecular
stability of rubber. It is noticeable that the G′ increased with urea content, indicating
interactions between urea-treated HNT with ENR. There are two factors determining the
increase in G′, namely the dispersion of HNT facilitated by urea as well as improved
interfacial interactions between HNT and ENR caused by urea-treatment of the HNT. The
Payne effect relates to the rubber–filler interactions in the composite, and its measure here
was the difference in G′ between low and high strains [40]. A higher Payne effect indicates
lesser rubber–filler interactions. It was found that the Payne effect decreased with urea
content, where the value of Payne effect was found to be reduced at 62.38% after using
urea for treatment. This might be due to stable rubber–filler interactions of urea-treated
HNT filler in the ENR matrix. The results on the dynamic properties confirm interactions
between urea-treated HNT and ENR, supporting the previous FTIR and XRD.
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3.5. Mechanical Properties

Figure 8 shows the stress–strain curves of the ENR composites made with untreated
and urea-treated HNT. The stress–strain curves show the SIC. Higher stress response was
found for the composites filled with urea-treated HNT, suggesting that the samples became
stronger after urea-treated HNT was used. Higher compatibility between ENR and HNT
in the presence of urea is responsible for these findings. Further, the area underneath the
stress–strain curve was examined to confirm the compatibility of rubber and the filler. This
indicates the toughness of a material [41]. Larger area underneath the curve corresponds to
the greater toughness. The urea-treated HNT composites showed a greater area underneath
the stress–strain curve than the untreated counterpart and therefore greater toughness. The
curves shown are further discussed and regards crystallization behavior.

The mechanical properties, such as modulus, tensile strength, elongation at break,
tear strength, and hardness, are shown and summarized in Table 3. It was found that
the modification of HNT with urea via mechano-chemical process led to increase in the
tensile and tear strength of the composites. The tensile strength with untreated HNT was
33.67 MPa and increased up to 35.15 MPa at 14% of urea content. The tear strength of
reference sample increased from 38.29 N/mm to 38.36, 39.24, 37.42, and 35.60 N/mm.
Using urea-treated HNT has evidently proven that an intercalation had taken place. The
evidence for such boosting has already been shown by the previous sessions. The reduction
of tensile and tear strength at urea content over 14% might be due to some destruction
of the HNT structure that occurred during mechano-chemical process, as seen in SEM
images. The significant change in the rubber–filler interaction of ENR and HNT can be
also verified from the stresses at 100% (M100) and 300% (M300) strains (see Table 3). It
can be seen that the M100 and M300 increased over the urea content. As the higher urea
was introduced to the rubber, the greater interactions occurred, resulting in harder and
stiffer composites. Such finding is clearer when examining the M300. The result obtained
here corresponded well with the reduction of elongation at break of the composites. The
reduction of elongation at break was found due to lower flexibility of molecular chain and
contributed to the increase of interaction point in the composites. Similar observation for
the modulus was also encountered for the hardness property.
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Table 3. Modulus at 100% (M100), 300% (M300), tensile strength (TS), elongation at break (EB), tear strength (Ts), and
hardness of ENR/HNT composites filled with untreated and urea-treated HNT.

Sample M100 (MPa) M300 (MPa) TS (MPa) EB (%) Ts (N/mm) Hardness
(Shore A)

E20 0.86 ± 0.03 2.25 ± 0.03 33.67 ± 1.61 717 ± 10 38.29 ± 0.94 39.3 ± 0.3
E20U10 0.89 ± 0.04 2.34 ± 0.23 34.95 ± 0.51 660 ± 49 38.36 ± 0.51 41.6 ± 0.4
E20U14 0.95 ± 0.05 2.58 ± 0.18 35.15 ± 0.42 627 ± 28 39.24 ± 0.54 42.2 ± 0.4
E20U18 0.96 ± 0.01 2.59 ± 0.07 30.59 ± 1.22 618 ± 20 37.42 ± 0.72 42.7 ± 0.3
E20U20 0.97 ± 0.03 2.63 ± 0.03 26.87 ± 1.11 615 ± 13 35.60 ± 0.50 43.9 ± 0.7

3.6. Morphological Properties

The dispersion of HNT within the rubber matrix can be assessed from the SEM images
shown in Figure 9. Good dispersion of urea-treated HNT was observed with but shortened
lengths of the dispersed HNT particles in the matrix are due to the destruction of HNT
structure. This is in agreement with the decreased tensile strength and tear strength
observed for comparatively high urea contents. Similar observations were previously
reported for micro-fractured surfaces in NR composites having other fillers in the presence
of a compatibilizer [42].
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Figure 9. SEM photographs of ENR/HNT composites filled with untreated and urea-treated HNT; E20 (A), E20U10 (B),
E20U14 (C), and E20U20 (D).

3.7. Wide-Angle X-ray Scattering

In the section on mechanical properties, the stress–strain behavior of the composites
was associated with SIC. Since the nominal strain rate for tensile measurement and SIC
is not similar (e.g., 0.42 s−1 and 0.042 s−1 for tensile test and WAXS, respectively). The
correlation was made in the view of the stress versus crystallinity only. Previously, it was
clear that the treatment of HNT by urea influenced the mechanical properties. The main
factor is definitely the improved compatibility between ENR matrix and urea-treated HNT
filler. The degree of crystallinity (XC) versus strain deformation is shown in Figure 10.
Crystallinity was estimated from the areas in diffraction pattern for 200 and 120 plane
reflections [43,44]. The XC increased with strain due to molecular chain orientation, as
expected. The onset strain for SIC was determined from interception of a regression line
for Xc as a function of strain (see Figure 11). The onset for SIC with urea-treated HNT filler
was observed to be lower as a function of urea content. The interaction that takes place in
the presence of urea can help to pull the surrounding molecular chains and speeds up the
crystallization process. When considering the XC and the stress propagation from tensile
measurement (see Figure 8), it is clear that the XC corresponded well with the stress, and
the trend of the curves is also similar as urea content increased. From the stress–strain
curves, it is obvious that the stress started to increase towards the urea content. This is
responsible to the formation of interfacial contact, as discussed earlier.
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Earlier onset for SIC can be found usually for the filled composite. Poompradu et al. [22]
reported that the lateral crystallite size was decreased, but the orientational fluctuation
increased by the inclusion of filler. The lattice of the SIC changed almost linearly with
the nominal stress. In addition, the degree of lattice deformation decreased with the filler
content, especially in the CB-filled system. In addition to this, onset for SIC was differently
observed depending on the filler’s characteristics. Ozbas et al. [45] compared the SIC of
graphene and CB-filled composites. They found that the onset of SIC occurs at significantly
lower strains for graphene-filled NR samples compared with CB-filled NR even at low
loadings. Chenal et al. [23] further explained that the onset of SIC is ruled by the strain
amplification induced by the filler presence. Moreover, additional interaction in rubber
network is also responsible for either accelerating or slowing down the crystallization rate
depending on rubber matrix chemical crosslink density. Candau et al. [24] together with
the report of Ozbas et al. [45] further emphasized that the rubber–filler interactions may
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fasten the SIC at low crosslink density. This is because high crosslinking may interfere the
chain orientation and results in reduction of the SIC. Therefore, the crosslink density of
this composite was also reported and shown in Figure 11. It can be seen that the crosslink
density observed was more or less the same over the content of urea. This is a good
indication that network chain density is unchangeably involved in the development of SIC
regardless of urea content. As a consequence, it can be said that the change in SIC was
promoted by rubber–filler interactions.

The orientation parameter (OP) indicates indirectly the molecular chain orientation
and alignment and can be calculated from the Herman equation [27,28]. The OP for the
composites is shown in Figure 12. Completely oriented molecular chains would give OP
value 1 [46]. Here, the OP for the composites was lesser at low strains and grew with
increasing strain, confirming that stretching oriented the molecular chains. The composites
filled with urea-treated HNT showed higher OP values at low strains, indicating that the
modification of HNT increases rubber–filler interactions, and accordingly, more molecular
chain orientation was found for composites with urea-treated HNT.
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From these results, correlation between the SIC and corresponding interaction between
ENR and HNT in the presence of urea is represented in a schematic model shown in
Figure 13. Referring to the scheme, nothing happened at the un-stretched stage of the
sample; the ENR matrix may be in contact with the HNT due to the interfacial interaction
created by the unique characteristics of the HNT. When the strain was applied to the
sample, crystallization of the ENR was then induced due to the stress concentration point
on the HNT surfaces, and the crystallinity increased in association with the orientation of
the HNT. HNT is orientated and aligned along the stretching direction. As a consequence,
the ENR chains rearrange and crystallize. This always happens regardless of whether
untreated or urea-treated HNT is concerned. This kind of phenomenon usually occurs
in the filled composites, and it has been reported elsewhere [23,24,45]. However, it is
interesting to highlight that the crystallinity of the ENR matrix increases steeply due to the
collaborative crystallization of ENR and HNT in association with the contribution of the
urea. Higher rubber–filler interactions as indicated by lower Payne effect is responsible
for such change. The presence of the urea has played an important role in pulling the
surrounding molecular chains. Thus, a significant increase in crystallization is observed at
higher strains, and this is in agreement with results observed previously in the stress–strain
behaviors and WAXS profiles.
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sites, as the value of Payne effect was clearly reduced to 62.38% after using urea for treat-
ment. The SIC in the composites exhibited a clear change, as the strain upturn was an 
earlier strain during stretching, indicating faster crystallization caused by better interfacial 
interactions within the composites. The Xc was directly observed with XRD during stretch-
ing, and it corresponded well with the tensile moduli of the composites. It is noted that 
correlation between SIC and mechanical strength may not be enough; an alternative test-
ing, such as a fatigue test, is recommended in future work. 

Based on the observations overall, it can be concluded that a urea content of about 
14% in HNT filler is highly recommended for preparing composites with ENR matrix to 
ensure the compatibility and strength of the composite. On top of that, the use of urea can 
be the solution of choice for improving the interaction between ENR and HNT. It can offer 
improvements in processing behavior without the need to use complicated and costly 
silane coupling-agent systems. 
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Figure 13. Schematic model representing the crystallization development of the ENR/HNT composites filled with urea-
treated HNT.

4. Conclusions

Urea-treated HNT filler was successfully prepared via a mechano-chemical process.
Attachment of urea on HNT was verified by FTIR, where new peaks appeared around
3505 cm−1 and 3396 cm−1, corresponding to urea’s functionalities. The intercalation of
urea in the gallery of HNT was revealed by XRD results. The development of two peaks at
21.54◦ and 22.53◦ in the range of saw tooth diffraction peak and the shifting of the peak at
2θ of 12.05◦ to 8.23◦ correlated to the decrease of the lattice strain and/or to the increment
of the crystallite size. The ts2 and tc90 decreased with urea content due to alkaline nature of
urea. The MH was optimal at 14% urea content. Increased tensile strength and tear strength
were also observed due to the improved filler–matrix interfacial adhesions of HNT with
the rubber matrix. This is confirmed by the dynamic properties of the composites, as the
value of Payne effect was clearly reduced to 62.38% after using urea for treatment. The
SIC in the composites exhibited a clear change, as the strain upturn was an earlier strain
during stretching, indicating faster crystallization caused by better interfacial interactions
within the composites. The Xc was directly observed with XRD during stretching, and it
corresponded well with the tensile moduli of the composites. It is noted that correlation
between SIC and mechanical strength may not be enough; an alternative testing, such as a
fatigue test, is recommended in future work.

Based on the observations overall, it can be concluded that a urea content of about
14% in HNT filler is highly recommended for preparing composites with ENR matrix to
ensure the compatibility and strength of the composite. On top of that, the use of urea
can be the solution of choice for improving the interaction between ENR and HNT. It can
offer improvements in processing behavior without the need to use complicated and costly
silane coupling-agent systems.
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