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Abstract

Existing computational pipelines for quantitative analysis of
high-content microscopy data rely on traditional machine learn-
ing approaches that fail to accurately classify more than a
single dataset without substantial tuning and training, requiring
extensive analysis. Here, we demonstrate that the application
of deep learning to biological image data can overcome the
pitfalls associated with conventional machine learning classi-
fiers. Using a deep convolutional neural network (DeepLoc) to
analyze yeast cell images, we show improved performance over
traditional approaches in the automated classification of
protein subcellular localization. We also demonstrate the ability
of DeepLoc to classify highly divergent image sets, including
images of pheromone-arrested cells with abnormal cellular
morphology, as well as images generated in different genetic
backgrounds and in different laboratories. We offer an open-
source implementation that enables updating DeepLoc on new
microscopy datasets. This study highlights deep learning as
an important tool for the expedited analysis of high-content
microscopy data.
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Introduction

Advances in automated image acquisition and analysis, coupled

with the availability of reagents for genome-scale perturbation, have

enabled systematic analyses of cellular and subcellular phenotypes

(Mattiazzi Usaj et al, 2016). One powerful application of

microscopy-based assays involves assessment of changes in the

subcellular localization or abundance of fluorescently labeled

proteins in response to various genetic lesions or environmental

insults (Laufer et al, 2013; Ljosa et al, 2013; Chong et al, 2015).

Proteins localize to regions of the cell where they are required to

carry out specific functions, and a change in protein localization

following a genetic or environmental perturbation often reflects a

critical role of the protein in a biological response of interest. High-

throughput (HTP) microscopy enables analysis of proteome-wide

changes in protein localization in different conditions, providing

data with the spatiotemporal resolution that is needed to understand

the dynamics of biological systems.

The budding yeast, Saccharomyces cerevisiae, remains a premiere

model system for the development of experimental and computa-

tional pipelines for HTP phenotypic analysis. A key high-quality

resource for yeast imaging experiments is the open reading frame

(ORF)-GFP fusion collection (Huh et al, 2003) which consists of

4,156 strains, each expressing a unique ORF-GFP fusion gene,

whose expression is driven by the endogenous ORF promoter. The

GFP-tagged yeast collection has been used to assign 75% of the

budding yeast proteome to 22 distinct localizations under standard

growth conditions, using manual image inspection. Several studies

have since used the collection to quantify protein abundance

changes and to map protein re-localization in response to various

stress conditions, again using manual assessment of protein local-

ization (Tkach et al, 2012; Breker et al, 2013).

More recently, efforts have been made to develop computational

methods for systematic and quantitative analysis of proteome

dynamics in yeast and other cells (Breker & Schuldiner, 2014; Grys

et al, 2017). For example, our group classified images of single yeast

cells from screens of the ORF-GFP collection into one or more of 15

unique subcellular localizations using an ensemble of 60 binary

support vector machine (SVM) classifiers. Each SVM classifier was

trained on manually annotated sample images of single cells, with a

training set containing > 70,000 cells in total. Overall, this classifier

ensemble (ensLOC) performed with > 70% precision and recall,

1 Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
2 Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
3 Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
4 Cellular Pharmacology, Discovery Sciences, Janssen Pharmaceutical Companies, Johnson & Johnson, Beerse, Belgium
5 Canadian Institute for Advanced Research, Program on Genetic Networks, Toronto, ON, Canada
6 Canadian Institute for Advanced Research, Program on Learning in Machines & Brains, Toronto, ON, Canada

*Corresponding author. Tel: +1 416 946 7260; E-mail: charlie.boone@utoronto.ca
**Corresponding author. Tel: +1 416 978 6113; E-mail: brenda.andrews@utoronto.ca
†These authors contributed equally to this work

ª 2017 The Authors. Published under the terms of the CC BY 4.0 license Molecular Systems Biology 13: 924 | 2017 1

http://orcid.org/0000-0002-6328-9492
http://orcid.org/0000-0002-6328-9492
http://orcid.org/0000-0002-6328-9492
http://orcid.org/0000-0001-6427-6493
http://orcid.org/0000-0001-6427-6493
http://orcid.org/0000-0001-6427-6493


providing a quantitative localization output not achievable using

manual assessment (Koh et al, 2015). The ensLOC approach also

outperformed earlier automated methods also based on SVMs for

classifying the ORF-GFP fusion collection (Chen et al, 2007; Huh

et al, 2009).

Attempts to apply the ensLOC classifiers to new microscopy data-

sets involved a significant amount of re-engineering and supplemen-

tal training. This problem reflects limitations associated with the

image features used to train the classifiers. Typically, single cells are

segmented from the images and hundreds of measurements repre-

senting pixel intensity statistics and patterns are computed for each

cell (Chen et al, 2007; Dénervaud et al, 2013; Loo et al, 2014;

Chong et al, 2015; Lu & Moses, 2016). The high dimensional feature

space is then reduced by selecting relevant features for the classifi-

cation task or using dimensionality reduction techniques prior to

training a classifier (Liberali et al, 2014; Kraus & Frey, 2016). These

segmentation and feature reduction techniques are typically not

transferable across datasets, thereby requiring researchers to tune

and re-train analysis pipelines for each new dataset.

Deep learning methods have the potential to overcome the limi-

tations associated with extracted feature sets by jointly learning

optimal feature representations and the classification task directly

from pixel level data (LeCun et al, 2015). Convolutional neural

networks in particular have exceeded human-level accuracy at the

classification of modern object recognition benchmarks (He et al,

2015) and their use is being adopted by the biological imaging field.

Recently, deep learning has been applied to the classification of

protein localization in yeast (Kraus et al, 2016; Pärnamaa & Parts,

2016), imaging flow cytometry (Eulenberg et al, 2016), as well as

the classification of aberrant morphology in MFC-7 breast cancer

cells (Dürr & Sick, 2016; Kraus et al, 2016). In addition, recent

publications report that feature representations learned by training

convolutional networks on a large dataset can be used to extract

useful features for other image recognition tasks (Razavian et al,

2014; Pawlowski et al, 2016), and that previously trained networks

can be updated to classify new datasets with limited training data, a

method referred to as “transfer learning” (Yosinski et al, 2014).

Here, we demonstrate that the application of deep neural

networks to biological image data overcomes the pitfalls associated

with conventional machine learning classifiers with respect to

performance and transferability to multiple datasets. We offer an

open-source implementation capable of updating our pre-trained

deep model on new microscopy datasets within hours or less. This

model is deployable to entire microscopy screens with GPU or CPU

cluster-based acceleration to overcome the significant computational

bottleneck in high-content image analysis.

Results

Training and validating a deep neural network (DeepLoc) for
classifying protein subcellular localization in budding yeast

Toward our goal of building a transferable platform for automated

analysis of high-content microscopy data, we constructed a deep

convolutional neural network (DeepLoc) to re-analyze the yeast

protein localization data generated by Chong et al (2015). We

provide a brief overview of convolutional neural networks in

Fig EV1 and refer readers to LeCun et al (2015) and Goodfellow

et al (2016) for a more thorough introduction. To make a direct

comparison of DeepLoc and ensLOC performance, we decided to

train our network to identify and distinguish the same 15 subcellular

compartments identified using the SVM classifiers (Fig 1A). We

implemented and trained a deep convolutional network in Tensor-

Flow (Abadi et al, 2015), Google’s recently released open-source

software for machine learning (Rampasek & Goldenberg, 2016). In

DeepLoc, input images are processed through convolutional blocks

in which trainable sets of filters are applied at different spatial loca-

tions, thereby having local connections between layers, and

enabling discovery of invariant patterns associated with a particular

class (e.g., nucleus or bud neck). Fully connected layers are then

used for classification, in which elements in each layer are

connected to all elements in the previous layer. Our network

arranges 11 layers into eight convolutional blocks and three fully

connected layers, consisting of over 10,000,000 trainable parameters

in total (more detail in Materials and Methods, network architecture

shown in Fig 1B). To ensure the validity of our comparative analy-

sis, we trained DeepLoc on a subset of the exact same manually

labeled cells used to train ensLOC (Chong et al, 2015), totaling

~22,000 images of single cells. However, instead of training a classi-

fier on feature sets extracted from segmented cells, we trained

DeepLoc directly on a defined region of the original microscopy

image centered on a single cell, but often containing whole, or partial

cells in the periphery of the bounding box. The use of these “bound-

ing boxes” removes the sensitivity of the image analysis to the accu-

racy of segmentation that is typical of other machine learning

classifiers. Despite using a substantially smaller training set than was

used to train ensLOC (Chong et al, 2015) (~70% fewer cells), we

found that training a single deep neural network using a multi-class

classification setting substantially outperformed the binary SVM

ensemble when assigning single cells to subcellular compartment

classes (71.4% improvement in mean average precision, Fig 1C).

The ensLOC method relied on aggregating across cell populations

to achieve > 70% precision and recall in comparison with manually

assigned protein localizations (Huh et al, 2003). To assess the

performance of DeepLoc in a similar way, we aggregated cell popu-

lations by computing the mean for each localization category across

single cells containing the same GFP fusion protein. Again, DeepLoc

outperformed the binary classifier ensemble across all localization

categories (Fig 1D), achieving a mean average precision score (area

under precision recall curve) of 84%, improving on the classifi-

cation accuracy of ensLOC by almost 15% with substantially less

training input.

Visualizing network features

Having demonstrated the improved performance of DeepLoc over

the analysis standard, we next investigated which components of

our network were contributing to its success. One of the hallmark

differences between deep networks and traditional machine learning

is that the network’s learned representations are better at distin-

guishing between output classes than extracted feature representa-

tions used by other classifiers. To address whether this difference

was relevant in our experiments, we visualized the activations of

the final convolutional layer in 2D using t-distributed stochastic

neighbor embedding (t-SNE) (Maaten & Hinton, 2008) for a single
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cell test set (Fig 2A). t-SNE is a popular non-linear dimensionality

reduction algorithm often used to visualize the structure within high

dimensional data in 2D or 3D space. Similarly, we visualized the

CellProfiler (Carpenter et al, 2006)-based features used to train the

ensLOC SVM ensemble (Chong et al, 2015) on the exact same test

set of single cell images (Fig 2B). We observed that using the

A

B

C D

Figure 1.
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DeepLoc representations, cells appeared to be better arranged in

accordance with their localization classes, suggesting that DeepLoc’s

convolutional layers learn to extract features that are meaningful in

the distinction of protein subcellular localization. These results

suggest that an important component of the improved performance

of DeepLoc reflects the network’s ability to learn feature representa-

tions optimized directly on pixel values for a specific classification

task as opposed to training classifiers on static feature sets.

Next, we wanted to display these features to assess how they dif-

fer between compartment classes. To do this, we visualized activa-

tions and patterns extracted in the last convolutional layer of the

network (layer 8) for specific input examples (Golgi, bud neck,

nuclear periphery, Fig 2C, Materials and Methods). Different input

patterns activated specific features in deeper convolutional layers

(convolutional activations, Fig 2C), with representations being

combined in the fully connected layers from the convolutional

feature maps, ultimately producing unique signals for different input

patterns. These signals differ by localization class in a biologically

interpretable way. For example, images containing punctate subcel-

lular structures like the Golgi (top panels, Fig 2C) activated similarly

patchy, dispersed features, while images containing discrete

compartments like the bud neck (middle panels, Fig 2C) activated

features that appear localized and linear.

We extended our analysis by applying activation maximization

(Yosinski et al, 2015) to visualize input patterns that maximally

activate each output class (Fig 2D, see Materials and Methods). This

technique works by keeping the parameters of the network constant

while updating input pixel values to maximize the activation of

specific features. In our implementation, the network iteratively

updates an input with a randomly initialized green channel to

produce an example “input” that resembles a cell with a GFP fusion

protein that localizes to the maximally activated output class. The

visualizations produced by the network for different output cate-

gories were convincing in their similarity to real compartment archi-

tecture. For example, visualizations for compartments such as the

actin cytoskeleton, peroxisomes, and the spindle pole body were all

punctate and dispersed (Fig 2D). Although these general visualiza-

tions may place compartments in various locations in the cell due to

variable compartment locations in different images (e.g., spindle

pole), the general morphology remains biologically interpretable.

These results further justify the use of deep learning for classifying

protein subcellular localization.

Using DeepLoc to identify protein dynamics in response to
mating pheromone

Next, we assessed the ability of DeepLoc to classify images of yeast

cells generated in different microscopy screens from those that

served as training input to the network. We opted to analyze images

from a screen generated by our group at the same time and on the

same HTP confocal microscope as our previously published wild-

type screens (Chong et al, 2015), but that ensLOC had been unable

to accurately classify. In this genome-wide screen, haploid MATa

cells were exposed to the mating pheromone a-factor, causing cell

cycle arrest in G1 phase and polarized growth of a mating projection

(schmoo) (Merlini et al, 2013). We used DeepLoc to analyze 16,596

images of the ORF-GFP collection acquired after exposure to mating

pheromone for 40, 80, and 120 min. Images and analysis are avail-

able on the Cyclops Database (http://cyclops.ccbr.utoronto.ca). We

reasoned that a pheromone response time course would be a chal-

lenging test case for DeepLoc, due to the dramatic changes in cell

morphology associated with a-factor treatment. DeepLoc produced

reasonable protein classifications for single cells within hours,

without the need for additional, non-wild-type training, while re-

implementing an SVM ensemble would have necessitated weeks of

training and optimization.

We identified 297 proteins (Table EV1) whose localization

changed significantly in response to a-factor using Welch’s t-test to

score localization changes and a mixture model to identify signifi-

cance (see Materials and Methods). The 100 proteins demonstrating

the most substantial localization changes were significantly

enriched for proteins with annotated roles in conjugation and sexual

reproduction (Gene Ontology bioprocess; P < 0.01). This subset was

also enriched for proteins required for cell fusion (e.g., Fus1, Fus2,

Fus3, P < 0.01), nuclear fusion during mating (e.g., Prm3, Fig2,

Kar5, P < 0.01), and polarized growth of the mating projection (e.g.,

Bni1, Pea2, Cdc24, P < 0.05). DeepLoc’s ability to identify the move-

ment of proteins that are already implicated in the mating response

program serves to validate our method for detecting biologically

meaningful results.

To do this, in addition to the localization measurements calcu-

lated by DeepLoc, we also extracted pixel intensity measurements

as a metric for protein abundance (Tkach et al, 2012; Breker et al,

2013; Chong et al, 2015) (Table EV2). In total, we detected 82

proteins whose abundance changed 2-fold or more in response to

Figure 1. DeepLoc input data, architecture, and performance.

A Example micrographs of yeast cells expressing GFP-tagged proteins that localize to the 15 subcellular compartments used to train DeepLoc.
B Architecture of DeepLoc illustrating the structure of typical convolutional blocks, max pooling, and fully connected layers. The flowchart focuses on a sample image

with a GFP fusion protein that localizes to the nuclear periphery (input). The input is processed through a series of repeating convolutional blocks (orange) and max
pooling layers (yellow). In the convolutional block, the activation images illustrate network representations of the sample image (input). The red box and dashed/solid
lines illustrate the connections within convolutional layers. Max pooling (yellow blocks) down sample activations across spatial dimensions. After repeated processing
through convolutional blocks and max pooling, three fully connected layers are used for classification (green). The last layer (output) represents the distribution over
localization classes.

C Average precision of DeepLoc (red bars) and ensLOC (Chong et al, 2015) (blue bars) on classifying a single cell test set (n = 4,197 samples). The cell compartment is
indicated on the x-axis and the average precision (area under the precision recall curve) on the y-axis. The dashed lines indicate the mean average precision across
the localization classes (0.49 for ensLOC (Chong et al, 2015) and 0.84 for DeepLoc).

D Average precision of DeepLoc (red bars) and ensLOC (Chong et al, 2015) (blue bars) on assigning localizations to images of GFP fusion proteins with single or multiple
localization classes according to manual annotations by Huh et al (2003) (n = 2,833 proteins). The cell compartment is indicated on the x-axis and the average
precision (area under the precision recall curve) on the y-axis. The dashed lines indicate the mean average precision across the localization classes (0.70 for ensLOC
(Chong et al, 2015) and 0.84 for DeepLoc).
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pheromone, with 75 proteins increasing in abundance and seven

proteins decreasing in abundance. Although there are minimal data

available for protein abundance changes in a-factor, we compared

our abundance measurements to gene expression changes and

found positive correlations that are largely driven by the strongest

hits (Fig EV2). While unrelated to the localization analysis by

DeepLoc, this evaluation of protein abundance further validates the

effectiveness of our screening protocol; it also provides a comple-

mentary overview of proteomic responses to those made by Chong

et al (2015) in the Cyclops database.

Next, we wanted to display a quantitative snapshot of these

proteomic responses to a-factor treatment similar to those previ-

ously constructed to illustrate protein movement after treatment

with rapamycin, hydroxyurea, or the deletion of RPD3 (Chong et al,

2015). We displayed proteins with the most substantial localization

changes (t-test statistic with magnitude > 10) in a flux network,

indicating if these proteins changed in abundance as well (Fig 3A).

As previously reported (Chong et al, 2015), after exposure to an

environmental perturbation, we observe that proteins change in

abundance or localization but rarely in both. Representative micro-

graphs illustrate interesting localization/abundance changes shown

in the flux network (Fig 3B). Importantly, DeepLoc identified novel

movements of proteins already implicated in the mating response,

such as the movement of Kss1, a MAPK that functions primarily to

regulate filamentous growth, from the nucleus to the cytoplasm. We

also identified the appearance of cell fusion regulators Prm1, Prm2,

and Fus1 at the vacuole, which presumably results from the endocy-

tosis of these cell surface proteins. Importantly, DeepLoc also identi-

fied the known localization of Prm1 and Prm2 at the Schmoo/bud

tip (Heiman & Walter, 2000), though this movement is not shown

on the flux network as their localization at the vacuole is more

substantial. Deeploc also identified changes in localization of a

number of proteins that control bud site selection, including Bud2,

Bud4, and Bud5, which presumably reflects the fact that pheromone

signaling is controlling polarized growth and over-riding the bud

site selection machinery.

In addition to these striking changes, DeepLoc also identified

more subtle or partial localization changes. For example, Nvj1 local-

ized primarily to the spindle pole in untreated cells, but was also

present at the nuclear periphery, as previously reported, where it

performs a role in the formation of nucleus-vacuole junctions (Pan

et al, 2000). After treatment with a-factor, DeepLoc captured Nvj1’s

movement away from the spindle pole, and its enhanced localiza-

tion at the nuclear periphery. A number of proteins with no or

poorly annotated roles also show clear localization changes,

implicating these proteins in the pheromone response. For example,

an uncharacterized protein Yor342c moved from the nucleus to the

cytoplasm after a-factor treatment, a relocalization that has been

previously noted in response to DNA replication stress (Tkach et al,

2012).

Assessing the transferability of DeepLoc to new and different
microscopy datasets

With the goal of generating an automated image analysis system

that can be broadly implemented by the budding yeast community,

we used transfer learning (Yosinski et al, 2014) to classify image

sets that significantly diverge from the images used to train

DeepLoc. First, we completed a new genome-wide screen in stan-

dard cell culture conditions, which we called wild-type (WT)-2017,

using the budding yeast ORF-GFP fusion collection (Huh et al,

2003). To differentiate this image set from other datasets analyzed

by DeepLoc, screens were performed using a new HTP confocal

microscope, and strains contained different red fluorescent markers

(See Materials and Methods, cropped cell images available

at: http://spidey.ccbr.utoronto.ca/~okraus/DeepLoc_full_datasets.

zip). We incorporated five new localization classes, many of which

are punctate (e.g., Cytoplasmic foci, eisosomes, and lipid particles)

and likely difficult to differentiate using traditional machine learning

approaches, explaining their absence from ensLOC (localization

classes shown in Fig 4A). We transferred and fine-tuned DeepLoc to

the WT-2017 dataset using an increasing amount of training input

per class, and contrasted the performance of this network with one

trained from scratch using the same amount of training input (See

Materials and Methods; Fig 4B). Remarkably, transfer learning

using DeepLoc achieved an average accuracy of 62.7% when fine-

tuned with only five additional supplemental training cells per class

(Fig 4C, yellow highlight), with several localization categories

achieving accuracies above 80% (Fig 4D); this is a 63.4% improve-

ment in performance using transfer learning over training from

scratch (Fig 4E). The classes with significant errors are mostly the

new punctate localizations, including cytoplasmic foci, and lipid

particles, which are difficult to differentiate with only a few

samples, and are still identified with 63.8% accuracy when merged

with peroxisomes into one class.

Next, we used our transfer learning protocol to classify images

generated by the Schuldiner laboratory using a different microscope

and fluorescent markers (Yofe et al, 2016). Because these images

were never intended for automated analysis, they contain many

cells that are often clustered and overlapping. Also, bright field

Figure 2. Visualizing DeepLoc features.

A 2D t-SNE (Maaten & Hinton, 2008) visualization of activations in the last convolutional layer of DeepLoc for 2,103 single cells in the test set. We computed the
maximum activation across the spatial coordinates for each of the 256 features prior to fitting t-SNE.

B t-SNE visualization of CellProfiler features extracted for the same cells. We normalized the 313 CellProfiler features to be in the range [0,1]. In these plots, each circle
represents a single cell; circles are colored by their localization as determined by manual annotation (Huh et al, 2003) (color code to the right).

C Filters and activations in the last convolutional layer of DeepLoc for sample input images containing GFP fusion proteins that localize to the bud neck (top), Golgi
(middle), or nuclear periphery (bottom). The convolutional filter visualizations were generated by activation maximization (Yosinski et al, 2015). The maximally
activated filter for each input is highlighted with a red box (bud neck at the top, Golgi in the middle, and nuclear periphery at the bottom). For the bud neck sample,
the input patch, filter, and activation are presented together to visualize how features are activated in DeepLoc. Other input patches that also maximally activate the
selected feature are displayed.

D Regularized activation maximization (Yosinski et al, 2015) of output layers based on inputs initialized to leftmost column (Initialization). Different localization classes
(compartment labels at the top of the images) are grouped by their morphological similarity (labels at bottom of images).
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imaging was used to identify outlines of the cells, which do not

express a fluorescent cytosolic marker (Fig 5A). Despite these signif-

icant differences, we were able to use transfer learning with

DeepLoc (Fig 5B) to classify protein localizations in this dataset

with an average accuracy of 63.0% after training with only 100

samples per class (Fig 5C). Classification accuracy with transfer

A

B

Figure 3. Protein dynamics in response to mating pheromone.

A Flux network (Chong et al, 2015) showing significant protein localization and abundance changes in response to the mating pheromone a-factor. Localization
changes with t-scores above 10 are shown. Hubs represent cellular compartments, while nodes represent proteins. Nodes are colored to represent abundance
changes for those proteins that are changing in both their localization as well as abundance. Edge thickness corresponds to the magnitude of the localization change
score.

B Representative micrographs highlighting protein subcellular movements after treatment with a-factor. Group 1: proteins that move from the nucleus to the
cytoplasm. Group 2: proteins that appear in the vacuole/vacuolar membrane. Group 3: proteins that are moving away from the spindle pole after treatment with
a-factor.
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learning ranged from 79% for the mitochondrial and “punctate”

compartments to 41% for the bud compartment (Fig 5D). The avail-

ability of unique cell images for training varied by localization class,

which likely affected accuracy in some cases (see Materials and

Methods, Table EV3). In contrast, performance was reduced for all

classes when DeepLoc was trained from scratch (Fig 5E). Despite

these classification errors, the performance of DeepLoc is a signifi-

cant achievement given that these images have previously only been

classified by manual inspection, and that the imaging protocols

were highly divergent from those that are optimized for automated

analysis.

Discussion

We describe the implementation of a deep neural network for auto-

mated analysis of HTP biological images. DeepLoc overcomes

several limitations associated with existing machine learning pipeli-

nes for computational classification of cell morphologies and pheno-

types. Machine learning models that have been used to cluster or

classify individual cells using selected features, although useful

(Stadler et al, 2013; Chong et al, 2015; Styles et al, 2016), often fail

to classify complex phenotypes. For example, using ensLOC (Chong

et al, 2015), 35% of vacuolar proteins were assigned to the nucleus

and proteins localizing to punctate compartments including actin

patches, spindle pole bodies, peroxisomes, and nucleoli were occa-

sionally mis-classified. For these cases, poor classification perfor-

mance can be attributed to the limited space of patterns that can be

represented by static feature sets that are extracted prior to classifier

training. In contrast, DeepLoc updates its parameters by training

directly on image data, thereby enabling it to learn patterns opti-

mized for the classification task. DeepLoc achieves a 47% increase

in average precision for proteins with vacuolar localizations

compared to ensLOC (Chong et al, 2015; Fig 1D).

An additional limitation of traditional machine learning

approaches is that each step in the analysis pipeline needs to be

tuned for different experiments, severely limiting their utility for cell

biologists. The machine learning algorithms typically used, includ-

ing SVMs and clustering algorithms, are sensitive to segmentation,

data preprocessing, and feature selection steps. DeepLoc overcomes

these limitations by training directly on bounding boxes surround-

ing single cells. The lack of dependence on accurate segmentation

and the large variety of patterns that can be learned from the large

training set enabled DeepLoc to accurately classify cells in challeng-

ing datasets where cell morphology is abnormal, such as yeast cells

treated with pheromone (Fig 3B). Furthermore, this feature enabled

DeepLoc to analyze images generated through a highly divergent

microscopy screen performed by another laboratory with limited

additional training. In this case, transfer learning from DeepLoc

achieved 72.3% accuracy at classifying images that were not opti-

mized for automated analysis, an attribute that is a prerequisite for

ensuring that analysis pipelines are broadly applicable to the cell

biology community (Fig 5C).

These results differentiate DeepLoc from previous implementa-

tions of deep learning for high-throughput cell image data. Recent

publications demonstrate the improved accuracy achieved by deep

learning-based classifiers for high-content screening (Dürr & Sick,

2016; Kraus et al, 2016; Pärnamaa & Parts, 2016) and for imaging

flow cytometry (Eulenberg et al, 2016). These reports validate their

proposed models on held out test sets from the same source as the

training data and typically evaluate less phenotypes than DeepLoc

(i.e., four mechanism of action clusters in Dürr and Sick (2016) and

five cell cycle stages in Eulenberg et al (2016)). In Kraus et al

(2016), we describe a deep learning framework for classifying whole

Figure 4. Performance of DeepLoc after transfer learning.

A Example micrographs from a screen of wild-type yeast cells expressing ORF-GFP fusion proteins. The images are of single cells expressing fusion proteins that localize
to 20 unique output classes (colored green). The cells also express a bright cytosolic marker (FarRed; colored blue), as well as a nuclear RFP fusion protein (colored
red).

B Illustration of transfer learning. All layers except for the last layer (in red) are initialized to the network trained on the Chong et al (2015) dataset.
C Comparison of classification accuracy (y-axis) for different training set sizes (x-axis) when transfer learning is implemented using DeepLoc (red line) versus training a

network from scratch (blue line). Error bars indicate the standard deviation of the accuracy based on five different samplings of the training set for each training set
size. A yellow box highlights network versions that are referred to in (D and E).

D Confusion matrix for transfer learning the DeepLoc network trained on the Chong et al (2015) dataset to the new dataset with five samples per class. The intensity of
the yellow color in each block of the matrix indicates the fraction of cells classified from each class predicted to be in a given class (scale bar to the right). Prediction
accuracy for each class is indicated in brackets on the y-axis.

E Confusion matrix for training DeepLoc from random initializations with five samples per class.

◀

Figure 5. Performance of DeepLoc for classifying images of cells expressing ORF-RFP fusion proteins collected for manual assessment.

A Example micrographs from a screen of wild-type yeast cells expressing ORF-RFP fusion proteins (Yofe et al, 2016). The images are of single cells expressing ORF-RFP
fusion proteins that localize to 10 unique output classes. The cells express a single RFP fusion protein of interest; cell outlines are visualized in brightfield.

B Illustration of transfer learning. All layers except for the last layer (in red) are initialized to the network trained on the Chong et al (2015) dataset.
C Comparison of classification accuracy (y-axis) for different training set sizes (x-axis) when transfer learning is implemented using DeepLoc (red line) versus training a

network from scratch (blue line). Error bars indicate the standard deviation of the accuracy based on five different samplings of the training set for each training set
size. A yellow box highlights network versions that are referred to in (D and E).

D Confusion matrix for transfer learning the DeepLoc network trained on the Chong et al (2015) dataset to the new dataset with 100 samples per class. The intensity of
the yellow color in each block of the matrix indicates the fraction of cells classified from each class predicted to be in a given class (scale bar to the right). Prediction
accuracy for each class is indicated in brackets on the y-axis.

E Confusion matrix for training DeepLoc from random initializations with 100 samples per class.

▸
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microscopy images that is not designed to classify single cells. Here,

we train DeepLoc on 15 subcellular localizations classes from one

genome-wide screen, deploy DeepLoc to a second genome-wide

screen of cells with substantially altered cell morphology that was

not amenable to classification with EnsLoc, and then use transfer

learning to deploy DeepLoc to image sets that were screened dif-

ferently than the training set with minimal additional labeling.

Based on our findings, we believe that deep learning models as

well as corresponding image sets should be shared across the high-

content screening community. The feature representations learned

by these models will only become more powerful as they are trained

on varied datasets and on different classification tasks. The machine

learning community has numerous platforms for sharing models

(Caffe Model Zoo, 2016, Models built with TensorFlow, 2016) and

datasets (Russakovsky et al, 2015), and within the high-content

screening community, the Broad Institute has provided a repository

for microscopy images (Ljosa et al, 2012). Here, we provide our

trained models and training sets with the goal of encouraging others

to adopt and share deep learning approaches for characterizing

high-content microscopy screens. Based on our implementation of

transfer learning from DeepLoc, the use of this technology will aid

many groups in the analysis of their image-based data, ultimately

expediting future discoveries in the high-content screening

community.

Materials and Methods

Strain construction for a-factor and WT-2017 datasets

Saccharomyces cerevisiae strains were generated by first constructing

MATa query strains with red and far-red fluorescent markers using

standard PCR and yeast transformation by homologous recombina-

tion and then crossing these queries into the ORF-GFP fusion array

using a modified SGA protocol. For the a-factor dataset, our query

contained a single red fluorescent marker (RPL39pr-tdTomato) of

the cytosol, while the WT-2017 dataset contained a far-red cytosolic

marker (TDH3pr-E2crimson), as well as a red fluorescent marker

(HTA2-mCherry) of the nucleus and a second red fluorescent marker

(CDC11-TagRFP) of the bud neck. Strain genotypes are:

a-Factor query (BY4872): MATa hoD::NAT CAN1pr::RPL39pr-tdTo-

mato::CaURA3::can1D::STE2pr-LEU2 lyp1D ura3D0 his3D1 leu2D0
met15D0
WT-2017 query (BY5282): MATa CAN1pr::TDH3pr-E2Crimson::

HPH::can1D::STE2pr-LEU2 HTA2-mCherry::CaURA3 CDC11-TagRFP::

NAT lyp1D ura3D0 his3D1 leu2D0 met15D0

Strain preparation for imaging and growth conditions

Haploid MATa strains were inoculated into liquid growth medium,

diluted, and prepared for imaging using slightly different protocols

for each dataset; details are provided below.

a-Factor dataset
Haploid MATa strains were inoculated into synthetic medium with

1 mM methionine, 100 lg/ml NAT, and 2% glucose. Cultures were

grown to saturation in 96-well microplates (200 ll volume) with

glass beads. Next, cultures were diluted in low fluorescence

synthetic medium containing 5 g/l L-glutamic acid monosodium salt

hydrate (MSG), 1 mM methionine, 100 lg/ml NAT, and 2%

glucose, in 600 ll deep well blocks with glass beads. Cultures were

grown to early log phase and then transferred to 384-well glass-

bottom imaging plates (CellCarrier, Perkin Elmer) using a Zymark

RapidPlate liquid handling device. Cultures were exposed to 5 lM
a-factor for 2 h prior to image acquisition.

WT-2017 dataset

Haploid MATa strains were inoculated into synthetic medium with

1 mM methionine, 100 lg/ml NAT, 100 lg/ml hygromycin B, and

2% glucose. Cultures were grown to saturation in 96-well micro-

plates (200 ll volume) with glass beads. Cultures were diluted in

low fluorescence synthetic medium containing 5 g/l ammonium

sulfate, 1 mM methionine, 20 lg/ml ampicillin, and 2% glucose, in

600 ll deep well blocks with glass beads. Cultures were grown to

early log phase and then transferred to 384-well glass-bottom imag-

ing plates (CellCarrier, Perkin Elmer) using a Zymark RapidPlate

liquid handling device.

Live-cell image acquisition

Liquid cultures were imaged by slightly different acquisition proto-

cols on different HTP confocal microscopes for each dataset; details

are provided below.

a-Factor dataset
Images were acquired using an HTP spinning-disk confocal micro-

scope (Opera, PerkinElmer) with a 60× water-immersion objective

(NA 1.2, image depth 0.6 lm and lateral resolution 0.28 lm).

Sample excitation was conducted using two lasers (488 and

561 nm) at maximum power for 800 ms exposures per site. Two

cameras (12-bit CCD) were used to simultaneously acquire images

of red and green fluorescence after excitation (binning = 1, focus

height = 2 lm). Briefly, a 405/488/561/640 nm primary dichroic

and a 564 nm detector dichroic were used to passage light toward

both cameras. A 520/35-nm filter was placed in front of camera 1

for the separation of green fluorescence, while a 600/40-nm filter

was placed in front of camera 2 for the separation of red fluores-

cence. A total of four images were acquired in each channel

(1,349 × 1,004 pixels), resulting in a total screening time of ~40 min

per 384-well plate.

WT-2017 dataset

Images were acquired using a different HTP spinning-disk confocal

microscope of the same model (Opera, PerkinElmer), also with a

60× water-immersion objective (NA 1.2, image depth 0.6 lm and

lateral resolution 0.28 lm). Sample excitation was conducted using

three lasers (488, 561, and 640 nm) at maximum power for 800 ms

exposures per site. Three cameras (12-bit CCD) were used to simul-

taneously acquire images of far-red, red and green fluorescence after

excitation (binning = 1, focus height = 2 lm). Briefly, a 405/488/

561/640 nm primary dichroic and a 564 nm detector dichroic were

used to passage light toward both cameras. A 520/35-nm filter was

placed in front of camera 1 for the separation of green fluorescence,

while a 585/20-nm filter was placed in front of camera 2 for the

separation of red fluorescence, and a 690/70-nm filter was placed

in front of camera 3 for the separation of far-red fluorescence. A
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total of 10 images (1,338 × 1,003 pixels) were acquired in each

channel, resulting in a total screening time of ~100 min per 384-

well plate.

Training DeepLoc

We trained a deep convolutional model with 11 layers consisting of

eight convolutional blocks and three fully connected layers (Fig 1B).

The convolutional layers included convolution with 3 × 3 filters

using a stride of 1 followed by the addition of a bias term and a

rectified linear unit activation function. The numbers of feature

maps in the convolutional layers were 64, 64, 128, 128, 256, 256,

256, and 256. Max pooling was applied with a window size of 2 and

stride of 2 after convolutional layers 2, 4, and 8. Following the third

pooling layer, activations in the feature maps were flattened into a

vector and subsequent layers were fully connected. We used three

fully connected layers with 512, 512, and 19 features. We applied

batch normalization (Ioffe & Szegedy, 2015) at every layer prior to

applying the rectified linear unit activation function. The last layer

represents the localization classes in the trainings set. We applied

the softmax function to the activations of the final output layer to

produce a distribution over the localization classes. In total, the

network has over 10,000,000 trainable parameters. We implemented

and trained the network in TensorFlow (Abadi et al, 2015) using the

Adam optimization algorithm (Kingma & Ba, 2014). Network

parameters were initialized using a truncated normal distribution

function with a standard deviation of 0.1. We trained the network

for 10,000 iterations using a batch size of 128 and a learning rate

with an exponential decay of 0.96 applied every 25 iterations, start-

ing from a value of 0.1. Following training, we evaluated the valida-

tion performance of the network on models saved at iteration

intervals of 500 and chose the best performing model for subsequent

evaluations.

We trained the network using 21,882 single cells that had previ-

ously been manually assigned to one of 17 localization compart-

ments by Chong et al (2015) (including two quality control classes

for identifying dead cells and inputs without cells; Fig 1A). The orig-

inal labeled dataset was composed of 60 subdatasets, each contain-

ing “positive” and “negative” samples, to train the 60 binary SVM

classifiers used in ensLOC. Instead of using all of the > 70,000 cells

previously annotated, we sampled only positive examples such that

each localization compartment contained 185–1,500 cells (see

Table EV3 for exact numbers per class) and we trained DeepLoc as

a multi-class classifier. We obtained the x, y coordinates for each

training sample from the previous features sets extracted using

CellProfiler (Carpenter et al, 2006). For each cell, we cropped a

bounding of 64 × 64 pixels centered on its x, y coordinates. Yeast

cells change in their size over cell cycle progression but average 49

pixels along the major axis, and 37 pixels along the minor axis of

the cell. Similarly, we extracted validation and test sets consisting

4,516 cells each. To enable the network to classify proteins with

various intensity values, we normalized the pixel values of each

input cell to be in the range [0,1] by saturating the top and bottom

0.1 percentile of pixel values. To enhance the networks generaliza-

tion performance, we applied commonly used augmentation and

normalization operations to the input samples during training.

Specifically, we extracted random 60 × 60 patches from the input

samples and trained the network on random vertical and horizontal

reflections of the patches as well as random 90° rotations

(Krizhevsky et al, 2012). These augmentations help prevent the

network from overfitting to the training data while preserving the

label of the input samples (as the protein localization patterns are

invariant to rotations and reflections). When evaluating DeepLoc on

new cells, we computed the mean of predictions produced by the

center 60 × 60 crop and 60 × 60 crops extracted from the four

corners.

Evaluating DeepLoc performance

To evaluate single cell performance, we used DeepLoc to produce

predictions for every cell in our test set and we regenerated the

ensLOC predictions described in Chong et al (2015) using the

Cyclops database (Koh et al, 2015) for the exact same test set.

DeepLoc produces a vector representing the distribution over local-

ization classes and ensLOC produces a list of annotations for each

single cell. We used these predications to calculate the average

precision (area under the precision recall curve) for the two tech-

niques.

We used DeepLoc to produce predictions for every cell in the

wild-type screen by obtaining the x, y coordinates of each cell from

the previously extracted CellProfiler feature sets and cropping the

cells as described above. To aggregate the localization predictions

for each well, we computed the mean for each localization category

across the cells in the well. To compare with Chong et al (2015), we

used the values reported in the WT1 sheet of Table S2 in their publi-

cation. We compared these localization predictions with manually

assigned protein localizations (Huh et al, 2003; Fig 1D).

Visualizing network features

To visualize feature representations learned by DeepLoc, we used

the t-SNE (Maaten & Hinton, 2008) implementation in Scikit-learn

(Pedregosa et al, 2012) to visualize the activations in the 8th convo-

lutional layer for 2,103 single cells in our test set (Fig 2A). To

remove the spatial dependence of these activations, we computed

the maximum activation in each feature across the spatial dimen-

sions. Similarly, we visualized the normalized 313 features

extracted from CellProfiler (Carpenter et al, 2006) for the same set

(Fig 2B).

We visualized network activations and patterns activated by

specific features as described in the Results. Activation maximiza-

tion (Yosinski et al, 2015) was used to generate input patterns that

are maximally activated by network features. This technique works

by keeping the parameters of the network constant while updating

input pixel values to maximize the activation of specific features

using gradient ascent. The input was initialized to uniform noise

and iteratively updated by gradient ascent with respect to a specific

feature in the network. We used the naı̈ve version of this approach

to visualize the last convolutional layer features (Fig 2C). To make

the final layer visualizations more interpretable (Fig 2D), we

included regularization techniques described in Yosinski et al

(2015). Specifically, we modified the gradient update with L2 weight

decay, used Gaussian blur to smooth high frequency gradients, and

clipped gradients with small contributions to the visualization.

Additionally, we modified the implementation to produce realistic

looking cells by clamping the red cytosolic channel to a specific cell
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while only updating the green channel and masked any updates

outside the area of the cell.

Identifying significant localization and abundance changes
in a-factor

We used DeepLoc to evaluate images of single cells after treatment

with the mating pheromone a-factor screened using the method

described above for untreated cells. To identify significant localiza-

tion changes between the untreated and a-factor screens, we used

the test statistic from Welch’s t-test to obtain a score for each local-

ization class. Next, we identified significant localization changes for

each category by fitting a mixture model consisting of a Gaussian

distribution and a uniform distribution to these scores. The Gaus-

sian distribution models the background scores, while the uniform

distribution is set to have a prior distribution of 1% and models the

outlier scores. Scores that were more likely under the outlier distri-

bution were considered to correspond to proteins with significant

localization changes between wild-type and a-factor conditions. For
some of these proteins, the dominant localization was the same in

both conditions although the distributions of localization scores dif-

fered significantly.

We used Cytoscape (Shannon et al, 2003) to generate a flux

network (Fig 3A) after filtering out scores with a magnitude

below 10. To identify proteins that changed significantly in abun-

dance between the two screens, we extracted the mean intensity

by area within each cell from the extracted CellProfiler (Carpenter

et al, 2006) feature sets. For each protein, we computed the mean

abundance (Ig) across the population in both screens. We scored

abundance changes for each protein by computing the fold

change (@PL) of the a-factor abundance over the wild-type (un-

treated) abundance (Chong et al, 2015) dPLawt ¼ log2ðIga=IgwtÞ.
Proteins with a fold change magnitude above 1 (|@PL| > 1) in at

least one time-point following exposure to a-factor (82 in total)

were considered to exhibit significant abundance changes

(Table EV2).

Transfer learning

To evaluate the performance of DeepLoc on datasets generated

using different strains and microscopes, we implemented a trans-

fer learning protocol. We extracted x, y coordinates of single cells

using a custom segmentation algorithm that uses a mixture of t-

distributions to identify nuclei and cytoplasmic regions (Nguyen

& Wu, 2012) and then the seeded watershed algorithm (Meyer &

Beucher, 1990) to identify individual cells. Individual cells were

cropped as described above and were initially labeled according

to their protein level annotations. We manually filtered individu-

ally cropped cells that were mislabeled using an efficient custom

interface that displays sets of 64 cropped cells and allows the

user to click on cells to either keep or discard. We used the fil-

tered set of single cells to build training and test sets containing

16,305 and 1,824 cells, respectively (Fig 4A, exact dataset sizes in

Table EV3).

We transferred and fine-tuned DeepLoc to this dataset using

increasing numbers of examples per class and contrasted the

performance of this network with one that had been trained from

scratch using the same amount of training input (Fig 4B). We set

up different datasets with 1, 3, 5, 10, 25, 50, 100, 250, and 500

samples from each class. We generated five distinct training sets

for each dataset size by sampling from the entire training set

randomly. To fine-tune DeepLoc, we initialized a new network in

TensorFlow (Abadi et al, 2015) with a final layer that corresponds

to the new localization categories and we loaded the previously

trained parameters from the Chong et al (2015) dataset for every

layer except the final layer. We applied dropout (Srivastava et al,

2014) to the final layer and augmented with training data as

described above to prevent the network from overfitting. For each

dataset, we updated the network by optimizing the parameters

with the Adam optimization algorithm (Kingma & Ba, 2014) using

a learning rate of 0.003 for at least 500 iterations with a batch size

of 128. In addition, we used the DeepLoc as a feature extractor

without additional training by using the activations in the second

last fully connected layer as input to several linear classifiers

including one-vs-one linear SVM, k-nearest neighbors, random

forest, and a fine-tuned version of DeepLoc in which convolutional

layers were not updated (Fig EV3). We found that updating all the

DeepLoc parameters during transfer learning performed best for all

the training set sized used.

We optimized DeepLoc for analysis of images of an ORF-RFP

fusion collection generated by a different laboratory (Yofe et al,

2016) and lacking markers useful for automated analysis. For this

dataset, we used a custom script based on the watershed trans-

form (Meyer & Beucher, 1990) to identify regions in the red chan-

nel containing tagged proteins. We used the centroid of each

segmented region as a coordinate to center a bounding box

around. As before, cropped regions that were initially mis-labeled

were filtered out, and the filtered set was used to generate training

and test sets consisting of 6,475 and 725 single cells, respectively.

Within this training set, some classes including bud, bud neck,

and mitochondria have fewer than 500 unique single cell samples

(Table EV3). For these classes, we sampled with replacement

when the per-class training set size was larger than the number of

available unique samples. We applied the same fine-tuning proce-

dure described above.

Data availability

The image datasets used to train DeepLoc are available for down-

load at: http://spidey.ccbr.utoronto.ca/~okraus/DeepLoc_full_data

sets.zip.

The DeepLoc model pre-trained on the Chong et al (2015) dataset

is available for download at: http://spidey.ccbr.utoronto.ca/~okra

us/pretrained_DeepLoc.zip.

A bash script to download and extract both zip files is provided

in Code EV1.

The results and images for the a-factor screen are available on

the Cyclops Database. Here, individual proteins can be queried

using the search function, after which corresponding localization

and abundance data from our analysis can be accessed under the

“DeepLoc” subheading. Under this subheading, the data from our

three untreated conditions (WT1, WT2, and WT3) as well as the

three a-factor time-points (AF100, AF140, and AF180) are available

for both localization and abundance. In addition, individual micro-

graphs can be accessed under the “Retrieve micrographs from other

screen” tab, by selecting “AF100”, “AF140”, or “AF180”: (http://cyc
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lops.ccbr.utoronto.ca). Raw images will be made available upon

request.

Code availability

The code for performing the experiments is available for download

in Code EV1. We recommend using the up-to-date version available

at: https://github.com/okraus/DeepLoc.

Expanded View for this article is available online.
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