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Artificial neural networks (ANNs) are important building blocks in technical applications.

They rely on noiseless continuous signals in stark contrast to the discrete action potentials

stochastically exchanged among the neurons in real brains. We propose to bridge

this gap with Spike-by-Spike (SbS) networks which represent a compromise between

non-spiking and spiking versions of generative models. What is missing, however,

are algorithms for finding weight sets that would optimize the output performances

of deep SbS networks with many layers. Here, a learning rule for feed-forward SbS

networks is derived. The properties of this approach are investigated and its functionality

is demonstrated by simulations. In particular, a Deep Convolutional SbS network for

classifying handwritten digits achieves a classification performance of roughly 99.3% on

the MNIST test data when the learning rule is applied together with an optimizer. Thereby

it approaches the benchmark results of ANNs without extensive parameter optimization.

We envision this learning rule for SBS networks to provide a new basis for research in

neuroscience and for technical applications, especially when they become implemented

on specialized computational hardware.

Keywords: deep network (DN), spiking network model, sparseness, compressed sensing (CS), error back

propagation (BP) neural network

1. INTRODUCTION

Fueled by the huge progress in computational power by CPUs (central processing units), GPUs
(graphics processing units), and the availability of special hardware (Lacey et al., 2016; Sze et al.,
2017; Jouppi et al., 2018), deep neuronal networks (Schmidhuber, 2015) brought a massive
improvement to the field of expert systems as well as artificial intelligence (Azkarate Saiz, 2015;
Mnih et al., 2015; Gatys et al., 2016; Guo et al., 2016; Silver et al., 2016). These networks started
out as simple perceptrons (Rosenblatt, 1958) which where extended into multi-layer networks by
a learning procedure that utilizes the chain rule to propagate the error, between the actual and
the desired output of the network, back from the output layer to the input. This so-called back-
propagation rule (Rumelhart et al., 1986) allows to train all weights in a network based on the
back-propagated error.

In real biological neuronal networks, however, information is typically exchanged between
neurons by discrete stereotyped signals, the action potentials. Combining deep networks with
spikes offers new opportunities (Lee et al., 2016; Anwani and Rajendran, 2018; Tavanaei et al.,
2018; Wu et al., 2018), among which are biologically more realistic neuronal networks for studying
and describing the information processing in the brain as well as interesting technical approaches
for improving the operation of such networks (e.g., low power consumption, fast inference,
event-driven information processing, and massive parallelization; Pfeiffer and Pfeil, 2018).
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Ernst et al. (2007) presented a framework for networks of
stochastically spiking neurons that is related to non-negative
generative models (Lee and Seung, 1999, 2001). Updates in these
Spike-By-Spike (SbS) networks occur only when a new spike
occurs, such that time progresses only from one spike to the
next. Thereby, these networks have relatively low additional
computational requirements for using spikes as a mean for
transmitting information to other neurons.

This makes SbS akin to event-based neuron models (Brette,
2006, 2007; Lagorce et al., 2015; Serrano-Gotarredona et al.,
2015) but with populations of stochastically firing neurons that
perform inference. While the goal of these inference populations
(IPs) is to represent the input as best as possible by their latent
variables also their sparseness becomes optimized: An IP has
one latent variable h(i) for each of its N neurons (i = 1, ...,N)
and the update of the latent variables (here termed h-dynamic)
finds solutions where the h(i)’s are sparse over the populations
of neurons. Sparseness is mainly fueled by using non-negative
elements which connects this approach to compressed sensing
(CS) (Candes et al., 2006; Bruckstein et al., 2008; Lustig et al.,
2008; Ganguli and Sompolinsky, 2010, 2012; Wiedemann et al.,
2018), a method used in technical applications to reconstruct
underlying causes from data if these causes are sparse. The level
of sparseness is further influenced by a parameter ǫ (Ernst et al.,
2007) that represents the temporal integration rate (the larger, the
more sparse).

Furthermore, SbS networks allow for massive parallelization.
In particular, in layered architectures each layer consists
of many IPs which can be simulated independently while
the communication between the IPs is organized by a low
bandwidth signal—the spikes. While this natural parallelization
into populations or single neurons is a property of most neuronal
networks with spiking neurons, the bandwidth required for
representing a typical spiking neuron model is higher when
the integration time needs to be segmented into small time
steps. In the case of the SbS model, where time progresses from
one spike to the next only the identity of the spiking neuron
and information about the corresponding IP is transferred.
Technically speaking, this allows to build special hardware
(Rotermund and Pawelzik, 2018) dealing with the SbS IPs where
one application specific integrated circuit (ASIC) can host a
sub-network of IPs which can be arranged into larger networks
by connecting such ASICs via exchanging the low bandwidth
spike information. This is furthered by the ability to run the
internal h-dynamics of an IP asynchronously from the spike
exchange process.

In summary, a SbS network is fundamentally different from
usual artificial neuronal networks since (a) the building block
of the network are SbS inference populations which realize an
optimized generative representation of the IP’s inputs with only
non-negative elements, (b) time progresses from one spike to
the next, while conserving the property of stochastically firing
neurons, and (c) a SbS network has only a small number of
parameters, making it easy to use. With respect to biological
realism and computational effort to simulate neural networks
these properties place a SbS network in between non-spiking
neural networks and networks of stochastically spiking neurons.

FIGURE 1 | SbS inference population (IPs). SbS IP that processes incoming

stochastic spikes st generated from an input population p(s), where s denotes

the index of the input neuron. The non-negative weights W(s|i) and the latent

variables h(i) of the neurons (i enumerates the NH neurons in that IP) are used

in a generative model to optimally represent the observed input regarding the

loss function.

However, until now optimizing deep SbS networks for specific
tasks was not possible since only local learning rules for the
weights existed.

For convenience we recapitulate the inner workings of one
SbS inference population (Ernst et al., 2007) by taking a look at
the most simple network, constructed from one input population
and one hidden inference population (see Figure 1): For setting
up the framework we initially assume that the input neurons fire
independently according to a Poisson point process with a firing
rate ρµ(s), where s denotes one of theNS input neurons andµ the
momentary input pattern from a set ofM available input patterns.
The input pattern can be e.g., pixel images, waveforms or other
types of rate coded information. The normalized external input

pµ(s) =
ρµ(s)

∑NS
s′

ρµ(s′)
is the probability of input neuron st to be

the next to fire a spike where t denotes the time step when
this happens.

The inference population has one latent variable hµ(i) for
each of its neurons, where i denotes the identity of the neuron.
The latent variables of an IP can form a probability distribution
with 0 ≤ h(i) ≤ 1 since they are normalized according

to
∑NH

i hµ(i) = 1. The purpose of representing its input as
a generative model with its latent variables is laid upon the
inference population. The internal representation rµ(s) of the

normalized external input pµ(s) =
ρµ(s)

∑NS
s′

ρµ(s′)
is defined by

rµ(s) =
∑

i

hµ(i)W(s|i) , (1)

where W(s|i) are the corresponding weights between the
input population and the hidden population, which are also
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normalized and non-negative numbers (0 ≤ W(s|i) ≤ 1 with
∑

sW(s|i) = 1).
pµ(s) can not be observed directly by the inference population.

Only the spikes st emitted by the input population are visible. By
counting the spikes, pµ(s) could be estimated through

p̂µ(s) =
1

T

T
∑

t

δs,st,µ , (2)

after observing T spikes. The goal of the IP is to minimize the
difference between p̂µ(s) and its own representation rµ(s). As an
objective measure we use the cross-entropy:

E = −

M
∑

µ=1

NS
∑

s=1

p̂µ(s) log
(

rµ(s)
)

. (3)

Derivatives of E with respect to hµ(i) can be used for deriving
iterative algorithms that shall estimate optimal values for the
latent variables hµ(i) from the spikes generated by the input
pattern p̂µ(s) weighted by givenW(s|i).

A particularly simple iterative update algorithm for the latent
variables hµ(i) is obtained for processing only one spike stµ at a
time. It results in the so called h-dynamic (Ernst et al., 2007):

htµ(i) =

(

1

1+ ǫ

)

·

(

ht−1
µ (i)+ ǫ

ht−1
µ (i)W(stµ|i)

∑

j h
t−1
µ (j)W(stµ|j)

)

(4)

where ǫ > 0 is a smoothing parameter. ǫ corresponds to a
rate constant in a low-pass filter that regulates the impact of the
contribution for one spike onto the latent variables which also
controls the level of sparseness on hµ(i) depending of its value
(the larger ǫ the sparser the representation).

The transition to processing only the momentary spike
in the h-dynamic allows to replace the original Poisson rate
coded input populations by Bernoulli processes based on the
probability distribution pµ(s). This is possible because now the
only important information is which of the input neurons fires
next (for the formal derivation see Ernst et al., 2007).

This simple example with one input population and one SbS
inference population can be extended to all kinds of network
structures (Rotermund and Pawelzik, 2019b) by exploiting
the fact that the latent variables of an IP themselves form
a probability distribution htµ(s). This distribution is then
used in a Bernoulli process to also produce spikes and
act as an input population for other IPs. While the pµ(s)
of the input is assumed to be constant over time for a
given pattern, htµ(s) will change with every spike that IP
processes. This allows to transport information through the
whole network.

While Ernst et al. (2007) provides suitable learning rules for
networks with one hidden layer, it doesn’t offer learning rules for
networks with arbitrary many layers. In this paper a learning rule
capable of training the weights for deep feed-forward networks
is derived in analogy to error back-propagation (Rumelhart
et al., 1986). It differs substantially from the usual back-prop
rule since it needs to take into account the dynamics for the

latent variables presented above. After that, the functionality of
this new learning rule is demonstrated with several examples
of increasing complexity. Finally a spike-by-spike version of a
deep convolutional network for classifying handwritten digits is
examined. It turns out, that it can be built exclusively from IPs,
in particular, the pooling layers do not require computationally
different modules. Here we also introduce an optimizer which
significantly improves the network’s performance as compared to
a method that is based only on gradient descent.

2. RESULTS

The source code used for simulating the presented networks can
be found in the Supplementary Materials.

2.1. SbS Backprop Learning Rule
In the following a short summary of the learning rule is given.
A detailed derivation of the learning rule can be found in the
Supplementary Material. Since the equations are heavily laden
with indices, Figure 2 gives an overview of the equations for an
example segment of a network with an output layer and three
hidden layers.

The goal is to update the old weights W to get new weights
Wnew, using the gradient ∂E

∂W on the objective function E

E = −

M
∑

µ

Qy
∑

q

ζµ(q) log(h
t
y,µ(q)) (5)

with ζµ(q) as the desired output for neuron q in the output layer
of the network and hty,µ(q) as the actual output of the network at
time t.

In the following the output layer y is used as reference from
which all the other layers are counted backwards. The update
for the weights W l→l+1(q|q′) (or short W l(q|q′)) between layer
l (with Ql neurons in an IP) and layer l+ 1 can be calculated via

V l(q|q′) = W l(q|q′)

(

1−
γ

Sl
∂E

∂W l(q|q′)

)

Wnew,l(q|q′) =
V l(q|q′)
∑

j V
l(j|q′)

. (6)

γ is a learning rate (0 < γ < 1) and S is a scaling factor for
preserving the non-negativity of the weight values. I.e., S needs to
ensure that γ

S
∂E
∂W ≤ 1 for all components of the weight matrix.

This can be done by using

Sl = max

(∣

∣

∣

∣

∂E

∂W l(q|q′)

∣

∣

∣

∣

)

(7)

with calculating the maximum over all components of ∂E
∂W(q|q′)

.

The gradient itself is a sum over all contributions from a set
of several pattern µ (i.e., a batch or mini-batch of input pattern)
and, in the case of a convolutional layer, a sum over different
spatial positions:

−
∂E

∂W l(q|q′)
=

M
∑

µ

ωl
µ(q|q

′) (8)
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FIGURE 2 | Visualization of the learning rule and its parts. The Equation 9 and its sub-equations are shown for the output layer and three hidden layers. Everything,

except the weights W, would have the same index µ, which is not shown for convenience. We use the different colors to highlight the reoccurring parts of the

equations (8, r, R, and F ).

Each of the contribution ω is calculated from four sub-equations
8, r, R and F (see Figure 2):

ωl
µ(q|q

′) = Fl+1,µ(q, q
′) ·

Ql+1
∑

j

(

Rl+1,µ(q)δj,q′

−rl+1,µ(q, j)
)

8l+1,µ(j) (9)

8 is akin to the back propagating error in non-spiking neural
networks. At the output layer y, the distribution over the latent
variables htµ(q) is compared to the desired target ζµ(q):

8y,µ(q) =

(

ǫ

1+ ǫ

)

ζµ(q)

hty,µ(q)
(10)
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From there 8 is propagated backward in direction on the input
(withm ≥ 1 as the distance measured to the output layer y):

8y−m,µ(q) =

(

ǫ

1+ ǫ

) Qy−m+1
∑

q′

8y−m+1(q
′)

ht−m
y−m+1,µ(q

′)Wy−m(q|q′)
∑

j h
t−m
y−m+1,µ(j)W

y−m(q|j)

=

(

ǫ

1+ ǫ

) Qy−m+1
∑

q′

8y−m+1(q
′)
ry−m+1,µ(q, q

′)

Ry−m+1,µ(q)
. (11)

However, unlike in the typical back-prop rule 8 is not only
propagating from the output layer to the input layer, it also travels
back in time. This is due to the fact that 8 is updated with latent
variables from further in the past the further one gets from the
output layer.

For the other three components r, R, and F the equations are:

ry−m,µ(q, q
′) = ht−m−1

y−m,µ (q′)Wy−m−1(q|q′) (12)

Ry−m,µ(q) =

Qy−m
∑

j

ry−m,µ(q, j) (13)

Fy−m,µ(q, q
′) =

ht−m−1
y−m−1,µ(q)h

t−m−1
y−m,µ (q′)

Ry−m,µ(q)2
. (14)

2.2. Learning the XOR Function
The first example is a two layer network (see Figure 3A) with four
neurons in the input layer, four neurons in the hidden layer and
two neurons in the output layer. The task of the network is to
realize the XOR function, which receives two bits of input and
outputs zero if the values of both bits are the same or one if both
bits have different values. The input layer consists of two bits
while every bit is represented by a population of two neurons.
The first neuron in a population is only active if the input bit has
a value of zero. The second input neuron of that population is
only active if the input bit has a value of one. In every time step
one spike is drawn from the input pattern distribution which is
represented by the input neurons and send to the hidden layer.
This is done using a Bernoulli processes.

The hidden layer consists of one inference population (for
which

∑

i h(i) = 1) with four neurons. In the figure, an
exemplary solution is shown. It shows only the non-zero weights
between the input and the hidden layer which have a value of
0.5 each. Given these weights and the SbS dynamics for h(i) (also
called h-dynamic), after processing enough input spikes, only one
hidden neuron will remain active due to the competition within
an inference group. The corresponding input patterns, which
lead to an activation of the neurons is listed in the hidden neurons
in Figure 3A.

The probability distribution formed by the latent variables in
the hidden neurons is also used to draw one spike in every time
step according a Bernoulli process. The spikes from the hidden
layer are send to the output layer. The output layer processes
incoming spikes according to the h-dynamic using the weight
values between the hidden and output layer as shown in the
figure. For decoding the result of the information processing,

the output neuron with the higher value in its latent variable is
selected. The first output neuron represents an output of zero and
the second output neuron an output of one.

For the first test, the weights in this network were randomly
initialized according to

V(q, q′) = 1+ 0.01 · η(q, q′) (15)

W(q|q′) =
V(q, q′)
∑

j V(j, q
′)

(16)

with η(q, q′) as random numbers drawn from a uniform
distribution [0, 1]. Before presentation of a new input pattern
pX(i), the latent variables of the hidden neurons and the output
neurons are always set to hH1(i) = 1

NH1
and hHY (i) = 1

NHY
,

respectively. Then, for every time step of the simulation, one
spike each (i.e., the index of the neuron which fires next) is drawn
from pX and hH1. This is done by using these two probability
distributions for Bernoulli processes.

These spikes are then used to update hH1(i) and hHY (i) (using
ǫ = 0.1 in the update process). The cycle of drawing spikes
and updating the latent variables of the hidden and output layer
is performed with the same input pattern until a given number
of spikes has been processed. Using Equation 9 the gradient
for this pattern is calculated and stored. After collecting these
contributions for all four input patterns (Equation 8), Equation
6 is applied to update the weights.

However, before normalizing V l(q|q′), it is ensured that the
smallest value in V is 2 = 0.0001:

Ṽ l(q|q′) = max
({

V l(q|q′),2
})

Wnew,l(q|q′) =
Ṽ l(q|q′)
∑

j Ṽ
l(j|q′)

.

This prevents the multiplicative update Equation 6 from getting
stuck in zero values. Figure 3B shows the quality of the output
during learning, averaged over 250 initial weights. Using 1,024
spikes per input pattern & learning step as well as γ = 0.025, an
error of 0 is reached after 32 learning steps.

Analyzing the magnitude of the learned weight values, reveals
that the weights have only changed a small amount from the
randomly initialized weights. This is a result of the competition
inside of the hidden as well as the output layer. Already small
asymmetries can be used to solve the task correctly. In the
Supplementary Materials we show the weights and present a
procedure how to force the learning rule to produce weightsmore
similar to the ideal binary weights shown in Figure 3A.

Furthermore, we show in the Supplementary Materials that
the learning rule is able to ignore non task relevant inputs that
are not correlated to the goal of the training procedure.

2.3. Learning the 4 Bit Parity Function
The 4 bit parity function can be understood as an extension of
the 2 bit XOR function. This function counts the number of its
input bits with value one. Then it outputs one if the count is
odd or zero if the count is even. A SbS network able to realize
this function has four layers (see Figure 4A): Input layer X with
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FIGURE 3 | Learning the XOR function. (A) Structure of a SbS network for solving the XOR function. (B) Error of the network’s output during learning the weights,

averaged over 250 initial conditions.

FIGURE 4 | Four bit parity function. (A) Structure of a SbS network able to solve the 4 bit parity task. (B) Variation of the structure of the network. The hidden layer H1

was split into two normalization groups H1a and H1b with 4 neurons each. (C) Failure rate of learning the 4 bit parity function with the network structure shown in (A)

(black) and using the network structure (B) (blue and red). For the red curve, learning was performed without the retardation of the latent variables as formally required

from the derivation of the learning rule. Instead the values obtained after the most recent spike were used. The failure rate is shown for the weights after the four

stages of learning.

8 neurons, which encodes the input in a similar fashion to the
XOR network but via four groups with two neurons each. Hidden
layer H1 with also 8 neurons and hidden layer H2 with four
neurons as well as the output layer with two neurons. Besides the
network structure, the procedure for simulating this network is as
described in the example for the XOR network. Again, learning
started with randomly initialized weights (see XOR example for
how the weights were initialized). 250 simulations with different
initial seeds were performed.

In the following, if two performances are called significantly
different then a one-sided Fisher’s exact test with p-level of 1%
was used to determine this statement.

In summary, learning the 4 bit parity function shows that the
learning algorithm has a problem with local minima.

We tried to minimize the amount of failed attempts (i.e., only
if all 16 possible outputs of the network are classified correctly
then it is not a failed attempt) by using different combinations
of numbers of spikes per pattern and learning rates γ during
learning. Such a procedure showed fruitful results in the XOR
example where it lead to weights that looked more like the ideal
weights (see Supplementary Material for the details). Thus we
also applied it to the 4 bit parity function.

Learning went through four stages with every stage consisting
of 7,000 learning steps. Furthermore, the subsequent stages
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started with the final weights from the stage before, while the first
stage started with random weights. For the stage A, 1,024 spikes
per pattern were used. The following stages reduced the amount
of spikes by a factor of 2 (512 spikes for stage B, 256 spikes for
stage C, and 128 spikes for stage D) for learning. However, the
performance was tested with 1,024 spikes per pattern, to keep the
results comparable.

The reasoning behind this approach is as follows: Reducing
the number of spikes increases the noise in the system by
deteriorating the representation of inputs and latent variables
which are transmitted to other inference populations. The
learning process is forced to find a refined set of weights
that is more robust against noise. However, starting directly
with a high noise level ends often in non-functional set of
weights. Thus we start with a low noise situation, which allows
the learning algorithm find suitable weights. After learning,
typically we found the range of used weights values to be
rather shallow because with a low amount of noise the
competition in an inference group can solve the task with
small difference in the weights. Then the increase in noise
forces the learning rule to increase the value range used in
the weights.

In addition to reducing the number of spikes from one stage
to the next, the learning rate gamma is reduced during a stage.
Every stage starts with γ = 0.03. After every 1,000 learning
steps, γ is divided by 2 (γ{1,...999} = 0.03, γ{1000,...1999} =
0.03
2 , γ{2000,...2999} = 0.03

4 , γ{3000,...3999} = 0.03
8 , γ{4000,...4999} =

0.03
16 , γ{5000,...5999} = 0.03

32 , and γ{6000,...7000} = 0.03
64 ). The idea

behind this procedure is that in the beginning the weights are
allowed to change strongly and then they are supposed to settle
at their correct values. In the Supplementary Materials, detailed
learning curves for the four stages are shown. The black line
in Figure 4C shows the amount of initial conditions that failed
to learn after the stages. Figure 4C reveals that the first three
stages don’t improve the failure rate. Furthermore, stage D even
significantly increases the number of failed learning attempts.

A putative source for this problem could be that for a
successfully operating network two neurons in H1 need to be
active simultaneously. However, learning a SbS IP tends to favor
sparse solutions. Thus, the failed learning attempts could be a
result of over-sparsification. Hence, we modified the network
structure (see Figure 4B) and split the hidden layer H1 into two
normalization groups H1a and H1b. Now a successful network
needs only one active neuron per SbS IP. H1a gets only input
from the first two bits (Xa) of the Input X andH1b sees the spikes
from the latter two input bits (Xb).

With the new structure five spikes are drawn in every time
step: One spike each from Xa, Xb,H1a,H1b andH2. The weights
between Xa and H1a as well as the weights between Xb and
H1b are the same, like it would be in a convolutional neuronal

network. During learning, the two contributions from the SbS
backprop learning rule are averaged. Figure 4C (blue line) shows
that there is now a significant difference between the failure rate
after stage A and after stage D. Also a significant difference of the
failure rate after stage D between the network with the split H1
layer (1.6%) vs. the original network (22.0%) was found.

As final test with the 4 bit parity function, we used the
network with the split in H1 and investigated how important the
retardation of the latent variables during learning is. Instead of
using the h-values from the earlier spikes—like it is required by
the derived SbS backprop rule—, we only used the h-values after
processing the last spike for every input pattern. Figure 4C (red
line) shows here no significant difference. Thus it might be an
interesting alternative (e.g., for saving memory) to neglect the
retardation on the latent variables.

Examples for successfully working weights sets for these three
tests are shown in the Supplementary Materials.

2.4. Deep Convolutional Network (MNIST)
The MNIST database is a benchmark for machine learning (see
http://yann.lecun.com/exdb/mnist/). It consists of handwritten
digits with 28 × 28 pixels and 256 gray values per pixel. The
database contains 60,000 examples for training the network and
10,000 examples for testing the performance of the network.
As part of the tutorial for the Google TensorFlow machine
learning software, a convolutional neuron network for classifying
these handwritten digits is presented https://www.tensorflow.
org/tutorials/estimators/cnn. In their example they present a
simple network learned via back-propagation based on a simple
gradient descent optimization method. The performance for this
network is listed with 97.3% classifications correct. Replacing the
simple gradient decent by Adam (Kingma and Ba, 2014) and
dropout learning (Srivastava et al., 2014), allows this network to
reach a performance of 99.2% classifications correct (both source
codes can be found in the Supplementary Materials).

The network in the TensorFlow tutorial is structured as
follows: The input layer X consists of 28 × 28 elements
representing the picture of a handwritten digit. The input layer is
followed by a first hidden layerH1 which performs a convolution
(with stride 1 and zero padding for keeping the size at 28 × 28
pixel after the convolution) through a kernel with the size of 5 ×
5 with 32 filters.H1 is followed by a max pooling layerH2, which
calculated the maximum over a 2 × 2 segment with stride of 2
from H1’s output. Layer H3 is again a convolution layer like H1
but looking at the output of H2 and with 64 filters instead. H4
is a 2 × 2 max pooling layer to H3. After H4, a fully connected
layerH5 with 1,024 neurons is positioned. And finally the output
of the network can be read out from the output layer HY . HY
consists of 10 neurons, where each neuron represents one class
of the 10 digits. The classification result is decoded by calculating
the argmax from HY ’s neurons.

This network structure is mimicked by a SbS network
(see Figure 5). Since the computational complexity of the
SbS network is orders of magnitude bigger, we simplified the
TensorFlow example network. We removed the zero padding in
both convolutional layers of the network. Thus layer X still has
28 × 28 pixels but layer H1 decreases to 24 × 24 with 32 filters.
H2 halves the size to 12 × 12. Convolution layer H3 compressed
the output of H2 to 8 × 8 with 64 filters. Its max pooling layer
halves it again to 4 × 4. We keep the 1,024 neurons for the
fully connected layer H5 as well as the 10 neurons for the output
layer. In the Supplementary Materials, the structure of the SbS

Frontiers in Computational Neuroscience | www.frontiersin.org 7 August 2019 | Volume 13 | Article 55

http://yann.lecun.com/exdb/mnist/
https://www.tensorflow.org/tutorials/estimators/cnn
https://www.tensorflow.org/tutorials/estimators/cnn
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Rotermund and Pawelzik SbS Learning

FIGURE 5 | Network structure of the convolution network for the MNIST data. Input X: Input layer with 28 × 28 normalization modules for 28 × 28 input pixel. Each

module has two neurons realizing a simplified version of on/off cells for enforcing positive activity also for low pixel values. From this layer spikes are send to layer H1.

H1: Convolution layer H1 with 24 × 24 IPs with 32 neurons each. Every IP processes the spikes from 5 × 5 spatial patches of the input pattern (x and y stride is 1).

H2: 2 × 2 pooling layer H2 (x and y stride is 2) with 12 × 12 IPs with 32 neurons each. The weights between H1 and H2 are not learned but set to a fixed weight

matrix that creates a competition between the 32 features of H1. H3: 5 × 5 convolution layer H3 (x and y stride is 1) with 8 × 8 IPs. Similar to H1 but with 64 neuron

for each IP. H4: 2 × 2 pooling layer H4 (x and y stride is 2) with 4 × 4 IPs with 64 neurons each. This layer is similar to layer H2. H5: Fully connected layer H5. 1,024

neurons in one big IP which are fully connected to layer H4 and output layer HY . HY : Output layer HY with 10 neurons for the 10 types of digits. For decoding the

identity of the neuron with the highest activity is selected.

network is discussed in detail, especially that all layers—including
the pooling layer—realize the same algorithm.

We used TensorFlow to train this reduced network with a
simple gradient descent optimization and got a classification
correct performance of 97.1%. Furthermore, we got still 99.2%
for a version using Adam and dropout learning. In Rotermund
and Pawelzik (2019b) we showed that—with 97.8% classification
correct—this SbS network structure using a only local learning
rule (based on simple gradient descent and bi-directional flow of
spikes) canmatch the performance TensorFlow example with the
simple gradient descent optimization.

In the following we will present the SbS back-prop
learning rule combined with a new optimizer applied to the
MNIST benchmark.

For the input to the SbS network, a so called on/off split
was made (Ernst et al., 2007) which results in two channels per
pixel. This is very similar to the representation of a bit by two
neurons in the XOR example. This transformation is defined by
ION(x, y) = f (2P(x, y) − 1) and IOff (x, y) = f (1 − 2P(x, y)) with
f (·) as a threshold linear function which sets all negative values to
0 and passes on all positive values without change.

Furthermore, instead of using max functions, the pooling

layers H2 & H4 use only the inherent competition implemented

by the SbS update rule. For the pooling IPs, the weights are fixed

and not learned. E.g., a 2 × 2 spatial patch from convolution
layer H1 (with its 2 × 2 × 32 neurons) delivers input to one
pooling IP in H2 which has also 32 neurons. The structure of the
weights ensures that the input from different features (i.e., the
32 features that are represented by the 32 neurons in the IPs) do

not mix. Thus the combined spatial inputs from the 32 features
compete against each other. Only the features with strong inputs
are represented in the corresponding H2 normalization group.
The same happens for pooling layer H4 but with 64 neurons
per IP.

A widely known experience from learning neural networks
is that using a simple gradient descent is prone to end in a
low performance. Thus optimizers like Adam (Kingma and Ba,
2014) are used. Transferring optimizers like Adam to the SbS
world is problematic due to the normalization and non-negativity
boundary conditions on the latent variables and the weights.
As an alternative we developed an optimizer for SbS networks
inspired by L4 (Rolinek and Martius, 2018). First of all, we used
randommini-batches with 10% of the whole training data set.We
smoothed the gradients from our SbS back-prop learning rule as
well as the Kullback-Leibler divergence KL (measured between
the desired and the actual distribution of the latent variables of
the output layerHY) over the mini-batch according the equation
from Rolinek and Martius (2018):

Ŷ(L) = Ŷ(L− 1)

(

1−
1

τ

)

+
Y(L)

τ
(17)

Y∗(L) =
Ŷ(L)

1−
(

1− 1
τ

)L
(18)

where Y(L) is the entity which needs smoothing and with
L as learning step (i.e., number of used mini-batches) (L ∈

{1, . . . LMax}). Since we use mini-batches with 10% of the pattern
randomly selected from the whole training data set, we selected
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τ = 10. In the following we will denote low-pass filtered variables
with a ∗.

Furthermore, we modulated the learning rate γ with the
smoothed Kullback-Leibler divergence KL∗ over the training
data via

γ (L) = γ0

√

KL∗(L)

KLMax
(19)

with γ0 = 0.05 (which was our guess for a good initial
learning rate),

KLMax = max
({

KL∗(L),KLMax

})

(20)

and

KL =

M
∑

µ

QHY
∑

q

ζµ(q) log

(

ζµ(q)

hy,µ(q)

)

(21)

where M is the size of the mini-batch. In Equation (19) we
chose to use the square root, compared to a linear function in
Rolinek and Martius (2018). Our reasoning was that this keeps
the learning rate higher in the beginning. We didn’t compare the
performances that both choices would result in.

The updates of the weights are done according to

V l(q|q′) = W l(q|q′)+
γ (L)

S
Z∗,l(q|q′) (22)

Ṽ l(q|q′) = max

({

V l(q|q′),2,
W l(q|q′)

2

})

(23)

Wnew,l(q|q′) =
Ṽ l(q|q′)
∑

j Ṽ
l(j|q′)

. (24)

using 2 = 0.0001 and

Zl(q|q′) = −
∂E

∂W l(q|q′)
W l(q|q′) (25)

as well as

S = min
({

max
(
∣

∣

∣
Z∗,l(q|q′)

∣

∣

∣

)

, 1
})

(26)

with calculating the maximum over all components of Z∗(q|q′).
For the SbS network with the back-prop learning rule, a three
stage learning procedure is applied. This sequence of stages
is shown in Figure 6A. In Figure 6B the development of the
classification error over the these stages is summarized. In the
Supplementary Materials detailed plots are shown that present
how the training error (measured with the Kullback-Leibler
divergence), learning rate, and the classification error on the test
data set develops.

During learning weights are set to random values, this is
done by

V(q, q′) = 1+ 0.01 · η(q, q′) (27)

W(q|q′) =
V(q, q′)
∑

j V(j, q
′)

(28)

with η(q, q′) as random numbers drawn from a uniform
distribution [0, 1].

For every input pattern, every input or SbS inference
population generates 1,200 spikes over the course of simulating
the SbS network for this pattern.

For the first stage of learning, we selected ǫ0 = 0.1 which is
our standard value that typically works. For the latter two stages
we reduced it to ǫ0 =

0.1
2 . The reasoning behind this decision was

that we feared that otherwise the higher layer could might get too
sparse in the distribution of latent variables in the SbS IPs. From
ǫ0 we derive ǫ values for the SbS IPs in the different layers. The
underlying idea is that while IPs in different layers get a different
amount of spikes in every time step of the simulations, we wanted
to equalize the change on the latent variables of all IPs. Thus we
divided ǫ0 by the amount of spikes an IP receives in one time
step. This results in: ǫH1 = ǫ0, ǫH2 = ǫ0

4 , ǫH3 = ǫ0
25 , ǫH4 = ǫ0

4 ,
ǫH5 = ǫ0

16 , and ǫHY = ǫ0. After 1,000 spikes ǫ0 is divided by
25. Since ǫ acts like a low-pass filter parameter that is controlling
the impact one spike can have on the latent variables, reducing ǫ

results in a reduction on the fluctuations of the latent variables.
First, we want to allow the network to reach some “good” state
with the first 1,000 spikes, then we use the reduction on ǫ and the
next 200 spikes to implement an implicit averaging of the latent
variables over the incoming spikes.

It is important to note, that we didn’t optimize these ǫ values
or ǫ0 due to missing computational power. The parameters stem
from a mere guess which parameters might work. The same
ǫ values were used for learning the weights and testing the
classification performance.

The first stage of learning starts with all the weights set to
random values, except the pooling layer which are pre-set and
not changed or learned at all. Learning the weights for 160 mini-
batches, we reached a classification error on the test data set
of 2.6%. Then the weights WH2→H3, WH4→H5, and WH5→HY

are set to random values again. Only the weights WX→H1 are
kept and not learned during stage B. After 150 mini-batches the
error goes down to 1.2%. Then again, the weights WH4→H5 and
WH5→HY are set to random values again.WX→H1 andWH2→H3

are kept constant.
When learning is performed again, the error goes down

to 0.83% (see Supplementary Materials for detailed learning
curves). However, sparseness on the latent variables can get a
problem in the layer H5 with its 1,024 neurons. Selected neurons
can show very large values in their latent variables which results—
due to the competition in the SbS IP—in suppressing the other
neurons. During learning this can get a self-reinforcing process.
For compensating this behavior, we devised a strategy inspired
from dropout learning (Srivastava et al., 2014).

Normally, in the beginning of the simulation all the latent
variables start with the value 1

N , wereN is the number of neurons
in a SbS IP. A simple way to include dropout in the SbS model is
to initialize selected neuron’s latent variables with the value zero.
Since the update rule for the latent variables is multiplicative,
such a neuron is disabled for that simulation. We use this aspect
of the h-dynamic to implement dropout for layer H5 and to
control how any neurons in H5 are active at the same time
during learning.
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FIGURE 6 | Performance values for the MNIST benchmark. (A) A three stage learning process was used. First, in pre-stage A all weights are set to random values

except the weights for the pooling layers which are pre-defined and not learned at all during any of the stage. In stage A the weights are trained for 160 mini-batches.

This results in a classification error on the test data of 2.6%. Then in pre-stage B, the weights for the second convolutional layer and the fully connected layer are reset

to random values. In stage B these random weights are trained again for 150 mini-batches which yields an error of 1.2%. In pre-stage C, the weights for the fully

connected layers are replaced by random weights and in stage C these weights are learned again. However, this time a drop-out procedure for the layer H5 is applied.

After processing 200 mini-batches an error of 0.72% is reached. Alternatively, stage C can be done without drop-out and then yields in an error of 0.83% (see

Supplementary Materials for the learning curves). (B) Development of the error on the MNIST test data set for the three stages over the performed learning steps.

In the beginning of the learning process we want only a few
neurons to be active in H5 during learning (We started with 16
neurons of 1,024). Thus we calculated for every input pattern
η(i) ≤ β = 16

1024 with η(i) as random numbers drawn from a
uniform distribution [0, 1]. For every H5 neuron i that fulfilled

this condition, its latent variable h̃H5(i) was set to one. Otherwise
the latent variable h̃H5(i) was set to zero. Afterwards, the latent

variables of the IPs are normalized hH5(i) = h̃H5(i)
∑

j h̃H5(j)
and used

for the simulation as initial values. After every 30 mini-batches
the number of active neurons is double (i.e., β is doubled), until
β reaches a value of one.

Applying dropout learning over a duration of 200
mini-batches yields an classification error of 0.72% (see
Supplementary Materials for detailed learning curves).

For the 10% mini-batches used in our simulations, we didn’t
notice any over-fitting. Thus the Kullback-Leibler divergence
on the training data was a reliable estimator for the expected
classification performance on the test data. However, it needs
to be noted that this might not be the case if the mini-batches
get bigger. Then it might be necessary to separate a part of the
training data as validation data set.

In Figure S9, we show the classification error in dependency
of the amount of processed spikes. Furthermore, Figure S10

Frontiers in Computational Neuroscience | www.frontiersin.org 10 August 2019 | Volume 13 | Article 55

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Rotermund and Pawelzik SbS Learning

examines the distribution of the values over the output neurons
for the 72 remaining wrongly classified patterns. This figure
shows that if a pattern is classified correctly, then the correct
output neuron concentrates the activity nearly exclusively on
itself (see Figure S10A). In the case of wrongly classified pattern,
the situation is more varying (see Figure S10B).

3. DISCUSSION

The present work is based on a framework where the basic
computational units are local populations rather than individual
neurons. These so called inference populations iteratively
perform inference on the potential causes of their inputs from
each stochastic spike impinging on the population (Ernst et al.,
2007).While the corresponding dynamics might appear artificial,
it captures the essence of models with more biologically realistic
neurons (Rozell et al., 2008; Moreno-Bote and Drugowitsch,
2015; Zhu and Rozell, 2015) that perform sparse efficient coding,
which is a leading hypothesis for understanding coding in the
brain (Olshausen and Field, 2006; Spanne and Jörntell, 2015; Zhu
and Rozell, 2015; Capparelli et al., 2019).

Hierarchical generative networks built from inference
modules are used in technical approaches as e.g., for image
generation (Ghosh et al., 2019). There are many papers
concerned with learning such deep generative models with
error back-propagation (e.g., Oh and Seung, 1998; Lee
and Seung, 1999, 2001; Bengio et al., 2014; Rezende et al.,
2014; Salakhutdinov, 2015; Guo and Zhang, 2017) as well as
publications on training similar networks that use non-negative
matrix factorization (e.g., Ahn et al., 2004; Zeng et al., 2016). In
contrast to these approaches, the present framework conserves
the specific spike driven update dynamics from Ernst et al. (2007)
which is of special interest because it results in a very simple
yet biologically plausible neuronal network using only spikes as
signals. It allows to build special computational hardware that
can be massively parallelized (Rotermund and Pawelzik, 2018)
and exhibits sparse representations known from compressed
sensing (Ganguli and Sompolinsky, 2010, 2012).

While deep convolutional networks were successful in
predicting responses of neurons in primate visual cortex
investigations into the potential of deep generative models for
explaining natural computation in the brain are just beginning
(Bengio et al., 2014, 2015). But even if formal approaches along
these lines were phenomenologically successful, realistic models
are still required to elucidate how the striking performances of
brains in terms of speed and precision are realized with the spikes
that in reality are available as sole signals and in cortex known to
have a high degree of stochasticity.

For exploring the potential of SbS networks as alternative
to deep convolutional networks with respect to performance
in technical applications as well as models for real neuronal
networks suitable learning rules aremissing. As a first step toward
this goal we present an error back-propagation based learning
rule for training multi-layer feed-forward SbS networks.

Having a supervised method for optimizing the weights in
deep SbS networks allows not only to explore the potential of the

rather unusual SbS framework but also to compare it to other
approaches toward learning in these networks as e.g., a local rule
for unsupervised learning in recurrent SbS networks (Rotermund
and Pawelzik, 2019b).

Simple examples with Boolean functions show that the
backpropagation algorithm presented here can learn the weights
in a given forward network architecture from scratch (i.e.,
randomly initialized weights) as well as to ignore non task
relevant information. Apparently, the algorithm can be used to
train weights several layers away from the output. Furthermore,
architectures with convolutional and pooling layers composed
of the same basic SbS elements are proposed. In particular, no
special functionality was required for setting up the pooling
layers, in contrast to usual deep convolutional networks.

We used the MNIST benchmark to investigate deeper
convolutional SbS networks. Beside the input and the output
layer, the network has five internal layers comprising two pooling
layers and two convolutional layers as well as one fully connected
layer. Overall, the network contains 1,378 populations with
57,994 neurons. During the simulation of one input pattern, a
total of 1200 · 1378 spikes are generated (28.5 spikes per neuron).
On the MNIST benchmark test data, our SbS network achieved
up to 99.3% classification correct performance. Using the same
architecture for a non-spiking convolutional neural network we
measured 99.2%. However, comparing performance values with
other networks (e.g., see Tavanaei et al., 2018 and for a list
of MNIST networks http://yann.lecun.com/exdb/mnist) is not
trivial. In our case we didn’t optimized the network structure
for the use of SbS inference populations. We rather decided to
re-use the network structure associated with the Tensor Flow
Tutorial because this gave us a base-line for a network design
which our computer cluster was just been able to simulate.
Furthermore, we didn’t use any input distortion methods (e.g.,
shifting, scaling, or rotating the input pictures) for increasing the
size of the training data set, methods that are known to lead to
performance values of up to 99.8% (Wan et al., 2013). The reason
was simply that this would have been too much for our computer
cluster, like it would have been to optimize the parameters
used in the SbS MNIST network. Or in other words: The
performances shown for the MNIST SbS network certainly do
not reflect what a fully optimized SbS network might be capable
to deliver.

The SbS-approach avoids the real time dynamics required for
simulation of noisy leaky integrate-and-fire (IaF) neurons where
the membrane potential needs to become updated every time
step dt which is often in the range of sub-milliseconds. The
number of updates between two spikes depends on the firing
rate of that neuron. If for example dt = 0.1ms and the firing
rate is 10Hz this would translate roughly into 1,000 updates of
the membrane potential between two spikes. Compared to that,
a SbS neuron would perform one update. While the different
types of spiking neuron models (Izhikevich, 2004) have varying
number of computations for one update, in a SbS population with
N neurons 3N multiplications, 2N summations, and one division
are used for one update of the whole population. This reduction
in computational requirement is traded in for a decrease in
biological realism.
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An approach akin to the SbS’s removal of real time is
available for integrate-and-fire neurons. These so called event-
based neuronal networks (e.g., Brette, 2006, 2007; Lagorce et al.,
2015; Serrano-Gotarredona et al., 2015) use analytic solutions of
the neuron’s dynamics to bridge the time between two spikes.
However, this approach gets problematic with stochastic neurons
(Brette, 2007). This is similar to the problem of finding an
analytically solution for the first passage time (Burkitt, 2006a,b)
of neurons in a network of neurons with stochastic inputs, which
is a hard problem. In the case of the SbS network, the stochasticity
is an important aspect because it is a type of importance sampling
of the input as well as of the latent variables. This acts as a filter in
order to capture the more dominant information in the network
and suppress noise.

Concerning the parallelization of non-spiking neural
networks compared to the SbS model: A traditional deep
convolutional neuronal network (DNN) implements several
different types of layers (e.g., convolutional layer, pooling
layers, and dense layers) for which it requires a variety
of optimized hardware elements (Sze et al., 2017). In the
case of the SbS model, all these different type of layers are
represented by the same dynamics of the latent variables. A
hardware solution for SbS networks (Rotermund and Pawelzik,
2018) can be understood more like a pool of SbS inference
populations that are shaped into the desired network structure
by just organizing the flow of the spikes. Furthermore, it
is less easy to extend one layer of a non-spiking network
over several ASICs. This is a consequence from the high
amount of information that needs to be exchanged in a
typical non-spiking DNN. In the SbS case, the computation is
already compartmentalized into IPs that can be operated also
asynchronously having a low bandwidth communication among
each other.

In summary, we presented an error back-propagation
based learning rule for training multi-layer feed-foreward SbS
networks. This significantly extends earlier work (Ernst et al.,
2007) such that for the first time supervised training of deep
Spike-By-Spike based networks is possible. These results show
that a novel network type consisting of inference populations
as basic computational elements instead of single neurons can
have a competitive performance. These networks use spikes

and require comparatively little computational effort. The non-
negativity inherent in this approach is an other desirable
property since it induces sparseness, makes a link to non-
negative matrix factorization and compressed sensing and
matches the fact that long range interactions in cortex are
excitatory. Large networks with convolutional architectures can
be built from a unique type of inference populations without
requiring different computational modules for the pooling layers,
which we consider more elegant and biologically plausible.
Combined with optimized and massively parallel computational
hardware (Rotermund and Pawelzik, 2018) having an efficient
learning rule will open the door for future investigations of
this conceptually simple spike based neuronal network which
we believe has interesting properties as a generative model with
built-in sparseness for both technical applications as well as
model for natural computations in real brains.
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