DOI: 10.1002/pbc.28578

LETTER TO THE EDITOR

Posthematopoietic stem cell transplant COVID-19 infection in a pediatric patient with IPEX syndrome

To the Editor:

December 2019 marked the emergence of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).^{8,9} Several treatment approaches are under study. The antiviral remdesivir¹⁰ has been shown to improve overall mortality in patients treated for COVID-19,¹ and was approved by the United States Food and Drug Administration (FDA) for hospitalized patients with severe disease.² Tocilizumab, a humanized antiinterleukin-6 receptor¹¹ antibody, can hasten COVID-19-related cytokine release syndrome recovery by 75%.³ Implementation of COVID-19 convalescent plasma (CCP) in the treatment of COVID-19 infection was also suggested by the FDA.⁴

An 8-year-old African-American male with immune-dysregulation polyendocrinopathy X-linked (IPEX) syndrome underwent haploidentical, related bone marrow hematopoietic stem cell transplant (HSCT), and contracted SARS-CoV-2 during the periengraftment period, subsequently developing primary graft failure. The conditioning regimen included busulfan, fludarabine, rabbit antithymoglobulin, and posttransplant cyclophosphamide; graft versus host disease (GVHD) prophylaxis consisted of mycophenolate mofetil and cyclosporine.

Lack of engraftment and fever were noted on Day + 21 posttransplant. A sedated bone marrow aspiration was planned; prior to sedation he tested positive for COVID-19 via nucleic acid amplification test. Development of respiratory distress prompted a chest CT that showed "bilateral ground-glass opacities" (Figure 1); noninvasive ventilation was initiated. A 10-day-course treatment with remdesivir began on Day + 26.

We trended inflammatory parameters daily (Table 1), and based our treatment decision on a calculated H-score⁵ of 209, which correlated with a 92.8% risk probability of cytokine release syndrome. Two doses of tocilizumab and one unit of CCP¹² were given. On Day + 32, severe hypotension, acute hypoxemia, and mildly increased right ventricle systolic pressure ensued, requiring mechanical ventilation and nitric oxide. A comprehensive evaluation for superimposed infections was remarkable for a repeated positive SARS-CoV-2 test, *Staphylococcus epidermidis* and *Candida parapsilosis* infections, and BK and cytomegalovirus viremias.

Bone marrow aplasia, lack of donor marrow CD33+ cells, absence of donor-specific antibodies, and compatible forward and backward flow cytometric crossmatches confirmed primary graft failure and immune rejection, commonly seen in patients with IPEX syndrome. In preparation for a second haploidentical related CD34+ selected peripheral hematopoietic stem cell infusion, conditioning with fludarabine for 3 days began on Day + 39 posttransplant. Salvage therapy with a second unit of CCP and a third dose of tocilizumab was given on Day + 41. However, despite all efforts, he died on Day + 42 posttransplant.

Compared to their immunocompetent counterparts, immunocompromised patients with COVID-19 are at increased risk for secondary infections and progression to severe disease, as well as a different response to supportive care measures.⁶ Studies have shown that SARS-CoV-2 acts mainly on T-lymphocytes; hence, a severely immunocompromised patient experiences a poorer outcome. A case report depicted two adult posttransplant patients with adequate graft function, on immunosuppressive therapy, that eventually died after developing multiorgan failure.⁷

Our patient was treated aggressively, and we attributed the first decreasing trend in inflammatory markers (Table 1) to achieving disease control. However, the combination of graft failure, COVID-19 infection with multiorgan failure, and opportunistic infections contributed to his death. We hope that new treatments continue to stem from ongoing research, to achieve a different outcome in our patient population.

Minelys M. Alicea Marrero¹ D Margarita Silio² Katie McQueen-Amaker¹ María Español¹ María Velez¹ Zachary LeBlanc¹

 ¹ Pediatric Hematology Oncology Department, Children's Hospital of New Orleans, Louisiana State University Health Sciences Center, New Orleans, Louisiana
² Pediatric Infectious Diseases, Tulane University, New Orleans, Louisiana

Correspondence

Minelys M. Alicea Marrero, 200 Henry Clay Ave, New Orleans, LA 70118. Email: malice@lsuhsc.edu

ORCID

Minelys M. Alicea Marrero D https://orcid.org/0000-0001-8261-5110

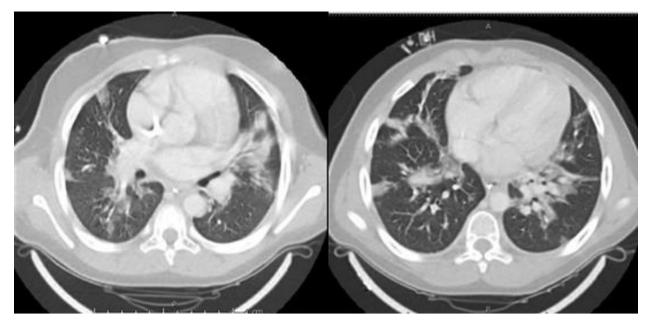


FIGURE 1 Chest computer tomography showing "ground-glass" opacities consistent with COVID-19 infection

TABLE 1 Inflammatory markers trend after starting treatment for COVID-19 infectio
--

		Inflammatory markers				
COVID treatment day	Days posttransplant	Ferritin (ng/mL)	Procalcitonin (ng/mL)	LDH (U/L)	CRP (mg/dL)	D-dimer (ug/mL FEU)
Day –2	24	7790	0.5	432	9.87	13.4
Day -1	25	14 167	0.68	626	10.8	18.31
Start of treatment ^{a,b}	26	14 272	1.04	780	11.8	17.11
Day 2 ^c	27	13619	2.39	1019	16.2	16.5
Day 3 ^d	28	13871	1.65	1092	8.9	13.6
Day 4	29	10 532	1.18	1021	4.2	11.62
Day 5	30	8797	0.66	962	2.3	9.67
Day 6	31	8496	0.51	1018	1.7	10.62
Day 7	32	6594	0.33	827	1.1	8.9
Day 8	33	6533	0.18	857	0.7	8.45
Day 9	34	5153	0.45	719	1.1	12.99
Day 10 [°]	35	4971	0.7	629	4.5	10.55
Day 11	36	6066	0.57	645	4	5.96
Day 12	37	5145	0.64	801	5.2	8.13
Day 13	38	4648	0.69	945	5	8.39
Day 14	39	6588	0.85	1208	4.2	7.92
Day 15	40	8727	0.81	1140	3	7.09
Day 16 ^{fg}	41	10 294	1.5	1136	2.3	8.01
Day 17	42	28 884	2.99	1093	2.2	9.33

Note. Highest values are highlighted for each inflammatory marker.

^a First dose of remdesivir.

^bFirst dose of tocilizumab.

^cSecond dose of tocilizumab.

^d First convalescent plasma transfusion.

^e Treatment with remdesivir completed.

^fThird dose of tocilizumab.

 ${}^{\rm g}{\rm Second}$ convalescent plasma transfusion.

REFERENCES

- Chiotos K, Hayes M, Kimberlin DW, et al. Multicenter initial guidance on use of antivirals for children with COVID-19/SARS-CoV-2. J Pediatric Infect Dis Soc. 2020. https://doi-org.ezproxy.lsuhsc.edu/10.1093/ jpids/piaa045
- U.S. FDA. Coronavirus (COVID-19) Update: FDA Issues Emergency Use Authorization for Potential COVID-19 Treatment. U.S. Food and Drug Administration; May 2020. https://www.fda.gov/newsevents/press-announcements/coronavirus-covid-19-update-fdaissues-emergency-use-authorization-potential-covid-19-treatment. Accessed May 30, 2020.
- Alzghari SK, Acuña VS. Supportive treatment with tocilizumab for COVID-19: a systematic review. J Clin Virol. 2020;127: 104380.
- Zeng Q-L, Yu Zu-J, Gou J-J, et al. Effect of convalescent plasma therapy on viral shedding and survival in COVID-19 patients. *J Infect Dis.* 2020;222(1):38-43.
- Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. *Lancet.* 2020;395(10229):1033-1034.
- Ardura MI, Hartley DM, Dandoy C, Lehmann L, Jaglowski S, JAuletta J. Addressing the impact of the coronavirus disease (COVID-19)

pandemic on hematopoietic cell transplantation: learning networks as a means for sharing best practices. *Biol Blood Marrow Transplant*. 2020;26(7):e147-e160.

- 7. Huang J, Lin H, Wu Y, et al. COVID-19 in posttransplant patients report of 2 cases. *Am J Transplant*. 2020;20(7):1879-1881.
- World Health Organization. Coronavirus Disease (COVID-19 Outbreak Situation. World Health Organization; 2020. https://www.who. int/emergencies/diseases/novel-coronavirus-2019. Accessed May 25, 2020.
- CDC. Coronavirus Disease 2019 (COVID-19) Cases in the US. Centers for Disease Control and Prevention; 2020. https://www.cdc.gov/ coronavirus/2019-ncov/cases-updates/cases-in-us.html. Accessed May 25, 2020.
- Shio-Shin J, Ping-Ing L, Hsueh Po-R. Treatment options for COVID-19: the reality and challenges. J Microbiol Immunol Infect. 2020;53(3):436-443.
- 11. Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. *Cold Spring Harb Perspect Biol.* 2014;6(10):a016295.
- Rajendran K, Narayanasamy K, Rangarajan J, Rathinam J, Natarajan M, Ramachandran A. Convalescent plasma transfusion for the treatment of COVID-19: systematic review. J Med Virol. 2020. https://doiorg.ezproxy.lsuhsc.edu/10.1002/jmv.25961