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Abstract

Background: Grain weight and grain shape are important agronomic traits that affect the grain yield potential and
grain quality of rice. Both grain weight and grain shape are controlled by multiple genes. The 3,000 Rice Genomes
Project (3 K RGP) greatly facilitates the discovery of agriculturally important genetic variants and germplasm
resources for grain weight and grain shape.

Results: Abundant natural variations and distinct phenotic differentiation among the subgroups in grain weight
and grain shape were observed in a large population of 2,453 accessions from the 3 K RGP. A total of 21 stable
quantitative trait nucleotides (QTNs) for the four traits were consistently identified in at least two of 3-year trials by
genome-wide association study (GWAS), including six new QTNs (qTGW3.1, qTGW9, qTGW11, qGL4/qRLW4, qGL10,
and qRLW1) for grain weight and grain shape. We further predicted seven candidate genes (Os03g0186600,
Os09g0544400, Os11g0163600, Os04g0580700, Os10g0399700, Os10g0400100 and Os01g0171000) for the six new QTNs
by high-density association and gene-based haplotype analyses. The favorable haplotypes of the seven candidate
genes and five previously cloned genes in elite accessions with high TGW and RLW are also provided.

Conclusions: Our results deepen the understanding of the genetic basis of grain weight and grain shape in rice
and provide valuable information for improving rice grain yield and grain quality through molecular breeding.
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Background
Rice (Oryza sativa L.) is one of the most widely grown
crops in the world and is a staple diet for more than
3.5 billion people around the world, particularly in Asia.
It is predicted that rice production must increase by
∼42 % by 2050 to keep pace with increasing global food

demand [1]. As the main component of grain yield in
rice, grain weight or thousand-grain weight (TGW) has
always been a dominating trait for breeders. Meanwhile,
grain shape is an important factor affecting physical or
appearance quality, where slender grains with grain
length-to-width ratio > 3 are preferred by most rice con-
sumers [2]. Grain shape is determined by grain length
(GL), grain width (GW), the ratio of length-to-width
(RLW) and grain thickness, and grain weight is positively
correlated with these four traits [3].
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Over the past few decades, more than 60 genes associ-
ated with grain weight and grain shape have been identi-
fied in rice [4]. To date, more than 10 major quantitative
trait loci (QTL) controlling grain weight and grain shape
have been cloned and characterized [5–9]. Among them,
GW2, GW7/GL7, GW8/OsSPL16 and GS9 regulate grain
shape through altering cell division with influences on
appearance quality like chalkiness [7, 10–13]. Moreover,
several QTL for grain weight or grain shape have been
identified, such as qGRL7.1 [14], qGL4b [15], qSS7 [16]
and tgw11 [17], but the causal genes are yet to be
characterized.
Next-generation sequencing (NGS) technologies have

made genotyping more efficient and the availability of
substantially increased SNP markers enables the explor-
ation of quantitative trait nucleotides (QTNs)/genes for
target traits more rapidly through genome-wide associ-
ation study (GWAS), which has been widely applied in
genetic dissection of agronomic traits in rice [18–22].
So far, several genes influencing grain weight and grain
shape have already been identified by GWAS in rice,
such as GLW7 for GL and TGW [23], OsLG3 for TGW
and GL [24], GSE5 regulating grain width [25], and
OsSNB controlling grain size [26]. Moreover, GWAS is
also a powerful method to explore favorable alleles as-
sociated with important agronomic traits in rice natural
populations and germplasm [27, 28]. Recently, the
3,000 Rice Genomes Project (3 K RGP) contributed
29 million single nucleotide polymorphisms (SNPs),
2.4 million small InDels and over 90,000 structural vari-
ations [29, 30]. The availability of this genomic data
provides a valuable genetic resource for both scientific
research and molecular breeding in rice [31, 32].
Here, we conducted a GWAS with a high-density SNP

dataset using 2,453 accessions from the 3 K RGP
followed by gene-based haplotype analysis to identify
new candidate genes underlying rice grain weight and
grain shape. The results of this study will enhance the
understanding of the genetic basis of grain weight and
grain shape, and provide valuable information for im-
proving grain shape and grain yield in rice breeding.

Results
Phenotypic variations and correlations
All four measured traits showed large variations in the
whole population and between subgroups across the
three years (Fig. 1a, Additional file 1: Table S2 and Table
S3). ‘Nyao’ from Laos had the highest TGW (46.60 g),
‘GEANT W 7’ from Netherlands had the longest GL
(11.82 mm), ‘DO LEUANG’ from Laos had the widest
GW (4.17 mm), and ‘IET 14720’ had the largest RLW
(4.55) (Additional file 1: Table S3). Among the 12 sub-
groups, subtropical geng had the highest mean TGW
(31.38 g) primarily due to significantly longer GL (8.68

mm) and wider GW (3.51 mm) compared to the other
subgroups, followed by intermediate geng and xian-3
(Additional file 1: Table S3). Moreover, xian-1B had the
highest mean GL (8.73 mm) and RLW (3.34) while the
overall lowest mean GW was found in the xian-1B sub-
group. The basmati subgroup showed significantly lower
TGW (19.86 g) and GL (7.25 mm) than all the other
subgroups. Although the xian-1B, xian-3, and subtrop-
ical geng subgroups had similar GL, the two xian sub-
groups (xian-1B and xian-3) showed significantly larger
RLW than subtropical geng.
TGW showed a significant positive correlation with

both GL and GW in the whole population and 12
subgroups, with the strongest correlation (r = 0.85 and
r = 0.71, P < 0.001) detected in the subtropical geng
subgroup (Fig. 1b and c). GL was negatively corre-
lated with GW in the whole population and most
subgroups except for subtropical geng (r = 0.32, P <
0.01) and xian-3 (r = 0.13, P < 0.05). TGW was signifi-
cantly negatively correlated with RLW in tropical geng
subgroup (r = -0.32, P < 0.001) while a significant
positive correlation between TGW and RLW was de-
tected in the basmati (r = 0.26, P < 0.05) and subtrop-
ical geng (r = 0.22, P < 0.05) subgroups. All the four
traits showed very high heritability ranging from 0.88
for GL to 0.93 for GW (Table 1).

Genome-wide LD patterns and QTN detection by GWAS
The maximum LD was 0.47, 0.64, 0.69, 0.53, 0.68,
and 0.67 in the whole population, aus, basmati, xian,
temperate geng and tropical geng, respectively. LD
reached half of its initial value at around 300 kb in
the whole population, basmati and temperate geng
subgroups, 250 kb in the aus subgroup, 130 kb in the
xian group and 260 kb in the tropical geng subgroup
(Additional file 2: Fig. S1). Thus, the LD decay in the
xian subgroup was much faster than in any of the
other subgroups.
A total of 21 stable QTNs for the four traits were con-

sistently identified in at least two years (Table 2; Add-
itional file 2: Fig. S2A–S4F). For TGW, six QTNs were
detected on chromosomes 3, 5, 7, 9, and 11. Among
them, qTGW3.2 (rs3_16733441), qTGW5 (rs5_5371529),
and qTGW7 (rs7_28305040) were stably detected in all
three years with qTGW7 showing the strongest associ-
ation signal (P = 8.12E-18) in the whole population. Two
QTNs, qTGW3.1 (rs3_4504988) and qTGW9 (rs9_
21404841), were detected only in the whole population
while qTGW11 (rs11_3019935) was detected only in the
xian subgroup.
Five QTNs for GL were mapped to chromosomes 3, 4,

5, 7, and 10. Three QTNs, qGL3 (rs3_16733441), qGL5
(rs5_5373491), and qGL7 (rs7_28289869) were consist-
ently detected in the whole population and subgroups
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with qGL3 showing the strongest association signal (P =
1.97E-73) in the whole population. The QTNs, qGL4
(rs4_29308534) and qGL10 (rs10_13616240), were de-
tected only in the whole population.
Four QTNs for GW were detected on chromosomes 3,

5, 7, and 8. Three QTNs, qGW3 (rs3_16733441), qGW5
(rs5_5371772), and qGW7 (rs7_24898274) were stably

detected in all three years with qGW5 showing the
strongest association signal (P = 1.84E-77) in the whole
population. One QTN, qGW8 (rs8_26504638) was de-
tected only in the aus subgroup in 2016 and 2017.
Six QTNs for RLW were identified on chromosomes

1, 3, 4, 5, 7, and 8. Four QTNs, qRLW3 (rs3_16733441),
qRLW4 (rs4_29317460), qRLW5 (rs5_5371609), and

Fig. 1 Phenotypic distributions and correlations. a Box plots of TGW, GL, GW, and RLW in three years across 12 subgroups. TGW: thousand grain
weight; GL: grain length; GW: grain width; RLW: ratio of GL to GW; G-inter: intermediate geng; G-subtrp: subtropical geng; G-tem: temperate geng;
Inter: intermediate; X-1 A: xian-1 A; X-1B: xian-1B; X-2: xian-2; X-3: xian-3; X-inter: intermediate xian. b Distributions and correlations among the
four traits in the whole population. c Correlations among the four traits from each subgroup. The number in the middle of the cell is the
correlation coefficient; ‘*’, ‘**’, and ‘***’ refer to significant correlations (P < 0.05, P < 0.01, and P < 0.001)
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qRLW7 (rs7_24533303) were consistently detected in the
whole population and subgroups with qRLW5 showing
the strongest association signal (P = 3.59E-69) in the
whole population. Two QTNs, qRLW1 (rs1_3657795)
and qRLW8 (rs8_26504638) were detected only in the
aus subgroup.
We specified QTNs with overlapping regions identi-

fied for multiple traits as the same QTN, which lead to
the identification of 11 different QTNs. Among them,
qTGW3.2/qGL3/qGW3/qRLW3, qTGW5/qGL5/qGW5/
qRLW5, qTGW7/qGL7, qGW7/qRLW7, and qGW8/
qRLW8 were actually GS3, qSW5/GW5, FZP, GL7/GW7,
and GW8, respectively, which are well-known genes con-
trolling rice grain shape and grain weight. Notably,
qTGW3.1, qTGW9, qTGW11, qGL4/qRLW4, qGL10, and
qRLW1 were newly identified in this study (Table 2).

Candidate genes identification and haplotype analyses
The six newly identified QTNs were used for the high-
density association and gene-based haplotype analyses to
identify the candidate genes. In the region of qTGW3.1
(4.38–4.58 Mb on chromosome 3), 9,177 SNPs were used
for high-density association analysis in the whole popula-
tion. The annotated gene with the most significant hit was
Os03g0186600 (Fig. 2a). Seven major haplotypes were de-
tected among 2,066 accessions based on four SNPs in the
2-kb region upstream of the Os03g0186600 promoter, and
four SNPs in the coding region (Fig. 2b). Significant differ-
ences for TGW were observed among the seven haplo-
types in the whole population and several subgroups
(Fig. 2c; Additional file 1: Table S4 and Table S5). In the
whole population, Hap6, represented by 93 geng and inter-
mediate accessions, had the highest mean TGW (28.68 g).
Of the 73 subtropical geng accessions, 28 accessions with
Hap3 had a mean TGW of 34.17 g and while a further 37
accessions had a mean TGW of 31.66 g. Hap2 showed a
significantly higher TGW than the other haplotypes in the
xian-1 A, xian-3, and intermediate xian subgroups
(Fig. 2c).
The QTN qTGW9 was identified in a 21.24–21.55 Mb

region on chromosome 9, including 9,593 SNPs used for
high-density association analysis in the whole

population. The most significant hit was located in
Os09g0544400 (Additional file 2: Fig. S5). Three major
haplotypes for Os09g0544400 were detected among the
2,270 accessions. Notably, Hap2 and Hap3 were
enriched in the geng and xian subgroups, respectively,
suggesting that this gene differentiated between the two
subspecies. Among them, Hap2 was associated with the
highest TGW of 25.76 g in the whole population (Add-
itional file 1: Table S4 and Table S5).
qTGW11 was detected in the region from 2.82 Mb to

3.13 Mb on chromosome 11 in the xian subgroup, har-
boring 9,948 SNPs. Os11g0163600 was subsequently
screened as the candidate gene for qTGW11 (Additional
file 2: Fig. S6). A total of five haplotypes were identified
in 2,056 accessions based on three SNPs in the 2-kb re-
gion upstream of the Os11g0163600 promoter, one SNP
in the 5’ UTR, one SNP in the coding region, and one
SNP in the 3’ UTR. Only two haplotypes, Hap2 and
Hap3, were detected in the four geng subgroups while
Hap2 showed a significantly higher mean TGW than
Hap3 in intermediate geng and tropical geng subgroups
(Additional file 1: Table S4 and Table S5).
For qGL4/qRLW4, Os04g0580700 was identified as the

candidate gene (Fig. 3a). Five haplotypes were detected
based on five SNPs in the 2-kb region upstream of its
promoter and one SNP in the coding region (Fig. 3b).
Hap5 was exclusively carried by 15 xian-3 accessions
having the highest mean GL (9.72 mm) and mean RLW
(3.62) (Fig. 3c). Moreover, Hap2 had a significantly
higher GL and RLW than the other Haps in the aus,
basmati, intermediate geng, and tropical geng subgroups
(Fig. 3c; Additional file 1: Table S4 and Table S5).
Two candidate genes, Os10g0399700 and

Os10g0400100, were identified for qGL10 (Additional
file 2, Fig. S7). Four and six SNPs were used to clas-
sify haplotypes for Os10g0399700 and Os10g0400100,
resulting in five and six haplotypes, respectively (Add-
itional file 2, Fig. S7). Interestingly, Hap4 of
Os10g0399700 and Hap5 of Os10g0400100 both had a
significantly higher mean GL than the other haplo-
types in the whole population, which were only car-
ried by the accessions of the four geng subgroups
(Additional file 1: Table S4 and Table S5).
qRLW1 was detected as an association peak of the re-

gion 3.57–3.80 Mb on chromosome 1 in the aus sub-
group, including 8,116 SNPs used for high-density
association analysis. The candidate gene with the most
significant hit within an LD block was Os01g0171000
(Fig. 4a). Four major haplotypes were observed in 2,224
accessions based on nine SNPs located in the 2-kb pro-
moter and coding region of Os01g0171000. Of the four
major haplotypes, Hap1 had a significantly higher mean
RLW than that of Hap2 in the whole population. More
notably, Hap1 was mainly carried by xian accessions

Table 1 Variance components and heritability estimates for
grain weight and grain shape-related traits

Trait Vg VE Vgei Vrep Ve h2

TGW 16.69 7.51 3.49 0.28 1.24 0.92

GL 0.84 0.13 0.32 0.03 0.05 0.88

GW 0.122 0.051 0.021 0.011 0.009 0.93

RLW 0.269 0.103 0.067 0.003 0.005 0.92

Vg genotype variance, VE environment variance, Vgei genotype by environment
interaction variance, Vrep replication variance within environment, Ve residual
variance, h2 narrow-sense heritability. Trait abbreviations are as given in the
legend to Fig. 1
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Table 2 QTNs consistently identified for grain weight and grain shape in at least two years by GWAS

Trait a QTN b Chr. Lead SNP c Allele d P-value Population/Subgroup Year of QTN detected Known gene

TGW (g) qTGW3.1 3 rs3_4504988 C/T 2.59E-08 Whole 2015, 2016

qTGW3.2 3 rs3_16733441 T/G 2.25E-08 Whole 2015–2017 GS3 [33]

3 rs3_16733441 T/G 1.78E-11 Xian 2015–2017

qTGW5 5 rs5_5371529 C/A 7.22E-10 Whole 2015–2017 qSW5/GW5 [34]

5 rs5_5361877 T/A 1.38E-10 Xian 2015–2017

qTGW7 7 rs7_28305040 A/G 8.12E-18 Whole 2015–2017 FZP [35]

7 rs7_28362557 G/A 7.37E-08 Xian 2015–2017

7 rs7_28322588 T/C 1.04E-09 Basmati 2015–2017

7 rs7_28287280 A/G 9.14E-12 Aus 2015–2017

qTGW9 9 rs9_21404841 C/T 2.47E-08 Whole 2015, 2017

qTGW11 11 rs11_3019935 T/C 5.17E-07 Xian 2016, 2017

GL (mm) qGL3 3 rs3_16733441 T/G 1.97E-73 Whole 2015–2017 GS3 [33]

3 rs3_16733441 T/G 8.65E-59 Xian 2015–2017

3 rs3_16733441 T/G 2.54E-15 Temperate geng 2016, 2017

3 rs3_16733441 T/G 5.16E-09 Tropical geng 2015–2017

3 rs3_16728308 C/T 4.75E-09 Aus 2016, 2017

qGL4 4 rs4_29308534 C/T 1.79E-06 Whole 2015, 2017

qGL5 5 rs5_5373491 A/G 2.49E-21 Whole 2015–2017 qSW5/GW5 [34]

5 rs5_5361894 A/G 2.09E-18 Xian 2015–2017

5 rs5_5351264 T/A 3.44E-08 Tropical geng 2016, 2017

5 rs5_5288638 G/A 2.58E-07 Aus 2015–2017

qGL7 7 rs7_28289869 T/C 4.62E-19 Whole 2015–2017 FZP [35]

7 rs7_28287400 C/G 7.12E-07 Xian 2016, 2017

7 rs7_28290297 G/A 1.40E-10 Tropical geng 2015–2017

7 rs7_28287280 A/G 7.82E-08 Basmati 2016, 2017

qGL10 10 rs10_13616240 A/C 1.19E-07 Whole 2015–2017

GW (mm) qGW3 3 rs3_16733441 T/G 6.82E-09 Whole 2015–2017 GS3 [33]

3 rs3_16717406 G/A 2.21E-08 Xian 2015–2017

qGW5 5 rs5_5371772 G/A 1.84E-77 Whole 2015–2017 qSW5/GW5 [34]

5 rs5_5361894 A/G 1.96E-71 Xian 2015–2017

5 rs5_5364791 T/C 3.73E-10 Temperate geng 2015–2017

5 rs5_5375786 G/A 2.07E-25 Tropical geng 2015–2017

5 rs5_5346606 T/A 2.16E-19 Aus 2015–2017

qGW7 7 rs7_24898274 A/T 2.59E-16 Whole 2015–2017 GL7/GW7 [11, 12]

7 rs7_24902815 A/G 3.17E-07 Tropical geng 2015–2017

qGW8 8 rs8_26504638 A/G 3.58E-10 Aus 2016, 2017 GW8 [13]

RLW qRLW1 1 rs1_3657795 A/G 1.42E-07 Aus 2015, 2017

qRLW3 3 rs3_16733441 T/G 2.50E-55 Whole 2015–2017 GS3 [33]

3 rs3_16733441 T/G 4.00E-43 Xian 2015–2017

3 rs3_16733441 T/G 4.11E-07 Temperate geng 2015–2017

3 rs3_16728485 G/C 6.65E-11 Tropical geng 2016, 2017

3 rs3_16686074 G/A 7.33E-08 Basmati 2015–2017

qRLW4 4 rs4_29317460 C/A 3.68E-09 Whole 2015–2017

4 rs4_29309086 C/G 1.14E-08 Aus 2015–2017
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Table 2 QTNs consistently identified for grain weight and grain shape in at least two years by GWAS (Continued)

Trait a QTN b Chr. Lead SNP c Allele d P-value Population/Subgroup Year of QTN detected Known gene

qRLW5 5 rs5_5371609 A/G 3.59E-69 Whole 2015–2017 qSW5/GW5 [34]

5 rs5_5361894 A/G 1.25E-67 Xian 2015–2017

5 rs5_5364791 T/C 9.49E-12 Temperate geng 2015–2017

5 rs5_5375793 G/A 5.48E-25 Tropical geng 2016, 2017

5 rs5_5375764 A/G 5.56E-15 Aus 2015–2017

qRLW7 7 rs7_24533303 T/C 4.89E-13 Whole 2015–2017 GL7/GW7 [11, 12]

7 rs7_24537476 C/T 3.67E-07 Xian 2015–2017

7 rs7_24902815 A/G 8.02E-07 Tropical geng 2016, 2017

qRLW8 8 rs8_26504638 A/G 1.17E-14 Aus 2015–2017 GW8 [13]
aTrait abbreviations are as given in the legend to Fig. 1
bA QTN was considered as a local LD block region where the significant trait-associated SNPs were located
cThe SNP with the minimum P-value
dMajor/Minor allele

Fig. 2 a High-density association analysis of qTGW3.1 in 2015, 2016, and 2017. The solid line indicates the threshold to determine significant SNP.
b-c Structure of candidate gene Os03g0186600 and haplotype analysis for TGW in the whole population and the 12 subgroups. Characters on top
of boxplots indicate significant differences based on Duncan’s multiple comparison tests (P < 0.05)
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Fig. 3 a High-density association analysis of qGL4/qRLW4 in 2015, 2016, and 2017. The solid line indicates the threshold to determine significant
SNP. b-c Structure of candidate gene Os04g0580700 and haplotype analysis for GL and RLW in the whole population and the 12 subgroups.
Characters on top of boxplots indicate significant differences based on Duncan’s multiple comparison tests (P < 0.05)
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while Hap2 was mainly present in the geng and aus acces-
sions (Fig. 4c; Additional file 1: Table S4 and Table S5).

Discussion
Abundant variations of grain weight and grain shape in
rice germplasm
Generally speaking, TGW, GL, and RLW vary greatly
among rice varieties, while GW and grain thickness
changed much less [5, 36–38]. In this study, the coeffi-
cient of variations of TGW, GL, GW, and RLW ranged
from 10.38 to 22.55 %, 7.56 % to 18.61, 6.73–13.84 %,
and 12.29–26.16 % in the 12 rice subgroups, respectively
(Additional file 1: Table S2). The basmati subgroup
showed the highest level of phenotypic variation for both
grain weight and grain shape, indicating its genetic di-
versity can be further exploited for rice breeding [39,
40]. Two xian subgroups, Xian-1 A and Xian-1B,
showed less phenotypic variation for grain weight and
grain shape than the other subgroups. For TGW, xian-
1B showed a mean value of 24.22 g that is close to
24.89 g in xian-1 A. For grain shape, xian-1B showed
significantly higher GL (8.73 mm versus 7.71 mm) and

RLW (3.34 versus 2.51), and significantly smaller GW
(2.65 mm versus 3.10 mm) than xian-1 A (Additional
file 1: Table S3). Interestingly, xian-1 A mainly consists
of landraces and is closely related phylogenetically to
xian-1B that largely consists of modern varieties [29].
These results suggest that many genes related to grain
shape have also been strongly selected for in xian-1B,
which is equivalent to the IndII group with various
breeding signatures caused by geographic adaptation
and accumulation of divergent selections in distinct
breeding pools [41].
Although dominant effects have also been detected in

some studies, most genes reported are predominantly
additive in effect for TGW, GL, GW, and RLW [3].
Compared with other grain shape traits, grain length is
the major determinant of grain weight [42]. In the
current study, we found six stable QTNs that had pleio-
tropic effects on grain shape and grain weight. For in-
stance, two QTNs (qTGW3.2/qGL3/qGW3/qRLW3 and
qTGW5/qGL5/qGW5/qRLW5) had pleiotropic effects on
all four traits, and qTGW7/qGL7 showed pleiotropic ef-
fects on grain weight and grain length. The power to

Fig. 4 a High-density association analysis of qRLW1 in 2015, 2016, and 2017. The solid line indicates the threshold to determine significant SNP.
b-c Structure of candidate gene Os01g0171000 and haplotype analysis for RLW in the whole population and the 12 subgroups. Characters on top
of boxplots indicate significant differences based on Duncan’s multiple comparison tests (P < 0.05)
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obtain different combinations of alleles conferring par-
ticular grain shapes and sizes from almost every sub-
group has implications for the improvement of yield and
grain quality, potentially enabling breeders to develop
high-yielding varieties with specific grain quality to sat-
isfy diverse quality requirements.

Identification of the favorable alleles among the
previously cloned genes
Comparisons of QTNs detected in this study with the
known genes for grain weight or grain shape were per-
formed within 1 Mb physical distance around the lead
SNP of each QTN based on the Nipponbare reference
genome IRGSP-1.0. Of the 11 QTNs, five were found to
co-locate in the same regions as previously cloned genes
related to grain weight or grain shape in rice (Table 2).
qTGW3.2/qGL3/qGW3/qRLW3 was mapped close to
GS3, a major gene for grain size previously identified in
the xian varieties [33]. qTGW5/qGL5/qGW5/qRLW5
covered qSW5/GW5 which regulates grain width and
weight [34]. qGW7/qLWR7 was co-located with GL7/
GW7 which controls GL and GW [11, 12]. qTGW7/
qGL7 was at the same position as the gene FZP which
regulates the number of spikelets per panicle, GL, and
TGW [35]. qGW8/qLWR8 was mapped close to GW8
which controls grain size and quality [13].
Notably, all the five cloned genes were detected in the

whole population and multiple subgroups except GW8,
which was only detected in the aus subgroup, suggesting
that functionally divergent alleles/haplotypes due to
abundant SNP variations should exist in these genes.
Despite these several important structural and functional
features have been revealed for these proteins in grain
size regulation [6, 11–13, 34, 35, 43], it is still of great
significance for breeding high yielding and good quality
rice varieties to discover the favorable alleles at these loci
in the different subgroups. In this study, haplotype ana-
lyses of GS3 has successfully identified the G (C) to T
(A) substitution at 16,733,441 bp on chromosome 3
which causes premature termination of the GS3 protein
and results in long grain [44, 45]. Other than GL, 824
accessions with Hap1 (TATG) of GS3 also showed sig-
nificantly higher means for both TGW and RLW than
the other haplotypes in the whole population and most
subgroups (Additional file 2, Fig. S8). Notably, Hap2
(GCGA) and Hap5 (GCTG) of GS3 were exclusively
present in the xian accessions while Hap3 (GATG) was
rarely present indicating that GS3 may be involved in
the xian–geng differentiation in rice (Additional file 2,
Fig. S8). For GW5, Hap4 (CGCGC) and Hap7 (CGCG-),
mainly represented by the tropical geng subgroup,
showed significantly higher GL, GW, and RLW than the
other haplotypes in the whole population (Additional file
2, Fig. S9). A total of 915 accessions with Hap1

(GAGACGAGA) of GL7 were predominantly assigned
to the xian subgroups while 475 accessions carrying the
Hap2 (ACCGACGAG) of GL7 were largely in the geng
subgroups (Additional file 2, Fig. S10). In the whole
population, Hap2 of GL7 showed significantly higher
mean TGW, GL, and GW than Hap1 while Hap1
showed significantly higher mean RLW than that of
Hap2 (Additional file 2, Fig. S10). For FZP, Hap2 (A)
displayed a significantly higher mean GL and RLW and
significantly lower GW than Hap1 (G) in the whole
population (Additional file 2, Fig. S11). Eight haplotypes
of GW8 were classified by eight SNPs (Additional file 2,
Fig. S12). A total of 124 accessions belonged to the geng
type were assigned in Hap4 (TGCGTGTA) which ex-
hibits the highest TGW, GL, and GW in the whole
population. So far, these genes have been widely used in
breeding programs, mining of their favorable haplo-
types/alleles may facilitate the rational design of grain
shape and weight.

New candidate genes and their future application for
improvement of grain yield and quality in rice breeding
Of the three major components (panicle number per
plant, number of grains per panicle, and grain weight) of
rice yield, grain weight is the most stable and heritable
trait, which is measured as the TGW. Moreover, three of
the main parameters (GL, GW, and RLW) of grain are
positively correlated with grain weight [3]. Meanwhile,
grain shape is an important quality trait that affects the
market value of rice products. In the current study,
seven promising genes located in the six new QTNs for
grain weight and grain shape were identified using a
large natural population with 2,453 accessions (Table 3).
For qRLW1, Os01g0171000 encodes a BRASSINOSTER-
OID INSENSITIVE 1 (BRI1)-Associated receptor Kinase
(BAK). Several components of the BR signaling pathway
in rice, such as OsBRI1 (Brassinosteroid-Insensitive1)
[46], OsBAK1 (BRI1-Associated receptor Kinase1) [47,
48], and SERK2 [49] have been proven to regulate plant
architecture including grain size. Os03g0186600 under-
lying qTGW3.1 is annotated as OsMDP1 which nega-
tively regulates brassinosteroid (BR) signaling [50].
Several cloned genes, such as GW5 [34], GS5 [51], and
GL3.1/qGL3 [52] were also suggested to regulate grain
size through the BR signalling pathway. Elucidating the
molecular mechanisms of Os01g0171000 and
Os03g0186600 is essential to make certain of their roles
in mediating BR signalling and grain size. The candidate
gene Os04g0580700 for qGL4/qRLW4 encodes a rice
MADS-box transcription factor OsMADS17. Two genes
related to grain size, OsLG3b (OsMADS1) and FZP,
regulate the expression of OsMADS17 [53–55], indicat-
ing that Os04g0580700 may have latent impacts on grain
shape and weight.
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The haplotypes of genes related to grain weight and
grain shape and their distribution in different subgroups
obtained in this study can provide more options for
breeding by molecular design. When combined with the
Kompetitive Allele Specific PCR (KASP) technique [56],
breeders can efficiently pyramid favorable alleles of mul-
tiple genes that control grain weight and grain shape in
rice. Furthermore, precise genome-editing techniques in
plants are an alternative important tool for molecular
plant breeding [57, 58]. The application of the CRISPR/
Cas9-derived system on GW5 has proven that genome-
editing can verify the result of GWAS precisely in a
short time [34]. Thus, the favorable haplotypes detected
in this study and their further verified functional SNPs
will provide useful resources for precise gene editing
breeding. Here, we listed dozens of elite rice accessions
with combinations of favorable haplotypes of the seven
new candidate genes and five well-known genes (Add-
itional file 1: Table S6). For instance, ‘KHAO’ NGAW’
(TGW= 42.76 g, GL = 11.33mm), which is from
Thailand and belongs to the subtropical geng subgroup,
carryies the favorable haplotypes of GS3, GW8, and
Os03g0186600 for TGW and GL. ‘Diandun 502’ (TGW=
34.04 g, RLW = 3.41) and ‘Mengguandamagu’ (TGW=
33.12 g, RLW = 3.39) are both from China and belong to
the intermediate xian subgroup, with the favorable
haplotypes of GS3, Os03g0186600, Os09g0544400, and
Os10g0399700 for TGW and GL. ‘UP15’ (TGW=
32.29 g, RLW = 3.62) is from Japan and belongs to bas-
mati subgroup, carrying the favorable haplotypes of
Os01g0171000 and Os09g0544400 for RLW and TGW.
‘RACHANDRABHOG’ (TGW= 31.36 g, RLW = 3.73)
from India belongs to xian-2 subgroup, carrying the fa-
vorable haplotypes of GS3, FZP, and Os01g0171000 for
TGW, GL and RLW. These accessions with high TGW
(> 30 g) and RLW (> 3.0) could be used as donor parents
for rice breeding and as genetic materials for further
functional research.

Conclusions
There was significant variation in grain weight and grain
shape among the 12 rice subgroups that allowed the

identification of favourable genes and haplotypes influ-
encing these important traits. Six new QTNs (qTGW3.1,
qTGW9, qTGW11, qGL4/ qRLW4, qGL10, and qRLW1)
were identified for grain weight and grain shape by
GWAS in a large natural population, and seven candi-
date genes were screened via high-density association
and gene-based haplotype analyses. The results enhance
our understanding of the genetic basis of grain weight
and grain shape in rice and provide valuable information
for elucidating the molecular mechanisms underlying
these traits. The exploitation of favorable haplotypes and
germplasm resources will be useful for improving rice
grain yield and grain quality by molecular breeding.

Methods
Plant materials
A total of 2,453 accessions (Additional file 1: Table S1)
from the 3 K RGP were used to test the association be-
tween the SNP genotype and phenotype of grain weight
and grain shape. Based on the known population struc-
ture [29], these accessions belong to 12 subgroups, in-
cluding aus (182 accessions), basmati (61 accessions),
intermediate (81), intermediate geng (77 accessions),
subtropical geng (79 accessions), temperate geng (260 ac-
cessions), tropical geng (291 accessions), xian-1 A (206
accessions), xian-1B (181 accessions), xian-2 (246 acces-
sions), xian-3 (257 accessions) and intermediate xian
(532 accessions).

Field trials and trait measurements
All accessions were grown at Sanya, China (18.3 N,
109.3 E) for three consecutive years from 2015 to 2017.
Seeds were surface sterilized and approximately 100
seeds of each accession were sowed on 8 November
2015, 5 November 2016, and 20 November 2017. At 25
days after sowing, the seedlings were transplanted into a
three-row plot with 10 individuals in each row at a spa-
cing of 20 cm × 25 cm. Field trials were carried out fol-
lowing a randomized complete block design with two
replications in each year. The field management followed
the local farmers’ standard practices. At the full-ripe
stage (about 40 days after flowering), seeds of eight

Table 3 List of 7 candidate genes associated with grain weight and grain shape

QTN Candidate genea Function

qTGW3.1 Os03g0186600 OsMDP1, MADS-box transcription factor

qTGW9 Os09g0544400 Glutathione S-transferase, C-terminal domain containing protein

qTGW11 Os11g0163600 OsFBT13-F-box and tubby domain containing protein

qGL4/qRLW4 Os04g0580700 OsMADS17, MADS-box family gene

qGL10 Os10g0399700 Cystathionine gamma-synthase

Os10g0400100 Methionyl-tRNA synthetase

qRLW1 Os01g0171000 BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase
aGene names from the Rice Genome Annotation Project Database based on the Nipponbare reference genome IRGSP-1.0
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plants in the middle of each plot were bulk harvested
and air-dried in the screen house until reaching a con-
stant seed weight.
The method of trait measurement using the auto-

matic seed counting and analyzing instrument (Model
SC-G, Hangzhou Wanshen Detection Technology Co.,
Ltd., Hangzhou, China, http://www.wseen.com/) has
been described before [6, 59]. Briefly, at least 300
fully-filled seeds of each accession were scattered
evenly on a flat-bed scanner (30 cm × 25 cm) and
imaged with a high-resolution camera. The seeds
number, GL in mm, GW in mm and RLW were cal-
culated by analyzing the image via the grain analyzer
software using the rice model. Then the weight of
these seeds was measured using a high precision elec-
tronic balance (1/1000, APTP456 series) and the
TGW in grams was subsequently calculated. The
scanner was calibrated with a calibration target before
each measurement.

Statistical analyses of phenotypic data
The R package ‘lme4’ [60] was used to obtain the best
linear unbiased estimate (BLUE) for each genotype-
environment combination and variance components
using linear mixed models. Genotype and replication
were treated as a fixed effect and a random effect for
single-environment analysis, respectively. The BLUEs of
each year were subsequently calculated and used for
analysis of variance (ANOVA) and GWAS. Variance
components were estimated using multi-environment
analysis with genotype treated as a fixed effect while en-
vironment, replicate within an environment and
genotype-by-environment interaction treated as random
effects. The narrow-sense heritability (h2) was estimated
as: h2 = Vg/(Vg +Vgei/s + Ve/sr), where Vg, Vgei, and Ve

are the variance contributed by genotype, genotype-by-
environment interaction, and residual error, respectively,
while s is the number of environments and r is the num-
ber of replicates. Then, the BLUEs of three years for
each accession were calculated and used for computing
the Pearson’s correlation coefficients among traits with
the ‘Hmisc’ package in R. One-way ANOVA followed by
Duncan’s multiple range test were used for statistical
comparisons across multiple means of TGW, GL, GW,
and RLW among the 12 rice subgroups by the ‘agricolae’
package in R.

Genome-wide association mapping
We conducted association studies to identify genome-
wide signals associated with grain weight and grain
shape in the whole population and five major subgroups,
aus, basmati, xian (including xian-1A, xian-1B, xian-2,
xian-3, and intermediate xian), temperate geng, and
tropical geng, to minimize the impact of population

structure on the power of GWAS. The 4.8 M SNP data-
set of 3K RGP was downloaded from the Rice SNP-Seek
Database [61]. After filtering out SNPs with a missing
rate of more than 20 % or with a minor allele frequency
(MAF) less than 5 % using PLINK software [62] with the
parameter ‘--geno 0.2’, and ‘ --maf 0.05’, a total of
3,343,302, 2,240,362, 865,777, 1,548,277, 1,884,822,and
1,728,815 SNPs were retained for GWAS in the whole
population, xian, temperate geng, tropical geng, aus and
basmati subgroups, respectively.
A single-locus GWAS was performed with a linear

mixed model to determine the association between each
SNP and the measured phenotypes by an efficient
mixed-model analysis with EMMA eXpedited (EMMAX)
software [63]. The kinship matrix was generated using
an identical-by-state matrix based on the subset of
genome-wide SNP data with the ‘indep-pairwise 50 10
0.1’ parameter in PLINK to account for the relatedness
among accessions. The first three principal components
were used as covariates (Q-matrix) to control population
structure. The effective number of independent markers
(N) was calculated using the GEC software [64] and sug-
gestive P-value thresholds of association (1/N) were
1.76E-6, 2.40E-6, 1.03E-5, 5.63E-6, 4.08E-6, and 5.93E-6
for the whole population, xian, temperate geng, tropical
geng, aus, and basmati, respectively. These suggestive P-
value thresholds were used to claim significant SNP-trait
associations/QTNs for the whole population and the five
subgroups, respectively. Manhattan and quantile-
quantile (Q–Q) plots of GWAS were created by the R
package ‘qqman’ [65].

Linkage Disequilibrium (LD) decay estimates
We calculated r2, an estimation of LD, using PLINK
software with the parameter ‘–r2 –ld-window-kb 1000 –
ld-window 99999 –ld-window-r2 0’. The LD decay rate
was measured as the chromosomal distance at which the
average r2 dropped to half of its maximum value. The
LD block harboring significant trait-associated SNPs was
defined as the candidate region for each QTN, and the
SNP with the minimum P-value within an LD block was
considered as the lead SNP.

Candidate gene identification
High-density association and gene-based haplotype ana-
lyses were carried out to detect candidate genes for
stable QTNs that could be detected in at least two years
and were newly identified in our study. The following five
steps were conducted to identify candidate genes for each
QTN: 1) all available SNPs located in the QTN region
were acquired from 29 M SNPs data of 3K RGP in the
Rice SNP-Seek Database [61]; 2) the SNPs were filtered
with the aforementioned parameters and the remaining
high-quality SNPs were used to perform high-density
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association analyses through EMMAX software; 3) the
gene with the most significant hit within a local LD block
constructed around the stable QTNs was screened as the
candidate gene. The R package ‘LDheatmap’ [66] was used
to draw the heatmap of pairwise LDs; 4) the annotated
genes from the Rice Genome Annotation Project Database
(RAP-DB) [67] that harbor the significant SNPs were se-
lected as the candidate genes; 5) gene-based haplotype
analysis was carried out for each candidate gene. The
SNPs within 2 kb of the upstream promoter region, 3’ un-
translated region (UTR), and 5’ UTR, as well as non-
synonymous SNPs in the coding regions of a candidate
gene, were concatenated as the haplotype. Only major
haplotypes of each candidate gene carried by at least 15
accessions in the whole population and at least 5 acces-
sions in subgroups were used for multiple comparisons.
BLUEs of three years were applied for the multiple com-
parisons of the major haplotypes. Duncan’s multiple com-
parison tests (5 % significance level) followed by one-way
ANOVA were completed with the ‘agricolae’ package
in R.

Abbreviations
TGW: Thousand grain weight; GL: Grain length; GW: Grain width; RLW: Ratio
of grain length to grain width; 3 K RGP: 3,000 Rice Genome Project;
ANOVA: Analysis of variance; GWAS: Genome-wide association study;
QTL: Quantitative trait locus/loci; QTNs: Quantitative trait nucleotides;
SNP: Single nucleotide polymorphism; MAF: Minor allele frequency;
kb: Kilobyte; Mb: Megabyte; LD: Linkage disequilibrium; CDS: Coding DNA
sequence; UTR: Untranslated region

Supplementary Informationok
The online version contains supplementary material available at https://doi.
org/10.1186/s12864-021-07901-x.

Additional file 1: Table S1. Summary of 2,453 rice accessions used in
our study. Table S2. Analysis of the variance in traits related to grain
weight and grain shape. Table S3. Performance of grain weight and
grain shape in different subgroups. Table S4. ANOVA for haplotypes of 7
candidate genes associated with grain weight and grain shape in the
whole population and each subgroup. Table S5. Haplotype analyses of
candidate genes associated with grain weight and grain shape. Table
S6. Elite accessions with high TGW and RLW. Table S7. Raw
phenotyping data of 2453 accessions collected in 2015, 2016 and 2017.

Additional file 2: Figure S1. Comparison of LD decay in the whole
population and five major subgroups. Y axis was the average r2 values of
each 1 Mb region and X axis was physical distance between markers in
unit of Mb. Figure S2. A F. Manhattan and QQ plots for TGW, GL, GW
and RLW of the whole population (S2A), aus subgroup (S2B), basmati
subgroup (S2C), xiansubgroup (S2D), temperate gengsubgroup (S2E),
tropical gengsubgroup (S2F) in 2015. Figure S3. A F. Manhattan and
QQ plots for TGW, GL, GW and RLW of the whole subgroup (S3A), aus
subgroup (S3B), basmati subgroup (S3C), xian subgroup (S3D), temperate
geng subgroup (S3E), tropical geng subgroup (S3F) in 2016.Figure S4.
A F. Manhattan and QQ plots for TGW, GL, GW and RLW of the whole
subgroup (S4A), aus subgroup (S4B), basmati subgroup (S4C), xian
subgroup (S4D), temperate geng subgroup (S4E), tropical geng subgroup
(S4F) in 2017. Figure S5. (a) High-density association analysis of qTGW9
in 2015, 2016, and 2017. The solid line indicates the threshold to deter-
mine significant SNP. (b-c) Gene structural of candidate gene
Os09g0544400 and haplotype analysis for TGW in the whole population
and the 12 subgroups. Characters on top of boxplots indicate significant

differences based on Duncan’s multiple comparison tests (P < 0.05). Fig-
ure S6. High-density association analysis of qTGW11 in 2015, 2016, and
2017. The solid line indicates the threshold to determine significant SNP.
(b-c) Gene structural of candidate geneOs11g0163600 and haplotype ana-
lysis for TGW in the whole population and the 12 subgroups. Characters
on top of boxplots indicate significant differences based on Duncan’s
multiple comparison tests (P < 0.05). Figure S7. (a) High-density associ-
ation analysis of qGL10 in 2015, 2016, and 2017. The solid line indicates
the threshold to determine significant SNP. (b c) Gene structural of can-
didate genes Os10g0399700 and Os10g0400100, and haplotype analyses
for GL in the whole population and the 12 subgroups. Characters on top
of boxplots indicate significant differences based on Duncan’s multiple
comparison tests (P < 0.05). Figure S8. Haplotypes analysis ofGS3.Error
bars, standard error of the mean (SEM). Characters on top of boxplots in-
dicate significant differences based on Duncan’s multiple comparison
tests (P< 0.05). Figure S9. Haplotypes analysis of GW5.Error bars, standard
error of the mean (SEM). Characters on top of boxplots indicate signifi-
cant differences based on Duncan’s multiple comparison tests (P < 0.05).
Figure S10. Haplotypes analysis ofGL7.Error bars, standard error of the
mean (SEM). Characters on top of boxplots indicate significant differences
based on Duncan’s multiple comparison tests (P< 0.05). Figure S11.
Haplotypes analysis of FZP.Error bars, standard error of the mean (SEM).
Characters on top of boxplots indicate significant differences based on
Duncan’s multiple comparison tests (P < 0.05). Figure S12. Haplotypes
analysis ofGW8.Error bars, standard error of the mean (SEM). Characters
on top of boxplots indicate significant differences based on Duncan’s
multiple comparison tests (P< 0.05).

Acknowledgements
We would like to thank Professor Meixue Zhou (Tasmanian Institute of
Agriculture, University of Tasmania) for his critical reading of the manuscript
and suggestions on data analysis. We also thank Guoliang Cao for field
management, and Laiyuan Zhai for seed collection.

Authors’ contributions
JX conceived and supervised the study; YN, KC, CS, ZW, HC, SZ collected
data; YN, TC, CW, and TZ conducted analyses; YN and TC wrote the
manuscript; FZ and JX revised the manuscript. All authors read and
approved the final manuscript.

Funding
This work was funded by the National Key R&D Program of China
(2017YFD0102002, 2017YFD0100100),the 863 Key Project from the Chinese
Ministry of Science & Technology (Grant No. 2014AA10A601), and the
Agricultural Science and Technology Innovation Program and the
Cooperation and Innovation Mission (Grant No. CAAS-ZDXT202101). The
funding bodies played no role in the design of the study and collection, ana-
lysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
The 4.8 M and 29 M SNP datasets used and/or analyzed during the current
study are available from the Rice SNP-Seek Database (https://snp-seek.irri.
org/_download.zul). The phenotype dataset used during the current study is
provided in the Addational file 1: Table S7.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no conflict interests.

Author details
1Institute of Crop Sciences, National Key Facility for Crop Gene Resources
and Genetic Improvement, Chinese Academy of Agricultural Sciences,
100081 Beijing, China. 2Tasmanian Institute of Agriculture, University of

Niu et al. BMC Genomics          (2021) 22:602 Page 12 of 14

https://doi.org/10.1186/s12864-021-07901-x
https://doi.org/10.1186/s12864-021-07901-x
https://snp-seek.irri.org/_download.zul
https://snp-seek.irri.org/_download.zul


Tasmania, 7250 Prospect, TAS, Australia. 3Guangdong Laboratory of Lingnan
Modern Agriculture, Genome Analysis Laboratory of the Ministry of
Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy
of Agricultural Sciences, Shenzhen, China. 4Pingxiang Institute of Agricultural
Sciences, 337000 Pingxiang, China.

Received: 24 December 2020 Accepted: 20 July 2021

References
1. Ray DK, Mueller ND, West PC, Foley JA. Yield trends are insufficient to

double global crop production by 2050. PLoS One. 2013;8(6):e66428.
2. Gong J, Miao J, Zhao Y, Zhao Q, Feng Q, Zhan Q, Cheng B, Xia J, Huang X,

Yang S, et al. Dissecting the genetic basis of grain shape and chalkiness
traits in hybrid rice using multiple collaborative populations. Mol Plant.
2017;10(10):1353–6.

3. Tan Y, Xing Y, Li J, Yu S, Xu C, Zhang Q. Genetic bases of appearance
quality of rice grains in Shanyou 63, an elite rice hybrid. Theor Appl Genet.
2000;101(5):823–9.

4. Liu X, Mou C, Zhou C, Cheng Z, Jiang L, Wan J. Research progress on
cloning and regulation mechanism of rice grain shape genes. Chin J Rice
Sci. 2018;32(1):1–11.

5. Huang R, Jiang L, Zheng J, Wang T, Wang H, Huang Y, Hong Z. Genetic
bases of rice grain shape: so many genes, so little known. Trends Plant Sci.
2013;18(4):218–26.

6. Zhang L, Ma B, Bian Z, Li X, Zhang C, Liu J, Li Q, Liu Q, He Z. Grain size
selection using novel functional markers targeting 14 genes in rice. Rice.
2020;13(1):63.

7. Zhao D-S, Li Q-F, Zhang C-Q, Zhang C, Yang Q-Q, Pan L-X, Ren X-Y, Lu J, Gu
M-H, Liu Q-Q. GS9 acts as a transcriptional activator to regulate rice grain
shape and appearance quality. Nat Commun. 2018;9(1):1240.

8. Guo T, Chen K, Dong N-Q, Shi C-L, Ye W-W, Gao J-P, Shan J-X, Lin H-X.
GRAIN SIZE AND NUMBER1 negatively regulates the OsMKKK10-OsMKK4-
OsMPK6 cascade to coordinate the trade-off between grain number per
panicle and grain size in rice. Plant Cell. 2018;30(4):871.

9. Zuo J, Li J. Molecular genetic dissection of quantitative trait loci regulating
rice grain size. Annu Rev Genet. 2014;48:99–118.

10. Song X, Huang W, Shi M, Zhu M, Lin H. A QTL for rice grain width and
weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat
Genet. 2007;39(5):623–30.

11. Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao
C, et al. The OsSPL16-GW7 regulatory module determines grain shape and
simultaneously improves rice yield and grain quality. Nat Genet. 2015;47(8):
949–54.

12. Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, et al.
Copy number variation at the GL7 locus contributes to grain size diversity in
rice. Nat Genet. 2015;47(8):944–8.

13. Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q,
et al. Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet.
2012;44(8):950–4.

14. Singh R, Singh AK, Sharma TR, Singh A, Singh NK. Fine mapping of grain
length QTLs on chromosomes 1 and 7 in Basmati rice (Oryza sativa L.). J
Plant Biochem Biotechnol. 2012;21(2):157–66.

15. Kato T, Segami S, Toriyama M, Kono I, Ando T, Yano M, Kitano H, Miura K,
Iwasaki Y. Detection of QTLs for grain length from large grain rice (Oryza
sativa L.). Breed Sci. 2011;61(3):269–74.

16. Qiu X, Gong R, Tan Y, Yu S. Mapping and characterization of the major
quantitative trait locus qSS7 associated with increased length and
decreased width of rice seeds. Theor Appl Genet. 2012;125(8):1717–26.

17. Oh J-M, Balkunde S, Yang P, Yoon D-B, Ahn S-N. Fine mapping of grain
weight QTL, tgw11 using near isogenic lines from a cross between Oryza
sativa and O. grandiglumis. Genes Genomics. 2011;33(3):259–65.

18. Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang
Z, et al. Genome-wide association studies of 14 agronomic traits in rice
landraces. Nat Genet. 2010;42(11):961–76.

19. Zhao K, Tung C-W, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ,
Islam MR, Reynolds A, Mezey J, et al. Genome-wide association mapping
reveals a rich genetic architecture of complex traits in Oryza sativa. Nat
Commun. 2011;2(1):467.

20. Crowell S, Korniliev P, Falcão A, Ismail A, Gregorio G, Mezey J, McCouch S.
Genome-wide association and high-resolution phenotyping link Oryza

sativa panicle traits to numerous trait-specific QTL clusters. Nat Commun.
2016;7(1):10527.

21. Huang X, Zhao Y, Wei X, Li C, Wang A, Zhao Q, Li W, Guo Y, Deng L, Zhu C,
et al. Genome-wide association study of flowering time and grain yield
traits in a worldwide collection of rice germplasm. Nat Genet. 2012;44(1):32–
9.

22. Yano K, Yamamoto E, Aya K, Takeuchi H, Lo P-c, Hu L, Yamasaki M, Yoshida
S, Kitano H, Hirano K, et al. Genome-wide association study using whole-
genome sequencing rapidly identifies new genes influencing agronomic
traits in rice. Nat Genet. 2016;48(8):927–34.

23. Si L, Chen J, Huang X, Gong H, Luo J, Hou Q, Zhou T, Lu T, Zhu J,
Shangguan Y, et al. OsSPL13 controls grain size in cultivated rice. Nat Genet.
2016;48(4):447–56.

24. Yu J, Xiong H, Zhu X, Zhang H, Li H, Miao J, Wang W, Tang Z, Zhang Z, Yao
G, et al. OsLG3 contributing to rice grain length and yield was mined by
Ho-LAMap. BMC Biol. 2017;15(1):28.

25. Duan P, Xu J, Zeng D, Zhang B, Geng M, Zhang G, Huang K, Huang L, Xu R,
Ge S, et al. Natural variation in the promoter of GSE5 contributes to grain
size diversity in rice. Mol Plant. 2017;10(5):685–94.

26. Ma X, Feng F, Zhang Y, Elesawi IE, Xu K, Li T, Mei H, Liu H, Gao N, Chen C,
et al. A novel rice grain size gene OsSNB was identified by genome-wide
association study in natural population. PLOS Genetics. 2019;15(5):e1008191.

27. McCouch SR, Wright MH, Tung C-W, Maron LG, McNally KL, Fitzgerald M,
Singh N, DeClerck G, Agosto-Perez F, Korniliev P, et al. Open access
resources for genome-wide association mapping in rice. Nat Commun.
2016;7(1):10532.

28. Zhai L, Zheng T, Wang X, Wang Y, Chen K, Wang S, Wang Y, Xu J, Li Z. QTL
mapping and candidate gene analysis of peduncle vascular bundle related
traits in rice by genome-wide association study. Rice. 2018;11(1):13.

29. Wang W, Mauleon R, Hu Z, Chebotarov D, Tai S, Wu Z, Li M, Zheng T,
Fuentes RR, Zhang F, et al. Genomic variation in 3,010 diverse accessions of
Asian cultivated rice. Nature. 2018;557(7703):43–9.

30. The-3K-rice-genomes-project. The 3,000 rice genomes project. GigaScience.
2014;3(1):2047–217X.

31. Zheng T, Yu H, Zhang H, Wu Z, Wang W, Tai S, Chi L, Ruan J, Wei C, Shi J.
Rice functional genomics and breeding database (RFGB)-3K-rice SNP and
InDel sub-database. Chin Sci Bull. 2015;60(4):367–71.

32. Wang C, Yu H, Huang J, Wang W, Faruquee M, Zhang F, Zhao X, Fu B, Chen
K, Zhang H, et al. Towards a deeper haplotype mining of complex traits in
rice with RFGB v2.0. Plant Biotechnol J. 2020;18(1):14–6.

33. Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q. GS3, a major QTL for
grain length and weight and minor QTL for grain width and thickness in
rice, encodes a putative transmembrane protein. Theor Appl Genet. 2006;
112(6):1164–71.

34. Liu J, Chen J, Zheng X, Wu F, Lin Q, Heng Y, Tian P, Cheng Z, Yu X, Zhou K,
et al. GW5 acts in the brassinosteroid signalling pathway to regulate grain
width and weight in rice. Nature Plants. 2017;3(5):17043.

35. Bai X, Huang Y, Hu Y, Liu H, Zhang B, Smaczniak C, Hu G, Han Z, Xing Y.
Duplication of an upstream silencer of FZP increases grain yield in rice. Nat
Plants. 2017;3(11):885–93.

36. Qiu X, Pang Y, Yuan Z, Xing D, Xu J, Dingkuhn M, Li Z, Ye G. Genome-
wide association study of grain appearance and milling quality in a
worldwide collection of Indica rice germplasm. PLOS ONE. 2016;10(12):
e0145577.

37. Ngangkham U, Samantaray S, Yadav MK, Kumar A, Chidambaranathan P,
Katara JL. Effect of multiple allelic combinations of genes on regulating
grain size in rice. PLOS ONE. 2018;13(1):e0190684.

38. Liu C, Song J, Wang Y, Huang X, Zhang F, Wang W, Xu J, Zhang Y, Yu H,
Pang Y, et al. Rapid prediction of head rice yield and grain shape for
genome-wide association study in indica rice. J Cereal Sci. 2020;96:103091.

39. Jain S, Jain RK, McCouch SR. Genetic analysis of Indian aromatic and quality
rice (Oryza sativa L.) germplasm using panels of fluorescently-labeled
microsatellite markers. Theor Appl Genet. 2004;109(5):965–77.

40. Roy S, Banerjee A, Mawkhlieng B, Misra AK, Pattanayak A, Harish GD, Singh
SK, Ngachan SV, Bansal KC. Genetic diversity and population structure in
aromatic and quality rice (Oryza sativa L.) landraces from North-eastern
India. PloS one. 2015;10(6):e0129607-7.

41. Xie W, Wang G, Yuan M, Yao W, Lyu K, Zhao H, Yang M, Li P, Zhang X, Yuan
J, et al. Breeding signatures of rice improvement revealed by a genomic
variation map from a large germplasm collection. Proc Natl Acad Sci. 2015;
112(39):E5411.

Niu et al. BMC Genomics          (2021) 22:602 Page 13 of 14



42. Shi C, Shen Z. Additive and dominance correlation analysis of grain shape
and yield traits in Indica rice. Acta Agronomica Sinica. 1996;22(1):36–42.

43. Mao H, Sun S, Yao J, Wang C, Yu S, Xu C, Li X, Zhang Q. Linking differential
domain functions of the GS3 protein to natural variation of grain size in rice.
Proc Natl Acad Sci USA. 2010;107(45):19579–84.

44. Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H,
Padhukasahasram B, Bustamante C, Yoshimura A, Doi K, et al. Evolutionary
history of GS3, a gene conferring grain length in rice. Genetics. 2009;182(4):
1323.

45. Fan C, Yu S, Wang C, Xing Y. A causal C–A mutation in the second exon of
GS3 highly associated with rice grain length and validated as a functional
marker. Theor Appl Genet. 2009;118(3):465–72.

46. Morinaka Y, Sakamoto T, Inukai Y, Agetsuma M, Kitano H, Ashikari M,
Matsuoka M. Morphological alteration caused by brassinosteroid
insensitivity increases the biomass and grain production of rice. Plant
Physiol. 2006;141(3):924–31.

47. Li D, Wang L, Wang M, Xu Y-Y, Luo W, Liu Y-J, Xu Z-H, Li J, Chong K.
Engineering OsBAK1 gene as a molecular tool to improve rice architecture
for high yield. Plant Biotechnol J. 2009;7(8):791–806.

48. Yuan H, Fan S, Huang J, Zhan S, Wang S, Gao P, Chen W, Tu B, Ma B, Wang
Y, et al. SG2/OsBAK1 regulates grain size and number, and functions
differently in Indica and Japonica backgrounds in rice. Rice. 2017;08(1):25.

49. Dong N, Yin W, Liu D, Zhang X, Yu Z, Huang W, Liu J, Yang Y, Meng W, Niu
M, et al. Regulation of brassinosteroid signaling and salt resistance by SERK2
and potential utilization for crop improvement in rice. Front Plant Sci. 2020;
11:621859.

50. Duan K, Li L, Hu P, Xu S, Xu Z, Xue H. A brassinolide-suppressed rice MADS-
box transcription factor, OsMDP1, has a negative regulatory role in BR
signaling. Plant J. 2006;47(4):519–31.

51. Xu C, Liu Y, Li Y, Xu X, Xu C, Li X, Xiao J, Zhang Q. Differential expression of
GS5 regulates grain size in rice. J Exp Bot. 2015;66(9):2611–23.

52. Zhang X, Wang J, Huang J, Lan H, Wang C, Yin C, Wu Y, Tang H, Qian Q, Li
J, et al. Rare allele of OsPPKL1 associated with grain length causes extra-
large grain and a significant yield increase in rice. Proc Natl Acad Sci. 2012;
109(52):21534–9.

53. Hu Y, Liang W, Yin C, Yang X, Ping B, Li A, Jia R, Chen M, Luo Z, Cai Q, et al.
Interactions of OsMADS1 with floral homeotic genes in rice flower
development. Mol Plant. 2015;8(9):1366–84.

54. Bai X, Huang Y, Mao D, Wen M, Zhang L, Xing Y. Regulatory role of FZP in
the determination of panicle branching and spikelet formation in rice. Sci
Rep. 2016;6(1):19022.

55. Yu J, Miao J, Zhang Z, Xiong H, Zhu X, Sun X, Pan Y, Liang Y, Zhang Q,
Abdul Rehman RM, et al. Alternative splicing of OsLG3b controls grain
length and yield in japonica rice. Plant Biotechnol J. 2018;16(9):1667–78.

56. Semagn K, Babu R, Hearne S, Olsen M. Single nucleotide polymorphism
genotyping using Kompetitive Allele Specific PCR (KASP): overview of the
technology and its application in crop improvement. Mol Breeding. 2014;
33(1):1–14.

57. Zhang Y, Pribil M, Palmgren M, Gao C. A CRISPR way for accelerating
improvement of food crops. Nature Food. 2020;1(4):200–5.

58. Zhang Y, Massel K, Godwin ID, Gao C. Applications and potential of
genome editing in crop improvement. Genome Biol. 2018;19(1):210.

59. Li J, Zhao J, Li Y, Gao Y, Hua S, Nadeem M, Sun G, Zhang W, Hou J, Wang X,
et al. Identification of a novel seed size associated locus SW9-1 in soybean.
Crop J. 2019;7(4):548–59.

60. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models
using lme4. J Statistical Software. 2015;67(1):1–48.

61. Alexandrov N, Tai S, Wang W, Mansueto L, Palis K, Fuentes RR, Ulat VJ,
Chebotarov D, Zhang G, Li Z, et al. SNP-Seek database of SNPs derived from
3000 rice genomes. Nucleic Acids Res. 2015;43(D1):D1023–7.

62. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller
J, Sklar P, de Bakker PIW, Daly MJ, et al. PLINK: A tool set for whole-genome
association and population-based linkage analyses. Am J Hum Genet. 2007;
81(3):559–75.

63. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong S-y, Freimer NB, Sabatti C,
Eskin E. Variance component model to account for sample structure in
genome-wide association studies. Nat Genet. 2010;42(4):348–54.

64. Li M-X, Yeung JMY, Cherny SS, Sham PC. Evaluating the effective numbers
of independent tests and significant p-value thresholds in commercial
genotyping arrays and public imputation reference datasets. Hum Genet.
2012;131(5):747–56.

65. Turner SD. qqman: an R package for visualizing GWAS results using QQ and
manhattan plots. J Open Source Software. 2018;3(25):731.

66. Shin J-H, Blay S, McNeney B, Graham J. LDheatmap: an R function for
graphical display of pairwise linkage disequilibria between single nucleotide
polymorphisms. Journal of statistical software. 2006;16(3):1–10.

67. Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR,
Ouyang S, Schwartz DC, Tanaka T, Wu J, Zhou S, et al. Improvement of the
Oryza sativa Nipponbare reference genome using next generation
sequence and optical map data. Rice. 2013;6(1):4.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Niu et al. BMC Genomics          (2021) 22:602 Page 14 of 14


	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Phenotypic variations and correlations
	Genome-wide LD patterns and QTN detection by GWAS
	Candidate genes identification and haplotype analyses

	Discussion
	Abundant variations of grain weight and grain shape in rice germplasm
	Identification of the favorable alleles among the previously cloned genes
	New candidate genes and their future application for improvement of grain yield and quality in rice breeding

	Conclusions
	Methods
	Plant materials
	Field trials and trait measurements
	Statistical analyses of phenotypic data
	Genome-wide association mapping
	Linkage Disequilibrium (LD) decay estimates
	Candidate gene identification
	Abbreviations

	Supplementary Informationok
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

