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1 Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Str.,
41-819 Zabrze, Poland; mfaisal-amin@cmpw-pan.edu.pl

2 Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland; agpajak@us.edu.pl
* Correspondence: pgnida@cmpw-pan.edu.pl (P.G.); bjarzabek@cmpw-pan.edu.pl (B.J.)

Abstract: Third-generation solar cells, including dye-sensitized solar cells, bulk-heterojunction
solar cells, and perovskite solar cells, are being intensively researched to obtain high efficiencies
in converting solar energy into electricity. However, it is also important to note their stability over
time and the devices’ thermal or operating temperature range. Today’s widely used polymeric
materials are also used at various stages of the preparation of the complete device—it is worth
mentioning that in dye-sensitized solar cells, suitable polymers can be used as flexible substrates
counter-electrodes, gel electrolytes, and even dyes. In the case of bulk-heterojunction solar cells,
they are used primarily as donor materials; however, there are reports in the literature of their
use as acceptors. In perovskite devices, they are used as additives to improve the morphology of
the perovskite, mainly as hole transport materials and also as additives to electron transport layers.
Polymers, thanks to their numerous advantages, such as the possibility of practically any modification
of their chemical structure and thus their physical and chemical properties, are increasingly used in
devices that convert solar radiation into electrical energy, which is presented in this paper.

Keywords: photovoltaics; dye-sensitized solar cells; bulk-heterojunction solar cells; perovskite solar
cells; polymers; thin layers

1. Introduction

Given the ever-increasing demand for electricity and environmental pollution, new,
efficient, and, very importantly, environmentally friendly sources of renewable energy are
being sought. However, it is worth remembering that a very large amount of electricity is
still obtained from fossil fuels; thus, to find alternatives to non-renewable fuels, very effi-
cient and relatively cheap sources of green energy are needed. One of the fastest-growing
branches of renewable energy sources is solar energy, specifically photovoltaics. It is worth
remembering that solar energy can be used in two ways, not only by photovoltaic cells
but also by solar collectors for, among other things, heating [1]. Solar cells are divided
into three generations. The first generation is made up of crystalline silicon cells, which
are currently the most commercially used [2]. Thin-film devices based on the CdTe, CIGS
(Copper Indium Gallium Selenide), GaAs, and a-Si, among others, represent the second
generation [3]. Currently, the third generation of solar cells, which includes dye-sensitized
solar cells (DSSC), perovskite solar cells (PSC), and bulk-heterojunction solar cells (BHJ),
among others, is the most widely researched and rapidly developed [4–6]. Of course, as it
is well known, currently, the highest solar-to-electricity conversion efficiencies are demon-
strated by multi-junction solar cells overcoming the 47% threshold. However, these devices
are very expensive to prepare, and their processes are extremely difficult and complicated,
which significantly limits the possibility of their commercial application [7]. The use of
organic compounds in photovoltaic devices offers great opportunities through a wide range
of possibilities to modify the chemical structure of these compounds and, consequently,
change their physical and chemical properties. In addition, it is also worth mentioning their
significantly lower production costs, less energy consumption, and simpler preparation
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methods [8–11]. Research in recent years has confirmed a significant increase in the energy
conversion efficiency of third-generation cells. According to the literature reports, per-
ovskite solar cells achieve efficiencies of over 25% [12], DSSCs over 14% [13,14] and BHJs
around 18% [15]. Furthermore, a great advantage of organic compounds is that they can be
applied to various substrates using various methods. Numerous attempts have been made
with often positive results to prepare flexible photovoltaic cells with polymer substrates.
Both BHJ [16–18], PSC [19–21] and DSSC [22–24] structured devices are widely used for the
preparation of flexible solar cells when new methods of preparing and applying materials
to polymer substrates are sought.

In recent years, huge interest in using new polymeric materials in organic photovoltaics
(OPV) has emerged. In each of these three types of the third generation of solar cells,
polymeric materials find a variety of very important applications. Considering each of the
components of solar cells, one can multiply the associated application of polymer materials.

The layers of polymeric materials play different roles starting with dye-sensitized
solar cells, which are characterised by their layered structure. The first layer of a DSSC
is the substrate. The glass or polymer substrate is covered with a transparent conductive
oxide (TCO); very often, fluorine-doped tin oxide (FTO) or indium tin oxide (ITO) are used.
However, research on flexible photovoltaic cells is increasingly reported in the literature.
The most common flexible substrates used in photovoltaics are made of polymers such as
polyethylene naphthalate (PEN) or polyethylene terephthalate (PET) [22,23,25–29]. Sub-
sequently, polymers are used as materials responsible for forming the porous structure of
a semiconducting oxide layer, e.g., TiO2. For this purpose, polymers or copolymers such
as polystyrene (PS), polyvinylpyrrolidone (PVP), P123 Pluronic (PEO20–PPO70–PEO20)
is a triblock copolymer, copolymer of poly(vinyl chloride) (PVC) and poly(oxyethylene
methacrylate) (POEM) [30–33]. Polymers are also widely used in the electrolyte layer.
Currently, DSSCs containing a liquid electrolyte containing redox pair are very widely
used; however, due to quite significant limitations resulting from the use of a liquid
electrolyte, quasi-solid state DSSCs (qs-DSSCs) and solid-state DSSCs (ss-DSSC) are be-
ing developed. The polymers used include polyacrylonitrile (PAN), polyethylene oxide
(PEO) or poly(ethylene glycol) (PEG) [34–36]. The last layer forming the DSSC is the
counter-electrode, which is now often made of polymeric materials or composites thereof.
These materials significantly reduce the cost compared to a platinum electrode. Common
polymers used are polyaniline (PANI), polypyrrole (PPy), polythiophene (PTh) and its
derivatives [37–41].

Polymeric compounds are also widely used in the BHJ solar cells, where the active
layer is a mixture of donor and acceptor (D-A) materials. π-conjugated polymers are the
most commonly used as electron-donor materials in the active layer, among others [42–46].
However, they are present less frequently as an acceptor among others [47–49]. Further-
more, polymers are also used as buffer layers to form a barrier between the active layer
and the electrode. This barrier impedes the fast charge transfer, which leads to serious
charge accumulation at the contacts. The charge accumulation increases the probability of
recombination and deteriorates the performance of the device. It is, therefore, necessary to
speed up the charge separation process and increase the transfer efficiency.

Polymers are also being investigated for use in perovskite solar cells due to their
diverse characteristics. To improve the nucleation and crystallization processes in the
perovskite layer(s), polymers are added as additives [50–53]. Because of their proper charge
mobility and energy level organization, polymers can also be utilized as electron and
hole-transporting materials [54–60], as well as an interface layer, to prevent recombination
and improve carrier separation efficiency [61–64].

Herein, we present the latest reports on polymeric materials used in photovoltaic
solar cells. In our paper, three types of solar cells: dye-sensitized, bulk heterojunction and
perovskite solar cells, are presented in three successive chapters, where the role of polymers
and polymers thin films are described and discussed. Based on the latest literature reports,
the photovoltaic parameters, such as open circuit voltage (Voc), short-circuit current (Jsc),
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fill factor (FF) and power conversion efficiency (PCE) are gathered and compared for these
types of solar cells.

2. Polymers in Dye-Sensitized Solar Cells (DSSCs)

DSSCs, increasingly studied worldwide, show an ever-increasing radiation conversion
efficiency. A distinction is made between solar cells containing a liquid or gel electrolyte of
a similar design and a solid electrolyte. Research on DSSCs began with the use of a liquid
electrolyte, and it is this type of cell that is most commonly reported in the literature. This
is mainly due to the fact that the preparation of a device with this structure is the least
complicated and time-consuming and is ideal when testing new dyes. Additionally, the
use of liquid electrolyte, although it improves the photovoltaic parameters of the device,
has many disadvantages, among which we can specify the limitation of the temperature
range of the device, problems with proper sealing of the solar cell and causing corrosion of
materials. Hence, the idea of replacing the liquid electrolyte with a solid or gel electrolyte
emerged. When using these two types of electrolytes, it is difficult to achieve the same
high parameters as with a liquid electrolyte. Still, numerous reports in the literature
emerge to suggest this is being achieved. Replacing the liquid electrolyte, especially
with a gel electrolyte, significantly increases the stability of the device over time and the
charge mobility is definitely higher than with solid electrolytes. As also mentioned in
the introduction, polymers are increasingly used in solar cells with DSSC structures. The
following subsections describe the roles they play in them, including polymeric dyes, which
are very difficult to find in other review papers. The structures of these devices are shown
in Figure 1a, while the chemical structures of polymers used in this type of solar cell are
presented in Figure 1b.
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2.1. Polymers as a Flexible Substrates

The commercial application of DSSCs is currently being intensively developed, and
they are often used in glass façades that can additionally generate electricity. However, flex-
ible substrates are increasingly being used to be able to make the whole device more flexible
and thus greatly expand the application possibilities of this type of solar cell. In laboratory
work, fluorine-doped tin oxide coated glass is used, which is being replaced by polymeric
materials such as polyethylene terephthalate or polyethylene naphthalate deposited on
ITO [22,65,66]. The previously mentioned ITO-embedded polymers are the most commonly
used due to their numerous advantages, such as high transparency, low preparation costs,
ability to form the required shapes, low weight, flexibility and low resistance [67]. When us-
ing flexible substrates, it is very important to prepare a conductive oxide layer such as TiO2
in a low-temperature manner in the region of 120–150 ◦C [66]. The resulting parameters for
flexible DSSC, such as open-circuit voltage, short-circuit current, fill factor and power con-
version efficiency over the last few years, are summarised below, in Table 1. The commercial
dye di-tetrabutylammoniumcis-bis(isothiocyanato)bis(2,2′-bipyridyl-4,4′-dicarboxylato)
ruthenium(II), denoted as N719, was used to prepare the devices.

Table 1. Photovoltaic parameters of flexible dye-sensitized solar cells, containing dye N719.

Substrate Voc (mV) Jsc (mA/cm2) FF (-) PCE (%) Ref.

ITO/PEN 660 8.97 0.45 2.65

[26]
ITO/PEN + G LSL 680 10.62 0.48 3.47
ITO/PEN + T LSL 690 14.65 0.43 4.33

ITO/PEN + TG LSL 680 14.32 0.53 5.18
ITO/PEN (100 mW/cm2) 400 8.70 0.46 2.60

[68]
ITO/PEN (18 mW/cm2) 380 1.8 0.53 3.30

ITO/PET (Pt CE) 685 5.53 0.78 2.95 [69]ITO/PET (PEDOT:PSS CE) 695 6.09 0.52 2.18
T—titanium dioxide, G—grapheme, TG—titanium dioxide-graphene, LSL—light-scattering layer.

In [26], the preparation method for flexible photoanodes using the polyethylene
naphthalate deposited on ITO was reported. The preparation of titanium dioxide-graphene
quantum dot (TG) was used as a light-scattering layer (LSL) using facile electrodeposition
and drop-casting. The photoanode denoted as ITO/PEN + T LSL was prepared by the
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facile electrodeposition from an aqueous solution of 0.1 M titanium tetraisopropoxide in
0.1 M LiClO4. The photoanodes containing ITO/PEN + G LSL and ITO/PEN + TG LSL
were prepared by the drop-casting 5 µL solution containing 1 mg/mL GQD onto ITO/PEN
and photoanode + T LSL. The highest PCE shown the photoanode + TG LSL (5.18%).
The paper [68] presents the possibility of preparing flexible cells with a PEN substrate,
which at standard illumination (100 mW/cm2) reached efficiencies of 2.6%, while at a
lower intensity (18 mW/cm2) the efficiency of the devices increased to a value of 3.3%.
Fu et al. [69] prepared flexible solar cells and tested the influence of platinum and polymer
counter-electrode. The substrate on which the dye was anchored was ITO on PET covered
with a TiO2 layer. The use of a polymer electrode resulted in an increase in Voc and Jsc
but higher resistances due to a decrease in FF. Finally, the Pt counter-electrode showed an
efficiency of 2.95%, while the solar cell with polymer CE showed 2.18%.

2.2. Polymers in Mesoporous Layer of Photoanode

Currently, polymers are widely used to preparation of mesoporous oxide conductive
layers to increase the porosity of material and thus the active surface area of the oxide. This
chapter will briefly describe the polymers most commonly used to prepare the mesoporous
metal oxide films. It is also worth noting that the increase in porosity improves yields a
more effective penetration of the oxide substrate by the electrolyte, which will directly
translate into an increase in short-circuit current. Additionally, and of particular importance,
the increase in porosity will result in a larger number of dye molecules being able to anchor
to the surface of the oxide semiconductor [70].

In order to create pores, polymers such as polystyrene, polyvinylpyrrolidone were used.
In addition, copolymers are also used, which include P123 Pluronic (PEO20–PPO70–PEO20),
copolymer of PVC and POEM. In [31], a P123 copolymer was used without and with addition
of polystyrene with different particle sizes (62, 130 and 250 nm). A series of cells differing
in oxide substrates were prepared. The highest efficiencies for the liquid electrolyte were
obtained for the cell containing only copolymer P123 (1.58%). A cell prepared from a substrate
containing 130 nm PS nanoparticles (1.44%) showed a slightly lower efficiency. However, cells
containing polymer electrolytes also based on the iodine redox couple were prepared. In the
case of the polymer electrolyte, the highest efficiency was achieved by cells with substrates
containing P123 and PS-130 (0.89%) and the lowest device efficiency was determined for a
solar cell with a substrate containing only copolymer Pluronic P123 (0.42%). The subject of [33]
concerned the influence of the obtained oxide substrate using polymers on the photovoltaic
performance of the cell containing the dye N719. In this study, a TiO2 paste was prepared
using P123 to obtain a mesoporous layer, compared with a commercial P25 powder, and
a TiO2 substrate containing a mixture of the two pastes was prepared. It was the use of a
mixture of the two pastes that led to the highest yields of 6.50%, compared to the commercial
one (4.00%).

Park et al. [71] describe the comparison of mesoporous TiO2 layers prepared from a
commercial paste containing P25 and a paste prepared using a PVC-g-POEM copolymer to
obtain a higher degree of porosity and a larger active surface area. The N719 dye was used
to prepare the devices, which showed an efficiency of 5.36% when using a commercial paste,
while the PCE values increased to 7.45% when using a mesoporous TiO2 layer. A significant
increase in the photocurrent density and fill factor was mainly observed. An important
parameter from the point of view of developing the active surface is the number of adsorbed
dye molecules. In the case of TiO2 mesoporous layer, a significant increase in dye loading
values was observed in the conventional layer of 143 and 95.1 mmol cm−2, respectively.

2.3. Polymers as Dyes in DSSCs

Information on the use of polymers as dyes in DSSC-type cells is extremely rare in the
literature. This can be seen in many review papers on the subject, in which no subsections
on the subject appear. In preparing this work, a number of previous review papers were
reviewed, where this information was omitted. This can be understood by the fact that



Polymers 2022, 14, 1946 6 of 39

finding this information in the literature is extremely difficult. However, it is worth noting
that in the three cited papers, reasonably good yields were reported. Prakash and Subra-
manian [72] described the use of three poly(methacrylate)-based polymer sensitizers by
employing phenothiazine (PPNPP), fluorine (FPNPP) and anthracene (APNPP). The anchor
group for titanium oxide was NO2. The photovoltaic parameters were recorded for devices
prepared with and without the addition of the co-adsorbent CDCA (chenodeoxycholic acid).
The highest efficiency was shown by the cell in which PPNPP was used together with CDCA
(4.12%). There were significant increases in the PCE values relative to both the other two
compounds and the cell without the addition of CDCA. Ramasamy et al. [73] obtained three
new poly-(methacrylate) bearing push–pull-type pendants oxindole-phenothiazine with
tetrazole anchoring acceptor used as sensitizers in devices. High efficiencies of the prepared
cells were observed, reaching as high as 5.91% for the POTZP3 compound. Wang et al. [74]
described new conjugated polymers based on poly(triphenylamine-phenothiazine) with
carboxylic acid side groups. Four compounds, including three polymers, designated as PAT,
PPAT4, PPAT5 and PPAT6, respectively, were presented. Additionally, the PAT compound
was identical to polymer PPAT4 and when comparing PCE the polymer achieved a higher
value (4.7%). The highest of the compounds studied in this work. After discussing these
selected works, it can be seen that although reports on the use of polymers as dyes in DSSCs
cells are few, their performance is promising.

2.4. Polymers in Gel Electrolyte to Quasi-Solid State DSSCs

Liquid electrolytes containing triiodide/iodide or Co2+/Co3+ redox couples are now
very commonly used. The use of liquid electrolytes, especially on a laboratory scale, is
much simpler, quicker and cheaper than preparing a device with a solid electrolyte and
applying a gold counter-electrode. However, the significant limitations of liquid electrolytes
should be considered, such as volume change with temperature change, which significantly
limits the operating conditions of the device. At high temperatures, the volume of the
electrolyte increases considerably and evaporates, which makes it difficult to seal the
solar cell; at low temperatures, the volume of the electrolyte decreases, which results in
a decrease in the contact area between the electrodes and a decrease in the efficiency of
the device. In addition, iodide electrolytes absorb part of the sunlight—the relatively low
redox potential limits the available open-circuit voltage and causes corrosion of certain
metals, making them unsuitable for use in a device such as silver [9,75,76]. Due to these
limitations, solutions are being intensively sought to obtain similar PCE values to liquid
electrolytes that also limit their sensitivity to changes in atmospheric conditions. For this
reason, gel electrolytes, which obtain their consistency through the addition of polymers
such as PEO, PEG, PAN or polyethylene glycol dimethyl ether (PGEDME), are now widely
studied. All photovoltaic parameters of quasi-solid-state DSSCs based on the commercial
Ru-dye are shown in Table 2.

In [34], the optimisation process of preparation and composition of the gel electrolyte
was carried out to improve the performance of the device. The electrolyte contained
triiodide/iodide redox couple, while the gel structure was obtained by using PEO and
PGEDME. The study started with the choice of solvent, then focused on the amount of
iodine in the electrolyte, ending with the addition of GuSCN. The study concluded that the
most advantageous was the use of 0.2 M iodine and 0.1 M GuSCN which allowed to obtain
Voc = 793 mV, Jsc = 12.56 mA/cm2, FF = 0.77 and PCE = 7.66%. Furthermore, it should
be noted that the final cell efficiency obtained was slightly lower than when using liquid
electrolyte (8.03%).
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Table 2. Photovoltaic parameters of quasi-solid-state DSSC, based on the commercial Ru-dye.

Gel Electrolyte Structure Solvent Voc
(mV)

Jsc
(mA/cm2)

FF
(-) PCE (%) Ref.

PEO + PGEDME/I−/I3
− (0.1 M)

EtOH 730 12.91 0.66 6.34 [34]
ACN 752 13.45 0.67 6.87

ACN/VN 785 11.56 0.76 6.88
ACN/3-MPN 785 12.05 0.76 7.16

PEO + PGEDME/I−/I3
− (0.2 M)

ACN/VN
785 12.49 0.75 7.39

PEO + PGEDME/I−/I3
− (0.4 M) 784 11.94 0.75 7.03

PEO + PGEDME/I−/I3
− (0.2 M) + GuSCN (0 M) 778 11.94 0.75 7.00

PEO + PGEDME/I−/I3
− (0.2 M) + GuSCN (0.05 M) 787 12.48 0.75 7.35

PEO + PGEDME/I−/I3
− (0.2 M) + GuSCN (0.1 M) 793 12.56 0.77 7.66

PEO + PGEDME/I−/I3
− (0.2 M) + GuSCN (0.2 M) 758 12.85 0.73 7.07

PAN (I−/I3
−) DMF 790 6.85 0.67 4.19 [35]

C11-AZO-C11/PAN (I−/I3
−) 780 11.96 0.75 6.28

3 wt.% PAN-co-PBA (I−/I3
−) ACN 593 9.86 0.64 3.77 [36]

5 wt.% PAN-co-PBA (I−/I3
−) 587 11.60 0.61 4.13

7 wt.% PAN-co-PBA (I−/I3
−) 646 13.16 0.62 5.23

9 wt.% PAN-co-PBA (I−/I3
−) 618 10.41 0.65 4.35

10 wt.% PVdF-HFP (I−/I3
−) ACN 6920 10.34 0.66 4.74 [77]

9 wt.% PVdF-HFP (I−/I3
−) 690 13.75 0.63 6.02

8 wt.% PVdF-HFP (I−/I3
−) 670 12.04 0.62 5.03

7 wt.% PVdF-HFP (I−/I3
−) 660 10.04 0.58 3.97

pCMA-PGE (I−/I3
−) PC:ACN 545 10.30 0.34 2.20 [78]

PVP-PGE (I−/I3
−) 640 6.67 0.60 3.00

PVDF (I−/I3
−) ACN 730 17.79 0.64 8.36 [79]

PDA@PVDF (I−/I3
−) 720 17.95 0.64 8.26

esPME (I−/I3
−) ACN 710 13.10 0.69 6.42 [80]

esCPME (2 wt.% PPy) (I−/I3
−) 720 13.90 0.70 7.02

EtOH—ethanol, ACN—acetonitrile, VN—valeronitrile, 3-MPN—3-methoxypropionitrile, GuSCN—guanidine
thiocyanate, DMF—N,N-Dimethylformamide, PC—propylene carbonate.

Huang et al. [35] prepared a DSSCs containing a PAN-based polymer electrolyte with
iodine vapour redox, which was then doped with an azobenzene core compound. After the
determination of photovoltaic parameters, a significant increase in the photocurrent density
value and in the fill factor was found, thus changing the PCE from 4.19 to 6.28%. In addition,
when compared to the liquid electrolyte, a negligible difference of 0.02% in favour of the
liquid electrolyte was obtained. The influence of the effect of different amounts of copoly-
mer on the photovoltaic performance obtained was studied by D. Kumar Shah et al. [36]. It
was found that the addition of 7 wt.% PAN-co-PBA was the most beneficial, which caused
a significant increase in both Voc (646 mV), Jsc (13.16 mA/cm2), and PCE (5.23%). The
study focuses on determining the optimum concentration of poly(vinylidene fluoride-co-
hexafluoropropylene) to prepare a polymer electrolyte. Concentrations of 7–10 wt.% were
investigated. It was found that the most favourable performance was obtained for a device
with a concentration of 9 wt.%, for which the efficiency was 6.02%.

The study described in [78] was devoted to the preparation of a polymer used to
prepare a gel electrolyte. For this purpose, poly-3-(9H-carbazol-9-yl)propylmethacrylate
(pCMA) was synthesised and then applied to a liquid electrolyte containing I−/I3

− redox
couple. A commercial polymer polyvinylpyrrolidone (PVP) was used for comparison
and was also used to prepare the electrolyte. For the new electrolyte, the lower effi-
ciencies were obtained than for the commercial polymer, 2.20 and 3.00%, respectively,
while it is worth noting that the current density increased significantly from 6.67 (PVP) to
10.30 mA/cm2 (pCMA). In another study [79], the effect of using a gel electrolyte obtained
by adding prepared polyvinylidene fluoride (PVDF) or polydopamine- polyvinylidene flu-
oride (PDA@PVDF) to a commercial liquid electrolyte was studied. The polymer additives
caused a decrease in the performance of the devices described by about one percentage
point, which was mainly manifested by a decrease in the value of the short-circuit current
density. Additionally, cells containing a gel electrolyte have been shown to have higher
stability and less degradation over time. The work [80] concerned the preparation of
gel electrolytes based on the electrospun polymer nanofibres (esPME) and composites
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(esCPME). PVdF-HFP fibres and PVdF-HFP composites with polypyrrole were obtained
in the course of the research. The addition of polypyrrole resulted in an increase in cell
efficiency of more than 7%. There was a slight improvement in the short-circuit current
density (an increase of 0.8 mA/cm2). In work [81], the effect of the addition of polylactic
acid (PLA) was investigated when metal-free dye MK-2 was used in the solar cell. A
significant increase in the density of the generated short-circuit current relative to the liquid
electrolyte (10.2 and 2.7 mA/cm2, respectively) was observed with PLA addition. This
translated directly into an increase in device efficiency from 1.29 to 5.64%.

2.5. Conductive Polymers as Counter-Electrodes

The discovery of electrically conducting polymers has led scientists to delve deeper
into a quest for replacing metals with their organic counterparts. Much progress has been
made to replace the platinum metal counter-electrodes with organic polymers [82–84].
Counter-electrode being an indispensable component of DSSCs, catalyses the reduction
of I3

− to I− by injecting electrons into the electrolyte and thus directly affects the device
performance. Platinum metal is found to be the most suitable for this purpose due to its
high conductivity and excellent electrocatalytic properties [85]. However, corrosion of
the platinum, together with its high cost, makes it a less favoured choice for the counter-
electrode, as it slowly deteriorates the stability of the device [86,87]. Use of expensive
platinum metal as counter-electrode makes the device uneconomical. Hence, there is a
need to replace the platinum metal electrodes with the noble-metal-free, low-cost, non-
dissolving, electrically conducting and thermally stable materials that can alleviate the
problems associated with platinum-based counter-electrodes.

Work continues in this field to develop such materials which can efficiently replace
the metals-based electrodes. These include carbon materials [88,89], inorganic metal sul-
fides and oxides [90,91], conducting polymers [84,92–94], transition metal carbides and
nitrides [95], alloys [95–97] and nanocomposites. The basic characteristics for a material
to be used as counter-electrode in DSSCs include the optimum thickness of the active
material, high electrocatalytic activity, porous structure, high surface area, good adhesion
to substrate, and resistance against the corrosive electrolyte [98]. Among all other ma-
terials, conducting polymers have received special attention due to their low cost, facile
synthesis and high electrical conductivity, along with other tunable properties. Here, we
represent the most recent advances in the development of polymers for replacing metals
as counter-electrodes.

2.5.1. Polypyrrole as Counter-Electrode

The high electrical conductivity and catalytic properties authenticate polypyrrole as
a considerable material for fabricating counter-electrodes for DSSCs. Various attempts
have been made to exploit the efficiency of polypyrrole as a counter-electrode. The ease of
synthesis and versatility in its high-yielding synthetic routes, which include both chemical
and electrochemical polymerization or vapor phase oxidation, allows researchers to get
attracted to polypyrrole [99]. Sangiorgi et al. exploited novel molecularly imprinted
polypyrrole as counter-electrodes for dye-sensitized solar cells. This molecular imprinting
approach allowed them to enhance not only the catalytic property of polypyrrole, but
the selectivity of the catalyst was also increased. They improved the power conversion
efficiency up to 20% [100]. Khan et al. synthesized porous polypyrrole by a simple
hydrothermal method and employed it as a counter-electrode in DSSC. By mixing a minute
quantity of copper perchlorate and a zeolitic-imidazole framework in porous polypyrrole,
they received the power conversion efficiency of 8.63% and 9.05%, respectively [37]. In
the most recent work, Saberi Motlagh et al. reported the fabrication of novel counter-
electrode from polypyyrole-coated on carbon fabric. Electro-polymerisation was carried
out to synthesize polypyrrole-coated carbon fabric. They achieved a power conversion
efficiency of 3.86% [101]. However, much work is going on using polypyrrole as counter-
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electrode and to achieve the results which can enable us to replace platinum electrodes
with polypyrrole-based counter-electrodes.

2.5.2. Counter-Electrodes Based on Polypyrrole Nanocomposites

To improve the desired properties of polypyrrole, certain fillers are added to it or
it is blended with appropriate materials. Various ways have been adopted to improve
the required properties of polypyrrole so that it can be more efficiently used as a counter-
electrode in DSSCs. Polypyrrole-covered graphene-based nanoplatelets are synthesized via
electrochemical synthesis by Ohtani et al. The solar to electric power conversion efficiency
of 4.30% was obtained, which is comparable to that of Pt-based counter-electrode (7.80%).
η of PPy/GN-60 s containing DSSC was 3.3% which is even larger than DSSCs with Pt-
based counter-electrode (3.00%) [102]. Another attempt to improve the performance of
polypyrrole-based electrodes was done by Wu et al. Hybrid films from polyoxometalate
doped polypyyrrole were prepared by electrochemical method and were exploited as
counter-electrode in DSSCs. On average, the power conversion efficiency of these materials
came out to be 6.19% [38]. Ahmed et al. incorporated polypyrrole with SrTiO3 nanocubes
via oxidative polymerization method. Scanning through the various concentrations of
strontium titanate, power conversion efficiency of 2.52% was obtained for 50 percent loading
of SrTiO3. The incorporation of these particles into polypyrrole improved the efficiency
of DSSCs from 1.29% by enhancing the surface area, electroactive response and catalytic
property of the polypyrrole [103]. Rafique et al. reported the performance of DSSCs to 7.1%
by synthesizing Cu-PPy-FWCNTs nanocomposites via dual step electrodeposition [104].
Relatively low conductivity and high charge-transfer resistance are two hurdles to paving
the way for polypyrrole-based materials as counter-electrodes in DSSCs. The photovoltaic
parameters of this type of solar cell are presented below in Table 3.

Table 3. Photovoltaic performance parameters of polypyrrole-based DSSCs counter-electrodes and
their nanocomposites.

Counter-
Electrodes

Fabrication Methods
of PPy-Based

Counter-Electrodes

Voc
(mV)

Jsc
(mA cm−2)

FF
(-)

PCE
(%) Ref.

Polypyrrole Doctor Blade Technique 749 15.75 0.69 8.13 [37]
Poylpyrrole Electropolymerization 727 10.20 0.42 3.12 [100]
Polypyrrole Electropolymerization 630 12.00 0.51 3.86 [101]
PPy-POM Electropolymerization 765 11.68 0.56 5.04 [38]

PPy-SrTiO3 Doctor Blade Technique 671 10.45 0.36 2.52 [103]
PPy-MoS In-situ Polymerization 708 18.90 0.62 8.28 [105]

2.5.3. Counter-Electrodes Based on Polyaniline

Intrinsically conducting polymers conceal potential members like polyaniline. In addi-
tion to polypyrrole, polyaniline has been widely used for the past three decades. Again,
its facile synthesis, easy processability and tunable electric and redox properties make
polyanilines unavoidable. Such properties are the result of three forms of polyaniline,
viz. Leucomeraldine base (full reduced), Emeraldine base (half reduced form) and Perni-
graniline base (full oxidized). Hence much of the research has been focused on fabricating
counter-electrodes based on polyaniline.

Utami et al. synthesized nanostructured polyaniline using polyglyceryl-2-Dipolyhy-
droxystearate, a non-ionic surfactant. They used the nanostructured polyaniline to fabricate
the counter-electrode for DSSCs. Through scanning of the surfactant concentration, they
achieved the power conversion efficiency of 1.71% at 6% loading [106]. In another attempt,
Krakus et al. exploited the polyaniline as the counter-electrode. Instead of the usual
liquid electrolyte, they used cationic and anionic polymers as a quasi-solid electrolyte.
The cationic quasi-gel electrolyte showed a higher electrolyte holding capability, elasticity
and higher conductivity while the anionic one showed higher PCE. They were succeeded
in achieving a high power conversion efficiency of 6.30% [39]. Furthermore, Jiao et al.
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studied the cyclic voltametric behavior of polyaniline by growing a thin film of PANI on a
plastic substrate. By employing these thin films as a counter-electrode in DSSC, they gained
a power conversion efficiency of 7.27% [107]. However, there is a need to improve the
performance of PANI-based counter-electrodes. Scientists are attempting this by adding
fillers in polyaniline substrates.

2.5.4. Counter-Electrodes Based on PANI-Nanocomposites

Nano-sized fillers are usually added to polyaniline in order to improve both electro-
chemical and catalytic properties of PANI. The resulting materials usually show better
properties than PANI itself. Here the most recent works on polyaniline nanocomposites for
counter-electrodes in DSSCs are represented and all obtained photovoltaic parameters are
gathered in Table 4.

Table 4. Photovoltaic performance parameters of polyaniline and its nanocomposites based on DSSCs
counter-electrodes.

Counter-Electrode Fabrication Methods of
PANI-Based Electrodes

Voc
(mV)

Jsc
(mA cm−2)

FF
(-)

PCE
(%) Ref.

PANI Doctor Blade Technique 645 20.8 0.41 4.20 [39]

PANI Screen Printing
Technique 630 5.10 0.48 1.71 [106]

PANI
Cyclic Voltametric-

Electrochemical
Method

740 15.34 0.64 7.27 [107]

Pristine PANI Doctor Blade Technique 480 4.71 0.45 1.14

[40]H2SO4-doped PANI Doctor Blade Technique 530 7.86 0.43 1.78
ALS-doped PANI Doctor Blade Technique 603 10.84 0.43 2.79

ALS-H2SO4-doped
PANI Doctor Blade Technique 603 15.13 0.53 4.54

WO3-PANI Cyclic voltammetry
Technique 685 18.00 0.55 6.78 [108]

Farooq et al. fabricated four different counter-electrodes using four novel polyaniline-
based materials. They fabricated counter-electrodes using polyaniline, ammonium lauryl
sulfate doped polyaniline, sulphuric acid doped polyaniline and binary doped polyaniline
containing both components. They achieved a power conversion efficiency of 4.54% [40].
Zatirostami et al. prepared tungsten oxide containing polyaniline nanocomposites and
used them to fabricate counter-electrodes for DSSC. The nanocomposites bore good electro-
catalytic behavior and high electrical conductivity. They succeeded in achieving a 12.8%
improved power conversion efficiency of 6.78% as compared to Pt-based counter-electrode
DSSCs [108]. In the most recent work published, Ravichandran et al. fabricated the counter-
electrodes from FeS2 and achieved high FF value, higher Jsc and excellent electrocatalytic
behavior towards electrolytes [109].

2.5.5. Counter-Electrodes Based on Poly(3,4-Ethylenedioxythiophene)

After polyaniline, another most widely used polymer in DSSCs as their counter-
electrode is Poly(3,4-ethylenedioxythiophene), abbreviated as PEDOT. Bella et al. syn-
thesized ammonium ion-bearing poly(3,4-ethylenedioxythiophene), which they used as
counter-electrode in DSSC. Even without using any expensive rare earth metal, they suc-
ceeded in achieving the power conversion efficiency of 7.02% [110]. In another attempt,
Pradhan et al. fabricated DSSC counter-electrodes from poly(3,4-ethylenedioxythiophene)
films and evaluated the performance of PEDOT by the varying film thickness. They pre-
pared the PEDOT films having 33 nm, 65 nm and 120 nm thickness. Studies showed that
the film with a 33 nm thickness produced the highest power conversion efficiency of 10.39%,
while conversion efficiency of 8.11% and 7.45% were used by films of 65 nm and 120 nm
thicknesses, respectively. The results clearly indicated that the performance declined with
an incline in film thickness [111]. In a most recent work presented by Venkatesan et al. the
optimum poly(3,4-ethylenedioxythiophene) film thickness was found to be 90 nm. They
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studied the DSSCs performance using PEDOT counter-electrodes under different light
intensities. As the light intensity decreased, the efficiency of the cells tested increased.
Under standard 100 mW illumination, the PCE of the cell was about 2.5% [112].

2.5.6. Counter-Electrode Based on PEDOT-Nanocomposites

For obtaining more productive results using the PEDOT-counter-electrode, nanofillers
are now added to the polymer substrate. Recently much work has been done to investigate
the required catalytic and electrochemical properties of poly(3,4-ethylenedioxythiophene)
nanocomposites. Mazloum-Ardakani et al. fabricated the DSSC counter-electrode from
PEDOT-Ag/CuO nanocomposites. The cell showed the combined effect of poly(3,4-
ethylenedioxythiophene), graphite and copper particles, thus obtaining an energy con-
version efficiency of 9.06% [41]. Gaining confidence from the acquired results and in
order to decrease the required amount of expensive platinum, Xu et al. fabricated counter-
electrodes from transparent PEDOT film incorporated with Pt-nanoclusters. Enhancement
in the electrochemical and catalytic properties in addition to improvement in film cover-
age, was observed. They prepared various counter-electrodes by varying the amounts
of Pt-nanoclusters. The optimum concentration with the highest PCE was found to be
in the Pt-10/PEDOT counter-electrode. By using the Pt-10/PEDOT electrode, the energy
conversion efficiency was 6.77% when illuminating from the front side [113]. In a recent
work by Gemeiner et al., various counter-electrodes were fabricated by screen-printing the
poly(3,4-ethylenedioxythiophene): poly(styrene sulphonate). They doped the PEDOT:PSS
with dimethyl sulfoxide, polyethylene glycol and ethylene glycol. Through optimizations,
DSSC with a counter-electrode fabricated from PEDOT:PSS doped with 6 wt.% ethylene
glycol showed a maximum power-converting efficiency of 3.12% [114].

Summing up the role of polymers in DSSCs, one can notice that polymers can be used
in different forms and roles: as a flexible substrate, in the mesoporous layer of photoanode,
dyes, in the gel electrolyte and as a counter-electrode.

In addition to the FTO-coated glass substrates, DSSC cells are increasingly being
prepared on flexible polymer substrates made of PEN and also PET, which are coated with
ITO. Considering another layer that forms the DSSC device, namely the conductive oxide
layer, polymers are considered as materials used to receive the pores that develop the oxide
surface. The most commonly used compounds are PS, PVP, as well as copolymers such as
P123 Pluronic (PEO20–PPO70–PEO20) and a copolymer of PVC and POEM.

This review presents only a few latest papers on the use of polymers as dyes in DSSCs,
but it is worth noting that most papers of this type do not mention this at all, and looking
at the cases cited, polymers may be materials worthy of attention in this aspect as well. The
use of polymers containing either a phenothiazine derivative in the main or side chain gives
very good results. The use of polymers as additives in electrolytes to obtain gel structures
and improve their time stability is being explored far more extensively than for polymeric
dyes. PEO, PAN, and copolymers such as PAN-co-PBA, pCMA-PGE, or PVP-PGE are the
most commonly used. However, it is not possible to compare parameter values in this case
and to indicate the best polymer due to the use of different dyes and preparation methods.

Excellent electronic and catalytic properties are crucial for a material to be used in
DSSCs as counter-electrodes. Expensive and corrosive platinum-based counter-electrodes
are now being replaced by low-cost, non-corrosive, highly efficient and easily synthesized
organic counter-electrodes. Polypyrrole, Polyaniline, Poly(3,4-ethylenedioxythiophene)
and Poly(3,4-propylenedioxythiophene) are the main candidates in this regard. A blend of
Poly(3,4-ethylenedioxythiophene) and Polystyrene sulfonate (PEDOT:PSS) is proved to be
efficient enough to be replaced by Platinum-based counter-electrode. PEDOT:PSS is the
most catalytic counter-electrodes among all polymeric counter-electrodes. Still, most of
the research is focused on the development of more efficient carbonaceous material, which
not only reduces the production cost of the solar cell but also increases the photovoltaic
parameters along with its long-term stability.
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Different fabrication methods are being employed to synthesize materials for counter-
electrodes with optimum required properties. Porous or network structured polymer
material with high thickness can give better electrocatalytic properties. Electrochemical
polymerization is an ideal technique to obtain polymeric materials with desired properties
and dimensions. However, this technique has some limitations when applied on a large
scale. Moreover, nanocomposites of these polymers are synthesized to further improve
the available catalytic surface area and electronic properties of the material. For instance,
depositing uniform films is a challenging task for PANI-based counter-electrodes. Hence,
finding appropriate nanofillers improves the conductivity but also increases the surface
area by acting as pore former without disturbing the film uniformity. The advantage of
Polypyrrole-based counter-electrodes is that by carefully selecting the fabrication method
and dopants, one can simultaneously obtain the benefits of high-catalytic and energy-
storing properties of the polypyrrole.

Moreover, from the above-presented literature review of polymers-based counter-
electrodes for DSSCs, we conclude that the conductive polymers with excellent electro-
chemical and catalytic properties can selectively catalyze the redox reaction of the electrolyte
and can further improve the photovoltaic parameters of the solar cells.

3. Polymers in Bulk-Heterojunction Solar Cells (BHJ)

BHJ solar cells are characterised by their layered structure, but it is important to note
that the active layer is a donor and acceptor blend. The simplest architecture of both
conventional and inverted systems is shown in Figure 2.
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3.1. Polymers as Donors Materials

As for other types of solar cells, the power conversion efficiency is the most important
parameter to assess the efficiency of a fabricated solar cell, which in turn depends directly
upon short-circuit current density, open-circuit voltage and fill factor [42]. This fact prompts
the researchers to look deeply into the factors which directly impact these parameters. Thus,
plenty of work is being done to improve the PCE of bulk heterojunction solar cells by fine-
tuning the (1) HOMO of donors to the deep-lying level and LUMO of the acceptor to
low lying level for the improvement of Voc, (2) incorporation of strong acceptors in D-A
kind of donor systems, which alleviates the intramolecular charge transfers, (3) photon
harvesting capability which in turn improves the external quantum efficiency and incident
photon to current conversion efficiency, (4) use of superior charge carrying polymers as
Donors and Acceptors to avoid energy loss due to charge recombination and (5) solution
processability by increasing blending ability [43]. Out of these parameters, Jsc and Voc are
directly affected by the nature of the donor material. Hole-transporting ability and HOMO
levels of donor directly impact the current density and open-circuit voltage, respectively.
Hence it is inevitable to engineer the donor molecules that can efficiently improve the PCE
of BHJ solar cells.

The main roles of the donor material are to absorb sunlight and transport the holes to
the respective electrode. Certain requirements for organic semiconductors for employing
them as donor materials in BHJ must be kept in mind. The first step is the exciton generation
by absorbing solar light and most of the fraction of sunlight is absorbed by the donor
material; therefore, it is necessary to optimize the absorption range of the donor materials
to efficiently cover most of the solar spectrum. The use of low-bandgap donor materials,
i.e., materials with a bandgap lower than 2 eV, is the key to this arduous task [44,115]. For
instance, donor material having 1.1 eV bandgap can efficiently cover 77% part of AM 1.5
solar photon flux, while 1.9 eV bandgap donor material can cover only 30% of it [115].
Effective light absorption is achieved by employing π-conjugated polymers surely because
of their superior absorption coefficient, i.e., 107 m−1 [116]. The thickness of the active layer
in BHJ solar cells must be kept small (100 nm) so as to allow maximum exciton diffusion. It
is due to the low charge carrier mobility of the polymers. The low thickness of the active
layer makes the BHJ more cost-effective compared to the inorganic silicon-based solar cells,
where the thickness of several micrometres is required. After exciton generation and their
diffusion, the next step is the dissociation of excitons into separate charged particles, i.e.,
holes and electrons. The frontier orbital energy levels of the donor and acceptor molecules
decide the efficiency of excitons dissociation [117,118]. The energy offset between the
Acceptor LUMO and Donor LUMO should be between 0.1–1.4 eV for the dissociation of
exciton into electrons and holes [119]. Herein, we review the most recent advances in the
polymer donors for BHJ solar cells.

3.1.1. Wide-Bandgap Polymer Donors

The narrow absorption range and lower charge carrying ability had limited the wide
applicability of poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene), which was
the first ever polymer donor for organic solar cells [120]. Since then, a copious amount of
research has been devoted to synthesizing an appropriate polymeric donor material having
a wide range of spectral absorption by fine-tuning the bandgap. The PV parameters of the
described devices are shown in Table 5.
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Table 5. Photovoltaic parameters of devices containing wide-bandgap polymers.

Structure of Solar Cell Voc
(mV)

Jsc
(mA/cm2)

FF
(-)

PCE
(%) Ref.

ITO/PEDOT:PSS/W1:Y6 (1:1)/PDIN/Ag 890 25.36 0.68 15.39 (14.95) a [121]
ITO/PEDOT:PSS/W1:Y6 (1:1.2)/PDIN/Ag 890 25.92 0.69 15.95 (15.69)
ITO/PEDOT:PSS/W1:Y6 (1:1.4)/PDIN/Ag 890 25.06 0.71 15.87 (15.64)
ITO/PEDOT:PSS/W1:Y6 (1:1.6)/PDIN/Ag 880 24.59 0.71 15.65 (15.35)

ITO/PEDOT:PSS/PBDT- TTZ:N2200/PFN-Br/Ag 870 14.4 0.67 8.40 [122]
ITO/PEDOT:PSS/PBDT-TT:N2200/PFN-Br/Ag 750 2.0 0.46 0.70

ITO/PEDOT:PSS/PBDT-TTz:PC61BM/PFN-Br/Ag 890 10.3 0.73 6.70
ITO.PEDOT:PSS/PBTz:IT-4F/PFN-Br/Al 840 17.68 0.59 8.76 [123]

ITO/PEDOT:PSS/PTzTz:IT-4F/PFN-Br/Al 820 18.81 0.69 10.63
ITO/PEDOT:PSS/D18:Y6 (1:0.8)/PDIN/Ag 861 27.16 0.72 16.98 (16.76) a [15]
ITO/PEDOT:PSS/D18:Y6 (1:1.2)/PDIN/Ag 863 27.05 0.75 17.51 (17.34)
ITO/PEDOT:PSS/D18:Y6 (1:1.6)/PDIN/Ag 865 27.31 0.75 17.84 (17.67)
ITO/PEDOT:PSS/D18:Y6 (1:2)/PDIN/Ag 870 26.20 0.75 17.16 (16.87)

ITO/PEDOT:PSS/D18:Y6/PDIN/Ag
(170 nm) b 864 25.89 0.73 16.38 (16.34) a

ITO/PEDOT:PSS/D18:Y6/PDIN/Ag
(130 nm) 864 26.39 0.74 16.92 (16.77)

ITO/PEDOT:PSS/D18:Y6/PDIN/Ag
(112 nm) 866 27.16 0.75 17.65 (17.38)

ITO/PEDOT:PSS/D18:Y6/PDIN/Ag
(103 nm) 865 27.31 0.75 17.84 (17.67)

ITO/PEDOT:PSS/D18:Y6/PDIN/Ag
(91 nm) 869 26.75 0.76 17.73 (17.64)

ITO/PEDOT:PSS/D18:Y6:PC61BM (1:1.6:0)/PDIN/Ag 862 26.09 0.76 17.23 (17.01) b [124]
ITO/PEDOT:PSS/D18:Y6:PC61BM (1:1.6:0.1)/PDIN/Ag 865 26.33 0.76 17.42 (17.16)
ITO/PEDOT:PSS/D18:Y6:PC61BM (1:1.6:0.2)/PDIN/Ag 870 26.48 0.77 17.89 (17.57)
ITO/PEDOT:PSS/D18:Y6:PC61BM (1:1.6:0.4)/PDIN/Ag 874 25.70 0.75 16.94 (16.78)
ITO/PEDOT:PSS/D18:Y6:PC61BM (1:1.6:0.6)/PDIN/Ag 882 25.64 0.71 16.05 (15.82)

ITO/PEDOT:PSS/D18:Y6:PC61BM (1:1.6:0.2 c)/PDIN/Ag 865 25.90 0.76 17.09 (16.92)
ITO/PEDOT:PSS/D18:Y6:PC61BM (1:1.6:0 d)/PDIN/Ag 865 27.31 0.75 17.84 (17.67)
ITO/PEDOT:PSS/D18:Y6:PC61BM (1:1.6:0 e)/PDIN/Ag 859 27.70 0.76 18.22 (18.01)
ITO/PEDOT:PSS/D18:Y6:PC61BM/PDIN/Ag (90 nm) b 870 25.94 0.75 17.10 (16.97) b

ITO/PEDOT:PSS/D18:Y6:PC61BM/PDIN/Ag (110 nm) 870 26.48 0.77 17.89 (17.57)
ITO/PEDOT:PSS/D18:Y6:PC61BM/PDIN/Ag (130 nm) 864 26.44 0.75 17.12 (16.72)

ITO/PEDOT:PSS/PTPD:Y6/PFN-Br/Ag 660 19.5 0.46 5.90 [125]
ITO/PEDOT:PSS/PBiTPD:Y6/PFN-Br/Ag 830 25.6 0.66 14.20
ITO/PEDOT:PSS/P106:Y18-DMO/PFN/Al 870 22.78 (22.62) f 0.71 14.07 (13.91) b [126]
ITO/PEDOT:PSS/P106:DBTBT-IC/PFN/Al 960 18.56 (18.41) 0.66 11.76 (11.59)

ITO/PEDOT:PSS/P106:DBTBT-IC:Y18-DMO/PFN/Al 910 24.82 (24.66) 0.73 16.49 (16.32)
ITO/ZnO/[PTB7-Th(1):Si-BDT(0):DCNBT-TPIC(0.6)/MoO3/Ag 850 18.00 (18.07) f 0.64 10.11 [127]

ITO/ZnO/[PTB7-Th(0.8):Si-BDT(0.2):DCNBT-TPIC(0.6)/MoO3/Ag 850 19.32
(19.74) f 0.65 11.20

ITO/ZnO/[PTB7-Th(0.6):Si-BDT(0.4):DCNBT-TPIC(0.6)/MoO3/Ag 860 22.32
(22.06) f 0.68 13.45

ITO/ZnO/[PTB7-Th(0.4):Si-BDT(0.6):DCNBT-TPIC(0.6)/MoO3/Ag 820 19.21
(19.23) f 0.66 10.88

ITO/ZnO/[PTB7-Th(0.2):Si-BDT(0.8):DCNBT-TPIC(0.6)/MoO3/Ag 820 16.00
(16.01) f 0.54 7.53

ITO/ZnO/[PTB7-Th(0):Si-BDT(1):DCNBT-TPIC(0.6)/MoO3/Ag 820 17.58 (17.59) f 0.65 9.92

a Data in parentheses are averages for 10 cells; b Data in parentheses are the thickness of the active layer; c The
active layer underwent CF solvent vapor annealing (SVA) for 5 min; d No CN additive; e No CN additive; the
active layer underwent CF SVA for 5 min. Data from literature, f Estimated from the integration of EQE spectra.

The chemical structures of polymers used as wide bandgap materials are shown in
Figure 3.

Wang et al. synthesized a 1,2-difluoro-4,5-bis(octyloxy)benzene wide-bandgap (2.16 eV)
polymer W1 and used it with Y6 (BTP-4F non-fulerene electron acceptor) to fabricate a BHJ
solar cell in the architecture of ITO/PEDOT:PSS/W1:Y6/PDIN/Ag. They succeeded in
obtaining a PCE as high as 16.16% [121]. Cao et al. synthesized a wide-bandgap polymer
PBDT-TTz based on thiazolothiazole motif and exploited the role of the imine substitution
on the electronic charge transport and optical properties of the polymer. For comparison, a
non-imine polymer PBDT-TT was also synthesized, and it was found that the imine substitu-
tion not only improved donor-acceptor miscibility, but also increased the face-on orientation
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and crystallinity of the donor phase. ITO/PEDOT:PSS/PBDT-TTZ:N2200/PFN-Br/Ag
architecture was fabricated to measure the photovoltaic parameters. An imine-substituted
polymer donor exhibited a power conversion efficiency of 8.4% as compared to non-imine
polymers, which showed a 0.7% PCE value [122]. Changguo et al. synthesized two poly-
mers based on 4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophen, and a
combination of thiazolothiazole and thiazoles. Donor polymers PTzTz and PBTz, when used
along with a non-fluorine Acceptor (IT-4F) in the architecture of ITO.PEDOT:PSS/PTzTz:IT-
4F/PFN-Br/Al and ITO.PEDOT:PSS/PBTz:IT-4F/PFN-Br/Al delivered energy conversion
efficiencies of 10.63% and 8.76%, respectively [123]. Another wide-bandgap (1.98 eV) donor
copolymer, as shown in Figure 3, was synthesized and employed in BHJ-solar cells by
Qishi et al. By fabricating the cell in the ITO/PEDOT:PSS/D18:Y6/PDIN/Ag architecture
provided a final PCE of 18.22% [15].
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Figure 3. Chemical structures of wide bandgap polymers used in BHJ solar cells.

In a separate attempt, Jianqiang et al. fabricated a thick active layer of BHJ solar
cells by adding PCBM into a D18-Y6 blend and used the architecture ITO/PEDOT:PSS/
D18:Y6:PC61BM/PDIN/Ag. Increasing the thickness to 110 nm, they achieved a power
conversion efficiency of 17.89% [124]. Advancing further, Zhao et al. reported bithieno[3,4-
c]pyrrole-4,6-dione (PBiTPD), a donor based on the thieno[3,4-c]pyrrole-4,6-dione (TPD)
motif. Using the solar cell structure ITO/PEDOT:PSS/PBiTPD:Y6/PFN-Br/Ag, the power
conversion efficiency was 14.2% [125]. Keshtov et al. fabricated the binary and ternary BHJ
solar cells by employing a D-A polymer P106 as a donor and two non-fluorine acceptors,
Y18-DMO and DBTBT-IC. P106 contained 2-dodecylbenzo[1,2-b:3,4-b′:6,5-b′′]trithiophene
(3TB) as a donor unit with dithieno [2,3-e;3′2′-g]isoindole-7,9 (8H) (DTID) as an acceptor
unit. Two binary solar cells having the architectures of ITO/PEDOT:PSS/P106:DBTBT-
IC/PFN/Al and ITO/PEDOT:PSS/P106:Y18-DMO/PFN/Al produced power conver-
sion efficiencies of 11.76% and 14.07%, respectively, while the ternary solar cell with
the structure ITO/PEDOT:PSS/P106: DBTBT-IC:Y18-DMO/PFN/Al obtained a power
conversion efficiency of 16.49% [126]. In a more recent work on wide-bandgap donor
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polymers, Gokulnath et al. reported the fabrication of a ternary solar cell based on the
siloxane-functionalized polymer Si-BDT. The ITO/ZnO/[PTB7-Th(0.6):Si-BDT(0.4):DCNBT-
TPIC(0.6)/MoO3/Ag architecture provided a power conversion efficiency of 13.45% [127].

3.1.2. Medium-Bandgap Polymer Donors

Thieno[3,4-b]thiophene or benzodithiohene-based polymers have produced satisfac-
tory results when employed as donor materials in BHJ solar cells [128,129]. The photo-
voltaic parameters of the described devices are collected in Table 6 and the structures of the
polymers are shown in Figure 4.
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Table 6. Photovoltaic parameters of devices containing medium-bandgap polymers.

Structure of Solar Cell Voc
(mV)

Jsc
(mA/cm2)

FF
(-)

PCE
(%) Ref.

ITO/PEDOT:PSS/POBDFBT(1):ITIC(1): PCBM(0)/PFN/Al 820 16.59 0.46 6.16 [130]
ITO/PEDOT:PSS/POBDFBT(1):ITIC(1): PCBM(0.5)/PFN/Al 780 12.7 0.64 6.26

ITO/PEDOT:PSS/POBDFBT(1):ITIC(0.75):
PCBM(0.75)/PFN/Al 760 13.8 0.61 6.39

ITO/PEDOT:PSS/POBDFB(1):ITIC(0.5): PCBM(1)/PFN/Al 720 17.65 0.62 7.91
ITO/PEDOT:PSS/POBDFB(1):ITIC(0.25):

PCBM(1.25)/PFN/Al 790 13.78 0.61 6.66

ITO/PEDOT:PSS/POBDFB(1):ITIC(0): PCBM(1.5)/PFN/Al 710 13.67 0.64 6.23
ITO/PEDOT:PSS/P:ITIC-m/PFN/Al 1040 16.86 0.69 12.10 [131]

ITO/PEDOT:PSS/P:Y6/PFN/Al 940 19.72 0.71 13.16
ITO/PEDOT:PSS/P:ITIC-m:Y6/PFN/Al 990 20.65 0.74 15.13

ITO/PEDOT:PSS/PM6:MF1(0):Y6/PDIN/Al 843 25.11 0.75 15.93 [132]
ITO/PEDOT:PSS/PM6:MF1(10):Y6/PDIN/Al 853 25.68 0.77 17.22
ITO/PEDOT:PSS/PM6:MF1(50):Y6/PDIN/Al 867 23.53 0.71 14.40

ITO/PEDOT:PSS/PM6:MF1(100):Y6/PDIN/Al 914 16.67 0.79 12.09
ITO/PEDOT:PSS/PM6:Y6/PDINO/Al (150) 860 24.3 0.73 15.3(15.2 ± 0.1) [133]
ITO/PEDOT:PSS/PM6:Y6/PDINO/Al (150) 830 25.3 0.75 15.7(15.6 ± 0.1)
ITO/PEDOT:PSS/PM6:Y6/PDINO/Al (200) 830 25.8 0.67 14.3(14.2 ± 0.1)
ITO/PEDOT:PSS/PM6:Y6/PDINO/Al (250) 820 27.1 0.63 14.1(13.9 ± 0.2)
ITO/PEDOT:PSS/PM6:Y6/PDINO/Al (300) 820 26.5 0.62 13.6(13.3 ± 0.3)

ITO/ZnO/PM6:Y6/MoO3/Ag (100) 820 25.2 0.76 15.7(15.5 ± 0.2)
ITO/PEDOT:PSS/PM6:Y6/PDINO/Al 830 23.2 0.77 14.90

ITO/PEDOT:PSS/PM6(1):Y6 (1.2): PC71BM(0)/PDINO/Al 8450 24.89 0.74 15.75 (15.70) [134]
ITO/PEDOT:PSS/PM6(1):Y6 (1.1): PC71BM(0.1)/PDINO/Al 850 25.36 0.76 16.30 (16.26)

ITO/PEDOT:PSS/PM6(1):Y6 (1.05): PC71BM(0.15)/PDINO/Al 850 25.8 0.75 16.38 (16.32)
ITO/PEDOT:PSS/PM6(1):Y6 (1.0): PC71BM(0.2)/PDINO/Al 850 25.7 0.76 16.67 (16.61)
ITO/PEDOT:PSS/PM6(1):Y6 (0.9): PC71BM(0.3)/PDINO/Al 853 25.05 0.75 16.05 (16.0)
ITO/PEDOT:PSS/PM6(1):Y6 (0.7): PC71BM(0.5)/PDINO/Al 865 23.94 0.74 15.30 (15.23)
ITO/PEDOT:PSS/PM6(1):Y6 (0.4): PC71BM(0.8)/PDINO/Al 876 19.24 0.49 8.39 (8.27)
ITO/PEDOT:PSS/PM6(1):Y6 (0.1): PC71BM(1.2)/PDINO/Al 965 11.56 0.53 6.01 (5.94)

ITO/PEDOT:PSS/PM6(1):PM7-Si(0):C9(1.2)/PFN-Br/Ag 841 26.36 0.76 17.0 [135]
ITO/PEDOT:PSS/PM6(0.9):PM7-Si(0.1):C9(1.2)/PFN-Br/Ag 864 26.35 0.77 17.7

ITO/PEDOT:PSS/PM6(0):PM7-Si(1):C9(1.2)/PFN-Br/Ag 895 14.43 0.41 5.4
ITO/PEDOT:PSS/P130:Y6/PFN/Al 890 (±5) 23.84 (±0.32) 0.72 (±0.05) 15.28 (±0.21) [136]
ITO/PEDOT:PSS/P131:Y6/PFN/Al 780 (±3) 21.96 (0.22) 0.65 (±0.03) 11.13 (±0.18)

Chen et al. described the enhanced photovoltaic performance by using a novel medium
bandgap polymer as the donor for BHJ. A copolymer based on thiophene, diflurobenzoth-
iadiazole (FBT) and benzodithiophene (BDT) motifs were synthesized and employed
to fabricate ternary and binary BHJ solar cells. Non fluorine 3,9-bis(2-methylene-(3-(1,1-
dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithienol[2,3-d:2′,3′-d′]-s-
indaceno[1,2-b:5,6-b′]dithiophene (ITIC) and [6,6]-phenyl-C71-butyric acid methyl ester
(PC71BM) were used as Acceptors.

The solar cells were fabricated in the following architectures: ITO/PEDOT:PSS/
POBDFBT:ITIC/PFN/Al, ITO/PEDOT:PSS/POBDFBT:PCBM/PFN/Al and ITO/PEDOT:PSS/
POBDFBT:PCBM:ITIC/PFN/Al. Power conversion efficiencies were calculated to be 6.16%,
6.23% and 7.91%, respectively [130]. Sharma et al. fabricated a ternary solar cell using BODIPY-
thiophene-based conjugated polymer. The ternary cell was fabricated by mixing two polymers
with two different acceptors ITIC-m and Y6, in a weight ratio of 1:0.3:1.2.

Fabricating architecture of the ternary solar cell was ITO/PEDOT:PSS/P:ITIC-m:Y6/
PFN/Al and it delivered a power conversion efficiency of 15.13%, which is higher as
compared to the binary solar cells, i.e., 12.10% for P-ITIC-m (1:1.5) and 13.16% for P-Y6
(1:1.5) [131]. An and Qiaoshi et al. succeeded in achieving a PCE of 17.22 percent by
employing ternary strategy of fabricating solar cells. For this PM6, a donor polymer was
used along with Y6 and MF1 as acceptors in the architecture of ITO/PEDOT:PSS/active
layer/PDIN/Al [132]. Separately, Yuan and Jun et al. used a ladder-type Y6 as acceptor and
PM6 as a donor and succeeded in achieving a PCE of 15% [133]. Yan et al. fabricated ternary
solar cells by incorporating PCBM as a third component in the PM6-Y6 binary mixture. The
architecture used by them was ITO/PEDOT:PSS/PM6:Y6 (w and w/oPC71BM)/PDINO/Al
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and they obtained the PCE values of 16.67% in rigid and 14.06% in flexible organic solar
cells [134].

Another attempt to successfully employ medium bandgap polymers as donors in BHJ
devices was made by Penget et al. They synthesized a D-A type polymer PM7-Si after
modifying well-known PM6 by replacing the ethylhexyl group with alkylsilyl chains and
fluorine atom with chorine. The fabrication of the ternary BHJ solar cell was made with
a structure of ITO/PEDOT:PSS/PM6:PM7-Si:C9/PFN-Br/Ag. The obtained PCE of the
ternary cell was 17.7% which was higher as compared to a binary cell based on PM6:C9 [135].
In a more recent work, a medium bandgap copolymer donor D-A1-D-A2 was synthesized
where D is thiophene, A2 is novel anthra[1,2-b:4,3,b′:6,7-c′′]trithiophene-8.12-dione (A3T)
and A1 is fluorinated benzothiadiazole in case of P130 or benzothiadiazole in case of P131.
The architecture of the cell was ITO/PEDOT:PSS/P130 or P131:Y6/PFN/Al. The power
conversion efficiencies are 15.28% and 11.13% for P130 and P131, respectively [136].

3.1.3. Narrow Bandgap Polymers

Researchers are doing continuous work on optimizing the bandgap width of the
polymers to employ them efficiently as the donor materials in BHJ solar cells. The PV
parameters of described devices are collected in Table 7.

Table 7. Photovoltaic parameters of solar cells contain narrow bandgap polymer donors.

Device Structure Voc
(mV)

Jsc
(mA cm−2)

FF
(-)

PCE
(%) Ref.

ITO/PEDOT:PSS/PffBT-DPP(1)/[70] PCBM(3)/MeIC(1)/ZrAcAc/Al 740 12.5 0.74 6.8 [137]
ITO/PEDOT:PSS/PffBT-DPP(1)/[70] PCBM(0)/MeIC(1)/ZrAcAc/Al 780 4.5 0.58 2.0
ITO/PEDOT:PSS/PffBT-DPP(1)/[70] PCBM(2)/MeIC(1)/ZrAcAc/Al 760 16.1 0.73 9.0

(ITO)/PEDOT:PSS/PTQ10:Y6/PFN-Br/Al 820 ± 1 23.9 ± 0.1 0.73 14.5 ± 0.1 [138]
ITO/PEDOT:PSS/P1(1):PC71BM(2)/LiF/Al (500 rpm) i 770 5.76 0.43 1.92 [139]
ITO/PEDOT:PSS/P1(1):PC71BM(3)/LiF/Al (500 rpm) i 770 7.32 0.39 2.21
ITO/PEDOT:PSS/P1(1):PC71BM(4)/LiF/Al (500 rpm) i 770 7.10 0.39 1.97
ITO/PEDOT:PSS/P1(1):PC71BM(3)/LiF/Al (500 rpm) i 580 3.07 0.30 0.55
ITO/PEDOT:PSS/P1(1):PC71BM(3)/LiF/Al (500 rpm) i 770 8.19 0.35 2.21
ITO/PEDOT:PSS/P1(1):PC71BM(3)/LiF/Al (350 rpm)i 790 7.29 0.41 2.36
ITO/PEDOT:PSS/P1(1):PC71BM(3)/LiF/Al (750 rpm) i 790 6.94 0.35 1.92
ITO/PEDOT:PSS/P2(1):PC71BM(2)/LiF/Al (500 rpm) i 710 5.27 0.55 2.07
ITO/PEDOT:PSS/P2(1):PC71BM(3)/LiF/Al (500 rpm) i 700 5.30 0.37 1.38
ITO/PEDOT:PSS/P3(1):PC71BM(1)/LiF/Al (500 rpm) i 750 2.50 0.49 0.92
ITO/PEDOT:PSS/P3(1):PC71BM(2)/LiF/Al (500 rpm) i 750 3.95 0.46 1.38
ITO/PEDOT:PSS/P3(1):PC71BM(3)/LiF/Al (500 rpm) i 750 3.85 0.49 1.43
ITO/PEDOT:PSS/P3(1):PC71BM(4)/LiF/Al (500 rpm) i 760 5.14 0.42 1.65
ITO/PEDOT:PSS/P3(1):PC71BM(4)/LiF/Al (500 rpm) i 740 7.13 0.34 1.83
ITO/PEDOT:PSS/P3(1):PC71BM(4)/LiF/Al (500 rpm)i 750 7.63 0.35 2.02
ITO/PEDOT:PSS/P3(1):PC71BM(4)/LiF/Al (350 rpm) i 770 7.59 0.41 2.45
ITO/PEDOT:PSS/P3(1):PC71BM(4)/LiF/Al (750 rpm) i 740 5.9 0.33 1.48

ITO/PEDOT:PSS/PTT-EFQX:PCBM/PFN-Br/Ag 690 11.19 0.68 5.37 [140]
ITO/PEDOT:PSS/PT-DFBT-T-EFQX:PCBM/PFN-Br/Ag 870 5.62 0.54 2.69

ITO/PEDOT:PSS/P(T2BDY−TBDT)/PNDIT-F3N−Br/Ag 780 12.07 0.47 4.40 [141]
ITO/PEDOT:PSS/P(TTzBDY−TBDT)/PNDIT-F3N−Br/Ag 800 7.71 0.40 2.49

ITO/PEDOT:PSS/P(T2BDY−TBDT0.7−OBDT0.3)/PNDIT-F3N−Br/Ag 750 3.80 0.37 1.06
ITO/PEDOT:PSS/P(TTzBDY−TBDT0.7−OBDT0.3)/PNDIT-F3N−Br/Ag 770 5.23 0.39 1.58

i Revolutions per minute.

Pan et al. reported diketopyrrolopyrrole (DPP)-based polymer PffBT-DPP has a nar-
row bandgap of 1.33 eV. One non-fullerene acceptor MeIC and one fullerene acceptor
PCBM were employed to fabricate both binary and ternary solar cells with the architecture
ITO/PEDOT:PSS/active layer/ZrAcAc/Al. The ternary device PffBT-DPP:PCBM:MeIC
showed a power conversion efficiency of 9.0% while binary BHJ solar cells showed PCE of
6.8% and 2.0% for PffBT-DPP:PCBM and PffBT-DPP:MeIC respectively [137]. A PT10-based
donor polymeric material was synthesized by Rech et al. and was used in the architecture of
(ITO)/poly(3,4-ethylenedioxythiophene):polystyrenesulfonat(PEDOT:PSS)/PTQ10:Y6/PFN-
Br/aluminum. They acquired the PCE of 15%. In [138], Caliskan et al. synthesized a donor
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material based on benzo dithiophene by attaching a 2-(2-octyldodecyl)selenophene ring
at the fourth and eighth position of benzene ring in BDT. The structure of the solar cell
was ITO/PEDOT:PSS/Polymer:PC71BM/LiF/Al and the obtained PCEs were 2.36%, 2.07%
and 2.45% for P1, P2 and P3, respectively [139]. Guo et al. synthesized narrow bandgap
(1.6 eV) conjugated polymers based on bis(2-alkyl)-5,8-dibromo-6,7-difluoroquinoxaline-2,3-
dicarboxylate (EF-Qx) unit. For better performance D-A (PTT-EFQX) and D-A1-D-A2(PT-
DFBT-T-EFQX)-type materials were synthesized in the architecture of ITO/PEDOT:PSS/PTT-
EFQX:PCBM/PFN-Br/Ag and ITO/PEDOT:PSS/PT-DFBT-T-EFQX:PCBM/PFN-Br/Ag
respectively. PCE of the solar cells containing D-A type structure was found to be 5.37%,
while D-A1-D-A2 type has 2.69% [140]. Can et al. recently synthesized low bandgap
(1.30–1.35 eV) D-A copolymers 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) as
donor part and benzo[1,2-b:4,5-b′]dithiophene (BDT) acting as acceptor. The highest con-
version efficiency of 4.40% was shown by P(T2BDY−TBDT), having a very high current
density of 12.07 mAcm−2 [141].

3.2. Polymers as Acceptor Materials

To a lesser extent, polymers are used as acceptors in BHJ cells. However, in the
literature in recent years, few reports can be found on the use of polymers as acceptors
(Table 8).

Table 8. Polymers used as an acceptor material in bulk-heterojunction solar cells.

Structure of Solar Cell Voc
(mV)

Jsc
(mA/cm2)

FF
(-)

PCE
(%) Ref.

ITO/PEDOT:PSS/PTzBISi:N2200/C60N/Ag CB- as print 930 2.76 0.43 1.01 [47]
ITO/PEDOT:PSS/PTzBISi:N2200/C60N/Ag CB-TA 890 3.98 0.48 1.57

ITO/PEDOT:PSS/PTzBISi:N2200/C60N/Ag CB-TA+SVA 870 4.58 0.51 1.83
ITO/PEDOT:PSS/PTzBISi:N2200/C60N/Ag MTHF-as print 890 15.41 0.70 9.01

ITO/PEDOT:PSS/PTzBISi:N2200/C60N/Ag MTHF-TA 880 16.19 0.73 9.96
ITO/PEDOT:PSS/PTzBISi:N2200/C60N/Ag MTHF-TA+SVA 880 17.62 0.76 11.25

ITO/ZnO/PTB7-Th:NDP-V/V2O5/Al 740 17.07 0.67 8.59 [48]
ITO/ZnO/PTB7-Th:PDI-V/V2O5/Al 740 15.39 0.64 7.38

ITO/ZnO/PEI/BSS0:PBDB-T/MoO3/Ag 820 15.74 0.57 7.38 [49]
ITO/ZnO/PEI/BSS10:PBDB-T/MoO3/Ag 860 18.55 0.64 10.10
ITO/ZnO/PEI/BSS20:PBDB-T/MoO3/Ag 860 17.07 0.65 9.58
ITO/ZnO/PEI/BSS50:PBDB-T/MoO3/Ag 850 17.50 0.65 9.69

ITO/ZnO/PBDBT:PIID(CO) 2FT/MoO3/Ag 640 8.30 0.50 2.65 [142]
ITO/ZnO/PBDBT:PIID(CO) BTIA/MoO3/Ag 630 1.80 0.50 0.37

ITO/PEDOT:PSS/PBDB-Tb-PYT/PDINN50/Ag (CF; area 5 mm2) 919 16.90 0.46 7.18 [143]
ITO/PEDOT:PSS/PBDB-Tb-PYT/PDINN50/Ag (CF, 4% CN; area 5 mm2) 916 19.60 0.63 11.32
ITO/PEDOT:PSS/PBDB-Tb-PYT/PDINN50/Ag (CB, 4% CN; area 5 mm2) 908 19.31 0.60 10.53

ITO/PEDOT:PSS/PBDB-Tb-PYT/PDINN50/Ag (ODCB, 4% CN; area 5 mm2) 917 18.67 0.59 10.08
ITO/PEDOT:PSS/PBDB-Tb-PYT/PDINN50/Ag (THF, 4% CN; area 5 mm2) 914 19.25 0.63 11.13

ITO/PEDOT:PSS/PBDB-Tb-PYT/PDINN50/Ag (Toluene, 4% CN; area 5 mm2) 912 19.38 0.62 11.07
ITO/PEDOT:PSS/PBDB-Tb-PYT/PDINN50/Ag (CF, 4% CN; area 2.2 mm2) 867 19.71 0.63 10.80

ITO/PEDOT:PSS/PBDB-T:PYT/PDINN50/Ag (CF; area 5 mm2) 883 22.70 0.72 14.57

MTHF—2-methyltetrahydrofuran, TA—thermal annealing, SVA—solvent vapor annealing, CF—chloroform,
CB—chlorobenzene, ODCB—o-dichlorobenzene, CN—1-chloronaphthalene.

Zhu et al. [47] prepared and described a series of solar cells with structure ITO/ PE-
DOT:PSS/PTzBISi:N2200/C60N/Ag prepared under different conditions. N2200 polymer
was used as an acceptor. Two solvents, such as chlorobenzene and 2-methyltetrahydrofuran
were used, in addition to the thermal annealing and solvent vapour annealing. It has been
shown that 2-methyltetrahydrofuran and thermal annealing together with solvent vapour
annealing are the most favourable applications. For the solar cells prepared in this way, high
photovoltaic parameters of Voc = 880 mV, Jsc = 17.62 mA/cm2, FF = 0.76 and PCE = 11.25%
were obtained. The values given were averages and the maximum efficiency of the device
was as high as 11.76%.

In [48], polymeric acceptors were used, which are naphthalene-diimide and perylenedi-
imide derivatives. The prepared inverted structure devices showed high efficiencies of
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8.59% (NDP-V) and 7.38 (PDI-V). When NDP-V was used, an increase in both Jsc and FF
was observed (by 1.68 mA/cm2 and 0.03, respectively). Nagesh et al. [49] prepared a series
of inverted photovoltaic cells containing a copolymer as an acceptor. The fabricated devices
differed in the ratio of NDI-biselenophene/NDI-selenophene copolymer repeating units.
As a result of the research carried out, it was found that the most advantageous was the use
of an NDI-biselenophene/NDI-selenophene copolymer with an equivalent proportion of
90:10 (BSS10); for this acceptor structure, yields of over 10% were obtained. In [143], a block
copolymer containing donor and acceptor moieties (PBDB-Tb-PYT) was used. The effect of
the solvent used (chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, toluene)
was studied. Moreover, the addition of 1-chloronaphthalene was used. By using the CN
additive, a significant increase in both Jsc and FF and therefore, in efficiency, was observed
(from 7.18 to 11.32%). The obtained photovoltaic performance results for the copolymer
active layer were compared with the blend obtained by mixing the donor (PBDB) and
acceptor (PYT), respectively. A PCE of 14.57% was recorded for the blends obtained by
mixing the polymers in the active layer.

On the basis of the above-presented results from the latest scientific reports, we can
summarize the role of polymeric materials in BHJ solar cells. The most important light-
harvesting responsibility of the donor material in bulk heterojunction solar cells compels the
researchers to choose the optimum bandgap materials in this regard. Inorganic silicon-based
solar cells require the thick active donor layer and hence not only increase the production
cost but also are based on a non-renewable silicon source. Therefore easily synthesized,
low-cost, environmentally friendly and thermally stable polymeric donor materials are
continuously increasing in demand. Low-bandgap donor polymers are optimum for bulk
heterojunction solar cells because they absorb most parts of the solar spectrum and are thus
efficient light absorbers. Non-fullerene acceptors are more compatible with the polymer
donors because of the lowered LUMO levels and high extinction coefficient.

The wide visible light absorption range is the specialty of the polymers only. Poly(3-
hexylthiophene) (P3HT) is the most widely used polymer donor with PCBM acceptor.
Benzo[1,2-b:4,5-b′]dithiophene (BDT)-based donor polymers are among the best polymers
used against fullerene and non-fullerene acceptors. Not only binary, but ternary strategies
are employed to further increase the efficiency of all-polymer solar cells. PCEs greater
than 11% have been achieved by fullerene-based acceptors, while PCEs greater than 17%
have been accomplished by non-fullerene BHJ solar cells. Regioregular geometry of the
polymers controls the polymeric chain supramolecular assembly and thus influences the
charge transport properties. Developing novel synthetic methodologies has become crucial
for controlling regioregular geometry of the polymers during copolymerization. From
this literature review, it can be noted that good miscibility between acceptor and donor is
another important parameter, which must be kept in mind to achieve high-performing bulk
heterojunction solar cells. Side-chain engineering plays an important role in the electron-
donating abilities of the donor material. Therefore, it is the need of the hour to develop
facile and cost-effective synthetic methods for synthesizing polymer donors with optimum
properties. Polymers used as acceptors in BHJs are far less common, although there is, of
course, information on this in the literature. The most commonly used polymeric acceptors
are N2200, PBDB-T or NDP-V, but it is impossible to compare the PV performance of these
devices due to different preparation methods and architecture.

4. Polymers in Perovskite Solar Cells (PSCs)

Over the last two decades, the significant development of the sourcing electricity
concept from solar energy is observed. The current research topic in photovoltaics is
perovskite solar cells. The PSCs are cells of the latest technology, for which has been noted
a very fast increase in efficiency (PCE) from 3.8% in 2009 to 25.2% in 2020, which may
indicate that this type of cell will find commercial applications [12,144,145]. The perovskite
solar cells are a hybrid system, a combination of organic and inorganic structures. A
perovskite can be represented by a general formula ABX3, where A is the organic ion (the
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most common is methylammonium ion −[CH3NH3]+), B is Pb2+ ion, Sn2+ or Cd2+, and
X is a halogen ion I−, Br− or Cl−. The perovskite is characterized by wide absorption of
visible and near-infrared radiation, low binding energy exciton (~2 meV), and a direct
bandgap. Additionally, perovskite materials show: (i) a long time carrier life (~270 ns),
which generates the length of the diffusion path at the level of ~1 µm in thin layers and up
to ~175 µm in single crystals, thus ensuring hassle-free transport of charge carriers through
the absorber (perovskite) 300 nm thick (no recombination effect), (ii) high mobility load
carrier (up to ~2320 cm2 V−1 s−1); and (iii) high dielectric constant (~18–70), which makes
them ideal materials for photovoltaics [146]. A perovskite absorber, hole-transporting
material (HTM), electron transporting material (ETM), and electrodes are all common
components in PSC devices. Photo-generated electrons/holes in the perovskite absorber
are transported to the ETM/HTM and selectively collected by the anode/cathode when a
PSC is illuminated. Both n–i–p (traditional) and p–i–n (inverted) forms of PSCs can operate
successfully due to perovskites’ ambipolar charge transport feature [147].

This work is a presentation of the current achievements concerning the applications of
polymers in perovskite solar cells, which will be shown in the following subsections of this
publication. The conventional and inverted structures of PSCs are presented in Figure 5a,
while the chemical structures of polymers used in PSCs are shown in Figure 5b.
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4.1. Polymers in Improving Perovskite Morphology

The large-scale development of perovskite solar cells requires high-quality failure-free
perovskite foils with better surface coverage. Several solutions to this problem will be
presented in this section.
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Zhao et al. presented a polymerization-assisted grain growth (PAGG) technique for
obtaining stable and efficient perovskite solar cells with FA1−xMAxPbI3. DI (Dimethyl Ita-
conate) monomers were added to the PbI2 precursor (1.0% molar ratio) to provide sufficient
contact between the PbI2 and their carbonyl groups (sequentially deposited approach). An
in situ polymerization process was started during the subsequent PbI2 annealing process,
leaving the as-formed heavier polymers adhering to the grain boundaries with previously
set contact. Due to the adequate polymer-PbI2 interaction, there was a higher energy barrier
for producing perovskite crystals when reacting with FAI (formamidinium iodide), result-
ing in more sizeable crystal grains. Furthermore, the carbonyl groups of polymers were led
to the under coordinated Pb2+ and effectively diminished the trap density, whereby a PCE
of 23.0% was obtained. Effective passivation, combined with the hydrophobic character of
the polymer, significantly slowed the rate of deterioration, resulting in significant increases
in stability [148].

Furthermore, Yousif and Agbolaghi investigated the potential application of the rGO
and CNT precursors and their derivatives grafted with the rGO-g-PDDT and CNT-g-
PDDT (irregioregular) and CNT-g-P3HT and CNT-g-P3HT (regioregular) polymers to
improve the morphological, optical, and photovoltaic properties of FTO/b-TiO2/mp-
TiO2/CH3NH3PbI3/spiro-OMeTAD/MoO3/Ag perovskite devices (the ratio of carbonic
materials to the perovskite was 1:15). The perovskite system behaviour (cell performance)
was modified by the type of rGO or CNT (carbonic materials) and the regioregularity of
grafts. The best results of PCE were obtained with CNT nanostructures grafted with P3HT
backbones, which were 16.36% [149].

Yu et al. elaborated a new p-type p-conjugated ladder-like polymer P-Si (poly(3,30-(((2-
(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-6-methylbenzol[1,2-b:4,5-b0]dithiophen-2-yl)-5-methyl-
1,4-phenylene)bis(oxy))bis(hexane-6,1-diyl))bis(1,1,1,3,5,5,5-heptamethyltrisiloxane)) for per-
ovskite solar cells-based on SnO2. This introduced of a small amount of P-Si into an anti-
solvent to improve the morphology and crystallinity of perovskite films. The P-Si (the HOMO
energy level is −5.41 eV) could act as a hole-transport medium between the spiro-OMeTAD
and the perovskite layer (enhanced hole transportation). As a result, the highest PCE of solar
cell with P-Si (0.1 mg ml−1) was achieved at 21.3% [150].

Fu et al. also applied a polymer in the anti-solvent process to passivate the defects
of perovskite films and dominate the perovskite crystallization. The researchers used
C60-PEG (fullerene end-capped polyethylene glycol). The application of C60-PEG also
influenced the surface of the perovskite films. As a consequence, the highest PCE (17.71%)
of the tested perovskite solar cells was registered [151].

Moreover, Chen et al. exploited a PBTI (poly(bithiophene imide)) in the anti-solvent
step of the perovskite deposition process, resulting in effective passivation of the grain
boundary defects and thus improvement of the tested devices performance. The PBTI
(0.25 M) may be efficiently incorporated into grain boundaries (grain boundary defect
passivation) cause of a vast lower in recombination losses and the ensuing increase in Voc
and PCE (20.57%) [152].

Yao et al. demonstrated that a polymer alloy of a PS (polystyrene) and a PMMA
(poly (methyl methacrylate)) could profit the crystal growth and boost the flexibility of
the perovskite solar cells. The polymer alloy (AMS, PS:PMMA, i.e., 1:2) was integrated
with the perovskite layer (CH3NH3PbI3) during the anti-solvent process. The additive of
AMS may boost the grain size of perovskite crystals and suppress the crystallization of the
absorber layer. As a result, the PSCs with AMS showed a PCE of 17.54% [153].

For the first time, Suwa et al. incorporated a small amount of a PTMA (poly(1-oxy-
2,2,6,6-tetramethylpiperidin-4-yl methacrylate) into the perovskite layer, thereby increasing
the durability of the perovskite. The superoxide anion radical generated following light
irradiation on the layer was eliminated by PTMA, which could react with the perovskite
molecule and degrade it into lead halide. The photovoltaic conversion efficiency of a cell
made with a PTMA-incorporated perovskite layer (0.3 wt.% amount of the polymer vs. the
perovskite) and a hole-transporting PTAA (polytriarylamine) layer was 18.8% [154].
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Additionally, for the perovskite surface, Chen et al. used a PEA (poly(propylene
glycol) bis(2-aminopropyl ether)) and applied grain boundary passivation. PEA’s unshared
ether–oxygen electron pair activates, forming a crosslinking complex with lead ions, thus
lowering the trap state density and inhibiting non-radiative recombination in perovskite
films. The PCE of the MAPbI3-based cells with PEA was 18.87% (1 wt.% of PEA) [155].

In addition, Garai et al. designed and synthesized a PHIA (poly(p-phenylene)) as
additives to the perovskite precursor solution. The side chains of the polymer were selec-
tively functionalized, allowing it to be used in the effective trap passivation of perovskites.
The PHIA polymer caused the production of perovskite films of a higher quality and with
bigger grain sizes. The passivated device exhibited minimum charge collection at the
interface, lower recombination and lesser traps, allowing for an improved charge transfer.
As a result of the passivation, the device had a high PCE of 20.17% (0.50 mg mL−1 of
PHIA) [156].

In contrast, Zarenezhad et al. utilized a PPy (polypyrrole) in the precursor solution
to fabricate mixed halide devices. PPy was used as a conductive compound to ensure an
enhanced electron-hole extraction and transfer. The PPy additive amended the layer quality
by mitigating the growth of the perovskite crystals (the lower charge carrier recombination
and efficient carrier extraction). The highest achieved PCE of perovskite solar cells (1 wt.%
of PPy) was 13.2% [157].

Zhong et al. employed a mixture of a PVP (polyvinylpyrrolidone) and a PEG (polyethy-
lene glycol) with an appropriate mass ratio in precursor solution to perfect the morphol-
ogy of perovskite, optical and photovoltaic properties, and air stability of perovskite
(CH3NH3PbI3) films. After modifying the perovskite film with a polymer mixture (PVP
and PEG), the crystallinity, uniformity, smoothness, compactness, and surface coverage
of the perovskite film improved. The air stability of the tested PSCs could be imputed to
the unique hygroscopicity of the polymer mixture. The bondings between polymer mix-
ture and perovskite also contributed to the inhibition of ion migration and the synergistic
stabilization of the perovskite structure [158].

4.2. Polymers as Hole-Transporting Materials (HTM)

Hole-transporting materials are essential elements of perovskite cells. Compounds
acting as HTMs in PSCs should be of: (i) an appropriate level HOMO (i.e., Highest Occu-
pied Molecular Orbital, which allows the band’s energy valence perovskite material to be
adjusted), (ii) high hole mobility, (iii) wide light absorption spectral range, (iv) photochemi-
cal stability, and (v) good layering ability [145,159]. The conjugated polymer HTMs have
good stability and solution operability when compared to organic small molecule HTMs
and inorganic HTMs. Photovoltaic parameters of PSCs with polymeric HTM are presented
in Table 9.

Chawanpunyawat et al. developed an IDTB (poly(1,4-(2,5-bis((2-butyloctyloxy)
phenylene)-2,7-(5,5,10,10-tetrakis(4-hexylphenyl)-5,10-dihydro-sindaceno[2,1-b:6,5-b′]
dithiophene))) as dopant-free polymeric HTM. IDTB was shown a high mobility and
an intensive interaction of the backbone to perovskites through IDTB’s S/O atoms (a high
holeextracting ability) and also an effective passivation of the defects in absorber layer. The
prepared PSCs with IDTB as dopant-free HTM were attained PCE (19.38%) comparable to
the devices with doped spiro-OMeTAD (2,2′,7,7′-tetrakis[N,N-di(4-methoxyphenyl)amino]-
9,9′-spirobifluorene) (18.22%) [160].

For the first time, Liao et al. applied a P3CT (poly[3-(4-carboxybutyl)thiophene-2,5-
diyl]) as HTM in perovskite solar cells. The P3CT has demonstrated ideal dual functionality
for device applications thanks to a plethora of carboxylic groups (−COOH) on the side
chains. Molecules of the P3CT could firmly attach to the ITO surface, following it to achieve
a work function that was similar to that of the perovskite active layer. To eliminate recom-
bination defects, the Lewis base character of the −COOH group could efficiently passivate
the under-coordinated Pb2+ ions at the HTL/perovskite interface. As a consequence of
using the P3CT as HTL, a significant PCE of 21.09% was successfully produced [161].
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Table 9. The collected photovoltaic parameters of PSCs based on the analysed HTMs.

Device Structure Voc
(mV)

Jsc
(mA cm−2)

FF
(-)

PCE
(%) Ref.

FTO/TiO2/SnO2/[Cs0.05FA0.8MA0.15PbI2.55Br0.45]/IDTB/Au 1107 23.06 0.76 19.38 [160]

ITO/P3CT/[(FA0.17MA0.94PbI3.11)0.95(PbCl2)0.05]/C60/ZrAcac/Ag 1120 22.88 0.82 21.09 [161]

FTO/TiO2/[0.001 M FAI, 0.001 M PbI2, 0.0002 M MABr, 0.0002 M PbBr2 + CsI
solution (1.5 M in DMSO)]/PBT1-C/-C/MoO3/Ag 1030 22.10 0.79 19.06 [162]

ITO/SnO2/[CH3NH3PbI3]/PCDTBT/Ag 970 19.90 0.73 14.08 [163]

FTO/SnO2/[0.001 M MAI,0.001 M PbI2 + EACl (0.0002 M (15% molar
ratio))]/PC3/Au 1110 23.50 0.80 20.80 [164]

ITO/SnO2/[1.1 M PbI2, 1.0 M FAI, 0.22 M PbBr2, 0.2 M MABr + 1.5 M
CsI]/PBDTT/MoO3/Ag 1120 23.64 0.77 20.28 [165]

FTO/b-TiO2/m-TiO2/[CH3NH3PbI3]/P(hPhDTP)/Ag 960 20.82 0.79 15.71 [166]

FTO/TiO2/[0.0006 M PbI2, 0.0001 M PbBr2, 0.0001 M MABr, 0.0005 M
FAI]/P-TT-TPD/Au 1040 21.68 0.73 16.82 [167]

FTO/SnO2/[CH3NH3PbI3]/PBDT[2F]T/Ag 1060 22.64 0.73 17.52 [168]

ITO/SnO2/[1.1 M PbI2, 1.0 M FAI, 0.22 M PbBr2, 0.2 M
MABr]/PBDB-Cz/MoO3/Ag 1135 24.34 0.76 21.11 [169]

ITO/SnO2/[0.26 M FAI,1.26 M PbI2, 1.08 M MAI, 0.14 M PbCl2]/P25NH/Ag 1049 19.81 0.83 17.30 [170]

ITO/SnO2/[(MA0.8FA0.2)Pb(I0.93Cl0.07)3]/P5NH/Ag 1041 20.95 0.83 18.10 [171]

Qi et al. proposed a PBT1-C obtained from the copolymerization between 1,3-bis(4-
(2-ethylhexyl)thiophen-2-yl)-5,7-bis(2-alkyl)benzo[1,2-c:4,5-c′]dithiophene-4,8-dione units
and benzodithiophene. The PBT1-C was able to passivate the surface traps of the perovskite
layer and was characterized by excellent hole mobility. Through its carbonyl (−CO) func-
tional groups, PBT1-C might passivate under coordinated defective perovskites, reducing
nonradiative recombination and enhancing charge extraction. The tested PSCs was shown
a PCE of 19.06% [162].

Jeong et al. reported a PCDTBT (poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-
2-thienyl-2′,1′,3′-benzothiadiazole)]) as an efficient hole-transfer material (0.02 cm2 V−1 s−1).
The greatest fracture energies in the perovskite devices were caused by PCDTBT fibrils
produced at the grain boundaries of the perovskite layer. These energies have offered
extrinsic reinforcement and shielding for improved mechanical and chemical stability. The
PSCs with PCDTBT exhibited a PCE of 14.08% as well as significantly enhanced mechanical
and air stability [163].

Yao et al. synthesized polymeric HTMs by inserting a phenanthrocarbazole unit into
polymeric thiophene or selenophene chain (PC1, PC2, and PC3). The addition of a planar
and broad phenanthrocarbazole unit was dramatically enhanced by the adjacent polymer
strands’ π−π stacking and interactions with the perovskite’s surface. As a result, the
PSC with PC3 as a dopant-free HTM had a stable PCE of 20.8% and a greatly increased
lifetime [164].

Ma et al. explored a J71 (poly [[5,6-difluoro-2-(2-hexyldecyl)-2H-benzotriazole-4,7- diyl]-
2,5-thiophenediyl [4,8-bis [5-(tripropylsilyl)-2-thienyl]benzo[1,2-b:4,5-b’]dithiophene-2,6-
diyl]-2,5-thiophenediyl]), PBDB-T (poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo
[1,2-b:4,5- b0 ]dithiophene)-co-(1,3-di (5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)-benzo[1,2-
c:4,5-c0 ]dithiophene-4,8-dione)]), and PM6 (poly [(2,6-(4,8-bis(5-(2-ethylhexyl-3-fluoro)
thiophen-2-yl)-benzo [1,2-b:4,5-b0 ]dithiophene))-alt-(5,5-(10,30 -di-2-thienyl-50,70 -bis(2-
ethylhexyl)benzo [10,20-c:40,50 -c0 ]dithiophene-4,8-dione)]) in PSCs. The alignment of
the perovskite and HTM energy levels were crucial for hole extraction and recombination
suppression at the interface. The fundamental techniques for obtaining a high-performance
device were to increase the material carrier conveying capacities while retaining low-charge
recombination [172].
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You et al. developed PBDTT and PBTTT (D-A polymers) high-efficiency HTMs of
PSCs. In the PBDTT and PBTTT, IDT or IDTT was used as the D unit, BDD served as
the A unit, and thienothiophene acted as a π-bridge. The n-i-p PSCs incorporating these
polymer HTMs displayed a highly promising device performance (PCE of around 20%).
The devices with PBDTT functioned slightly better than PBTTT because of the superior
solubility of IDT, which resulted in a smoother film and better perovskite/HTM/anode
interfacial contact [165].

Shalan et al. investigated a new polymeric HTMs P(mPhDTP) (poly(1-(4-methoxyphenyl)-
2,5-bis(5-methylthiophen-2-yl)-1H-pyrrole)), P(hPhDTP) (poly(1-(4-hexylphenyl)-2,5-bis(5-
methylthiophen-2-yl)-1H-pyrrole)), P(hBT) (poly(3-hexyl-5,5′-dimethyl-2,3′-bithiophene)) and
P(BT) (poly(5,5′-dimethyl-2,3′-bithiophene). These obtained polymers were discovered to be
extremely soluble in a variety of halogenated and non-halogenated solvents, making them
eco-friendly materials. The HOMO/LUMO band positions of the tested HTMs were aligned
with those of perovskite, guaranteeing that holes were extracted from the CH3NH3PbI3 to
the HTM layer with appropriate driving force. The highest PCE (15.71%) was indicated by a
device with p(hPhDTP) [166].

Kranthiraja et al. used a π-conjugated polymer P-TT-TPD (poly[4,8-bis(2-(4-(2-
ethylhexyloxy)phenyl)-5-thienyl)benzo[1,2-b:4,5-b′]dithiophene-alt-1,3-bis(6-octylthieno[3,2-
b]thiophen-2-yl)-5-(2-hexyldecyl)-4H-thieno[3,4-c]pyrrole-4,6(5H)-dione]) for PSCs. The de-
vice of P-TT-TPD had a PCE of 16.82% and 17.09% in dopant-free and tris(pentafluorophenyl)
borane-doped PSCs, respectively, due to P-TT-TPD good solution processability, well-suited
energy levels, its high mobility, better passivation and high-dipole moment difference be-
tween the ground and excited states [167].

Kong et al. studied F-substituted benzodithiophene copolymers PBDT[2H]T, PBDT[2F]T,
PBDT(T)[2F]T as dopant-free efficient HTMs in PSCs. The PSC of PBDT[2F]T was shown a
PCE of 17.52%. The experiments revealed that PBDT[2F]T as an HTM could extract holes
while concurrently passivating surface traps, making it a strong rival to the doped spiro-
OMeTAD. Furthermore, the hydrophobic character of PBDT[2F]T was provided greater
ambient stability [168].

You et al. reported polymeric HTMs PBDB-O, PBDB-T (alkoxy and thiophene as the
side chain of BDT appropriately), and PBDB-Cz (carbazole as the conjugated side chains
of BDT). PBDB-Cz had the highest HOMO energy level, hole mobility, passivation effect,
and effective interface modification, all of which helped improve the Voc, Jsc, and FF in the
devices. The PSC with PBDB-Cz was the best-performing PCE at 21.11% [169].

Liu et al. presented a novel polymer P25NH (DPP-based donor−acceptor) for appli-
cation as a HTM in PSCs. The P25NH exhibited high mobility, better aggregation than
P3HT and stability at low concentrations, and a perovskite surface passivation effect. All
of these benefits resulted in devices with a dopant-free low concentration of the P25NH
with a comparatively high PCE (17.3%) [170]. Furthermore, Liu et al. synthesized a new
P5NH compound analogous to the previous polymer P25NH. The polymer P5NH was
demonstrated to have higher mobility (5.13 × 10−2 cm−2 V−1 s−1) than the reported
P25NH (2.10 × 10−2 cm−2 V−1 s−1). The fabricated PSC with the P5NH was achieved at
an efficiency of 18.1% [170,171].

4.3. Polymers as Additives of Electron Transport Layers (ETL) and Electron-Transporting
Materials (ETM)

The ETL collects electrons from the perovskite layer/s and transports them into the
external circuit in perovskite solar cells. As a result, an ideal ETL material should have
high electron mobility and a perovskite-like energy level.

Xiong et al. used a P3HT (poly(3-hexylthiophene)) as an additive to the electron
transport layer of PCBM ([6,6]-phenyl-C61-butyric acid methyl ester). The addition of
P3HT to PCBM could enhance the surface morphology of ETL as well as the moisture
and water resistance of the ETL. The findings suggested that a small amount of P3HT did
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not result in a decreased power conversion efficiency (PCE) and could increase the PCBM
aggregation, resulting in an improved ETL moisture and water resistance [173].

Jiang et al. applied a doping PCBM with F8BT (poly(9,9-dioctylfluorene-co-
benzothiadiazole) as the electron transport layer. Doping with F8BT resulted in the creation
of a smooth and uniform ETL, which was beneficial for electron-hole pair separation and
hence increased the PSC performance. The power conversion efficiency of 15% of the PSC
with 5 wt.% F8BT in PCBM was achieved (Figure 6) [174].
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Figure 6. The sectional SEM image of PSC (a) and photocurrent density–voltage curves of the devices
with F8BT in PCBM (b) [174].

Furthermore, You et al. introduced a biological polymer HP (heparin potassium) for
stabilizing the ETL (SnO2) dispersion and depositing arrangement of ETL. This method
was discovered to enhance the interface contact between the ETL and the perovskite layer
by generating vertically aligned crystal growth of mixed-cation perovskites. The planar
PSCs based on SnO2–HP had a PCE of over 23% (6 mg mL−1) on rigid substrates and
19.47% on flexible substrates [175].

Liu et al. studied BCP (bathocuproine)/PMMA (poly(methyl methacrylate)) and
BCP/PVP (polyvinylpyrrolidone) films as hole-blocking/electron-transporting interfacial
layers. The storage stability of PSCs with BCP/PMMA was greatly improved over the PSCs
with BCP, but the photovoltaic performance was marginally reduced when PMMA was
added. The increased hydrophobicity and moisture resistance of the resultant BCP/PMMA
layer ensured better storage stability. The PVP enhanced electron transport over the BCP-
based interfacial layer to the cathode, resulting in greater current densities and power
efficiency in the devices (Figure 7) [176].
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Figure 7. The cross-sectional SEM images of ITO/PEDOT:PSS/MAPbI3/PC61BM with BCP (a),
BCP/PMMA (b), BCP/PVP (c) and the current density–potential plots of PSCs with BCP
(PVSC I) (d,e), BCP/PMMA (PVSC II–IV) (d), BCP/PVP (PVSC V–VII)) (e) [176].

In addition, Said et al. investigated the impact of the sp2-N substitution position in
the main chains of the polymeric compounds on the photovoltaic properties of devices.
They employed pBTT, pBTTz, and pSNT (naphthalenediimide-based n-type polymers)
as ETLs in PSCs. Adding sp2-N atoms to the donor thiophene units of pBTT resulted in
pBTTz, which had somewhat lower electron mobility but greatly enhanced the PCE of
PSCs. However, the PSC performance of pSNT with two extra sp2-N atoms and very high
electron mobility was significantly worse. Furthermore, the electron-rich sulfur atoms had
a significant influence on the passivating of the under-coordinated Pb-atoms, as evidenced
by the current density–voltage (J–V) hysteresis curves of the devices with pBTTz [177].

Tian et al. reported n-type conjugated polymers with fluoro- and amino-side chains
(PN, PN-F25%, and PN-F50%) as ETM in a perovskite device of structure ITO/NiOx/
CH3NH3PbI3−xClx/PN or PN-F25% or PN-F50%/Ag. It was discovered that the amino
side chains could provide good interface modification capabilities, while the fluoro side
chains could supply hydrophobic qualities to these polymers. As a result, the bifunctional
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conjugated polymers successfully improved the performance of tested solar cells (17.5%),
which was higher than the performance of devices with PC61BM (14.0%). Furthermore, the
bifunctional ETMs were improved PSCs stability significantly [178].

Moreover, Elnaggar et al. tested a pyrrolo[3,4-c]pyrrole-1,4-dione-based n-type copoly-
mer (P1, this polymer with the fullerene derivative [60]PCBM) as an electron transport
material for PSCs. A conjugated polymer P1 and its composites with [60] PCBM provided
reasonable efficiencies of 12–14%, respectively. Importantly, the use of the P1-PCBM [60]
composite’s ETL resulted in a significant increase in the operational stability of PSCs [179].

Yan et al. synthesized semiconducting copolymers NDI-Se, NDI-BiSe, and NDI-TriSe
based naphthalene-diimide. The addition of a biselenophene or triselenophene unit to
a polymer increased the polymer’s planarity and delocalization, as well as conductivity.
The perovskite solar cells of the ITO/NiOx/perovskite/NDI-selenophene/Ag structure
were prepared. The power conversion efficiency of 9.51% (NDI-Se), 7.66% (NDI-BiSe), and
14.00% (NDI-TriSe) were obtained [180].

These studies contributed to the development of new polymeric ETLs and additives
to the ETL by providing useful design recommendations.

4.4. Polymeric Interlayer/s

Interface engineering has been shown to be an effective method for reducing defect
density in organic–inorganic hybrid PSCs and is commonly utilized to improve their
performance [181–188].

Ding et al. exhibited a PVAc (polyvinyl acetate) as an agent modifying the surface of
perovskite (CsPbBr3) film. The combination of O atoms in the carbonyl group (C=O) of
PVAc with the positively charged under-coordinated Pb2+ and Cs+ defect ions could con-
tribute to the reduction of the CsPbBr3 surface defects and improve the energy-level align-
ment between the carbon electrode (work function) and the valance band (VB) of perovskite.
This results in reduced carrier recombination and energy loss at the perovskite/carbon
contact, which effectively increased the Voc and PCE [181].

Zhao et al. applied a DPP-DTT (poly(N-alkyldiketopyrrolo-pyrrole dithienylthieno[3,2-
b]thiophene)) multifunctional passivation layer to receive the stable and highly efficient
devices. By coordinate bonding between the atoms containing lone-pair electrons (sulphur,
oxygen, and nitrogen) in DPP-DTT and the under the coordinate Pb atoms in perovskite,
DPP-DTT acted as an efficient passivation layer to decrease defects on the perovskite
surface. The DPP-DTT could function as a hole-selective layer because of its high hole
mobility (~10 cm2 V−1 s−1) and acceptable valence band (VB) (−5.31 eV) between the per-
ovskite (−5.67 eV) and spiro-OMeTAD (−5.22 eV) to efficiently increase hole extraction and
transport. DPP-DTT as an ultra-hydrophobic agent, improved the perovskite stability [182].

Sharma et al. developed an n-type conjugated polymer with a naphthalene diimide
core and a vinylene linker and oligo (ethylene glycol) (P2G) as a stable cathode interface
layer (CIL). P2G was shown to be an effective CIL for lowering interfacial energy barriers
in hybrid perovskite solar cells, with a PCE of 17.6% for MAPbI3-based p-i-n planar devices
vs. 15% for reference devices. Because of the effectiveness of P2G CIL, there appeared to be
a potential technique for creating alcohol/water-soluble polymer interlayers with desirable
electrical and electronic characteristics [183].

Zhou et al. reported a photoinitiation-crosslinked zwitterionic polymer (Dex-CB-MA)
as an interfacial layer played an important role in the perovskite device performance. Dex-
CB-MA (dextran with carboxybetaine modified by methacrylate) was used as the interfacial
layer between the PEDOT:PSS (as hole extraction layer, HEL) and the perovskite layer and
to improve the morphology of the perovskite film. The Dex-CB-MA was discovered to
generate an effective charge-transfer process in perovskite solar cells. As a consequence,
when compared to PSCs based on the PEDOT:PSS HEL, the PEDOT:PSS/Dex-CB-MA HEL
perovskite solar cells using the PEDOT:PSS/Dex-CB-MA HEL showed a 30% increase in
power conversion efficiency [184].
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Zhao et al. demonstrated a polymer-based difluorobenzothiadiazole (PffBT4T-C9C13)
as the interfacial material for planar PSCs. The PffBT4T-C9C13 was deposited between the
HTL (spiro-OMeTAD) and the perovskite absorber by utilizing a well-refined deposition
technique. When the prepared polymer was decorated, a uniform perovskite layer with
a large grain was formed. The PffBT4T-C9C13 has passivated the surface defects of per-
ovskite film and also protected the film from water corrosion. At the interface, the charge
collection was adequately suppressed, which helped with charge extraction and transport.
As a consequence, the ITO/TiO2/MA1−xFAxPbI3/PffBT4T-C9C13/spiro-MeOTAD/Ag
structure of the device had the best power conversion efficiency of 19.37% (0.50 mg mL−1

of PffBT4T-C9C13) [185].
Liu et al. reported a conjugated polyelectrolyte PTFTS (poly[N-(4-sulfonatophenyl)-

4,4′-diphenylamine-alt-N-(p-trifluoromethyl)phenyl-4,4′-diphenylamine] sodium salt) as
the interlayer between GO (graphene oxide) and the perovskite. The polymers’ interlayers
were allowed for the identification of the recombination channels at the front-contact inter-
face in the inverted-type planar PSCs. The sulfonate-charged PTFTS had the unanticipated
benefit of causing strong contact between PTFTS as the binding force and GO, allowing
for the development of a uniform interfacial layer onto GO using a simple wet-chemical
method. As a result, the best PCE for the device with PTFTS was 18.39% [186].

Kim et al. utilized a PDMS (polydimethylsiloxane) interlayer between CuSCN (inor-
ganic HTL) and the absorber to stabilize the perovskite deposition and working device.
The PDMS successfully blocked a disintegration of perovskite at the surface throughout
the upper layer’s deposition. In addition, it was noticed that the polymer could form
chemical bonds with CuSCN and perovskite as the cross-linking interlayer. This novel
cross-linking layer alleviated the interfacial traps/defects in the solar cells and amended
the hole-extraction property at the interface. The PDMS as a cross-linking interlayer was
enabled to receive a highly efficient PSC with MAPbI3/PDMS/CuSCN with a PCE of
19.04% [187].

Wang et al. synthesized a naphthalene imide dimer (2FBT2NDI) and applied it as inter-
face material for inverted PSCs. With the introduction conjugated skeleton benzothiadiazole-
dithiophene unit, two fluorine atoms could enhance intermolecular interactions and regu-
late the energy levels. The exploitation 2FBT2NDI as a polymeric interlayer suppressed
the recombination of a charge trapped at the perovskite/ETL interface and improved the
electron extraction and the efficiency of the device. The perovskite device with 2FBT2NDI
exhibited the best PCE of 20.1% [188]. These works give precepts for implementing interface
control and modification utilizing polymers.

The above-presented results prove that polymers can be utilized in PSCs to aid nucle-
ation, control perovskite film crystallization, and improve device stability by developing
different interactions with the perovskite films. The application of the DI monomer by
adding it to the PbI2 precursor (polymerization-assisted grain growth (PAGG) technique)
allowed for the appropriate interaction of the polymer with PbI2, thanks to which the
PCE was obtained at the level of 23%, and the rate of perovskite degradation was slowed
down [148]. Moreover, the utilization of the naphthalene imide dimer (2FBT2NDI) as
interface material for reverse PSCs allowed for the inhibiting recombination of the charge
trapped at the perovskite/ETL interface, improving the electron extraction as well as the de-
vice efficiency (20.1%) [188]. Additionally, polymers can also be shown high hole mobility,
which makes their use possible as hole-transporting materials. The polymeric HTMs PBDB-
Cz (carbazole as the conjugated side chains of BDT), was indicated a PCE of 21.11% [169].
Furthermore, biological polymer HP (heparin potassium) was introduced for stabilizing
the electron transport layers’ dispersion and depositing the arrangement of the ETL (the
PCE of over 23%) [175]. Consequently, it is imperative to design the novel polymers used
in perovskite solar cells to improve the stability and performance of the PSCs.
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5. Summary and Conclusions

Photovoltaics is a strongly and rapidly growing branch of renewable energy sources.
Many new materials are being used in solar cells. Polymeric materials are also widely
used in devices that convert solar radiation into electricity. As presented in this review
paper, polymeric compounds are widely used in many fields in photovoltaic cells due to
their numerous advantages, which undoubtedly include the possibility of modifying their
chemical structure and thus adjusting their physical and chemical properties to the given
needs. Polymeric materials are also widely used in devices that convert solar radiation into
electricity. As presented in this review paper, polymeric compounds are widely used in
many fields in photovoltaic cells due to their numerous advantages, which undoubtedly
include the possibility of modifying their chemical structure and thus adjusting their
physical and chemical properties to the given needs. Given current trends and recent
literature, more and more new polymeric materials are finding applications in photovoltaic
cells, as seen, for example, in their use as dyes in DSSCs or HTMs in PSCs.

In summary, polymeric materials are increasingly used in a wide range of research
and technological solutions and will certainly become more widely and extensively used
in solar cells as well. As noted, polymers are used as the flexible transparent substrates
for all types of photovoltaic devices discussed, as materials that impart gel character to
electrolytes in DSSCs, counter-electrodes, materials responsible for the pore formation in
inorganic oxides used in DSSCs and PSCs. They are widely used also in BHJ, mainly as
donor materials, but numerous studies report that the substitution of acceptor fullerenes by
polymers can also be found. It is also worth remembering to use polymers as intermediate
or buffer layers, supporting the transport or separation of the generated charges to the
appropriate electrodes. As previously mentioned, organic compounds and among them,
polymers, are and will be widely used in new technologies for obtaining electric currents
due to their relatively low costs of preparation, easy modification of the chemical structure,
and thus easily obtain the required properties, as well as the possibility of manufacturing
suitable layers from them.

As mentioned in the summaries of the individual sections, it is not easy or even entirely
possible to compare and determine the best polymer on the basis of the collected results
due to the differences in structures and methods of preparation of individual devices. In
the case of the DSSC cells, apart from the use of the polymer as a dye or counter-electrode,
it is very difficult to determine the direct effect on the recorded device parameters. Even
in the case of a dye or counter-electrode, the preparation methods and conditions play a
huge role, with very often different results in different publications. Therefore, it can only
be stated that the following polymers are used PEN, PET as flexible substrates; PS, PVP,
P123 used to obtain pores in the oxide material, PEO, PAN, PEG as materials to give a gel
structure to the electrolyte and PANI, PPy, PTh, PEDOT, PEDOT:PSS as counter-electrodes.
In the case of BHJ solar cells, high efficiencies are registered mainly for donors containing
thiophene rings in the polymer, such as PTB-7, PTB-7-Th, D18, P106, among others. As
for acceptors, polymeric compounds are used much less frequently, while high efficiencies
are registered for polymers containing naphthalene moieties. In perovskite solar cells,
polymers are used as additives to facilitate the nucleation and crystallization processes
in the perovskite layer(s). By adding a DI monomer to the PbI2 precursor, a PCE was
obtained of 23.0%. Polymers can also be used as electrons (biological polymer HP, the PCE
of over 23%), hole-transporting materials (PBDB-Cz, PCE = 21.11%), and interface layer(s)
(2FBT2NDI, PCE = 20.1%).
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