
materials

Article

Highly Hydrophobic Organosilane-Functionalized Cellulose:
A Promising Filler for Thermoplastic Composites

Pavel Cerny 1,2,*, Petr Bartos 1,2, Pavel Kriz 1,2 , Pavel Olsan 2 and Petr Spatenka 2,3,4

����������
�������

Citation: Cerny, P.; Bartos, P.; Kriz, P.;

Olsan, P.; Spatenka, P. Highly

Hydrophobic Organosilane-

Functionalized Cellulose: A

Promising Filler for Thermoplastic

Composites. Materials 2021, 14, 2005.

https://doi.org/10.3390/ma14082005

Academic Editor: Debora Puglia

Received: 8 March 2021

Accepted: 14 April 2021

Published: 16 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Applied Physics and Technology, Faculty of Education, University of South Bohemia,
Jeronymova 10, 371 15 Ceske Budejovice, Czech Republic; bartos@zf.jcu.cz (P.B.); kriz@pf.jcu.cz (P.K.)

2 Department of Agricultural, Transport and Handling Technology, Faculty of Agriculture,
University of South Bohemia, Studentska 1668, 370 05 Ceske Budejovice, Czech Republic;
olsan@zf.jcu.cz (P.O.); petr.spatenka@fs.cvut.cz (P.S.)

3 Department of Materials Engineering, Faculty of Mechanical Engineering,
Czech Technical University in Prague, Technicka 4, 166 07 Prague, Czech Republic

4 SurfaceTreat Plc., Jungmannova 695/42, 370 01 Ceske Budejovice, Czech Republic
* Correspondence: pcerny@pf.jcu.cz

Abstract: The aim of this work is to design and optimize the process of functionalization of cellulose
fibers by organosilane functional groups using low-pressure microwave plasma discharge with
hexamethyldisiloxane (HMDSO) precursor in order to prepare a compatible hydrophobic filler
for composites with nonpolar thermoplastic matrices. Particular attention was paid to the study
of agglomeration of cellulose fibers in the mixture with polypropylene. In our contribution, the
dependence of the surface wettability on used process gas and treatment time was investigated.
Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses were
applied to characterize the surface morphology and chemical composition of the cellulose fibers. It
was observed that the plasma treatment in oxygen process gas led to the functionalization of cellulose
fibers by organosilane functional groups without degradation. In addition, the treated cellulose was
highly hydrophobic with water contact angle up to 143◦. The use of treated cellulose allowed to
obtain a homogeneous mixture with polypropylene powder due to the significantly lower tendency
of the functionalized cellulose fibers to agglomerate.

Keywords: cellulose; hexamethyldisiloxane; hydrophobicity; plasma functionalization; polypropy-
lene; thermoplastic composites; agglomeration

1. Introduction

Nowadays, environmental consciousness involving problems such as increasing emis-
sions of harmful gases during incineration and increasing consumption of petroleum
resources is growing. In addition, economic and environmental expectations of our society
lead to widespread attention of engineers and scientists to the development of natural fiber
reinforced polymer composites (NFPCs) [1–8].

NFPCs have been considered a promising composite materials for the last few decades
with applications in many different fields of industry due to their outstanding perfor-
mances in biodegradability, being lightweight, low cost, and having preferable mechanical
properties [9–20]. Different types of NFPCs are used in various applications in the au-
tomotive industry by many automotive companies such as Audi Group, BMW, Daimler
Chrysler, Ford, Mercedes, Opel, and Volkswagen. Moreover, NFPCs have also received
great importance in the food, construction, and building industry, aerospace, and sports.
Specifically, NFPCs are used for the production of bicycle frames, decking, door panels,
furniture, food packaging, railroad sleepers, and window frames [21–25].

NFPCs are produced using natural fibers obtained from animal and vegetable sources [26].
All-natural cellulose fibers including cotton, coir, jute, sisal, etc., are extracted from various
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crops including bagasse, barley, corn, rice, sorghum, and wheat [27,28]. In order to meet the
high demands of the industry, natural cellulose fibers have also been extracted from areca
palm leafstalk, Saharan aloe vera cactus leaves, and Agave americana L. as reinforcement
for NFPCs [29–35].

Natural fibers can be considered as a low-cost replacement for mineral and synthetic
fibers. They are available all over the world, nontoxic, and renewable with low density, almost
no carbon dioxide emissions and low abrasive effect on processing equipment [36–38]. On
the other hand, there are several challenges that the development of NFPCs with nonpolar
thermoplastic matrices must face [39]. Compared to mineral and synthetic fibers, natural
fibers exhibit poor interfacial adhesion and have relatively low mechanical properties that
vary depending on many factors, such as the shape, arrangement, density, etc., [40–42].
Moreover, mechanical properties of natural fibers can be affected by their undesirable
moisture absorption leading to swelling [43–45].

In addition to low interfacial adhesion, composites with a non-polar matrix such
as polypropylene (PP) and polar natural fibers present another problem related to the
agglomeration of natural fibers due to forming hydrogen bonds between the hydrophilic
fibers. Fibers tend to agglomerate into bundles and distribute unevenly in the mixture of
the non-polar polymer matrix and the fiber reinforcement during the processing [46–48].

Above-mentioned drawbacks of natural fibers can be eliminated by suitable modifi-
cation process including use of coupling agents, plasma discharges, mercerization, alkali
treatment, peroxide treatment, acetylation treatment, and silane treatment [49–53]. Silane
treatments are among the most widely used treatments for natural fibers. The advantage of
silane coupling agents is the ability to interact with both the matrix and the fibers to form
chemical bonds [54,55]. The chemical interaction between silane-based coupling agents
and the fiber is mediated through the hydroxyl groups that are present on the surface of the
natural fibers. The formed silanol is bound to the surface of the natural fiber by a covalent
bond via hydroxyl groups or by hydrogen bonds [56]. Moreover, silane coupling agents
can interact with maleated coupling agents (polyethylene or polypropylene-graft-maleic
anhydride) to form covalent bonds [57–61]. Specifically, these are organosilane coupling
agents with vinyl (VTS) and azide (ATS) functionality for use in NFPCs with polypropylene
matrix [62,63].

Hexamethyldisiloxane (HMDSO) is one of the most widely used precursors of organosi-
lane functional groups. HMDSO has found rich use in various plasma processes, including
deposition and plasma polymerization [64], and it is currently increasingly used for the
processes of functionalization of organic surfaces [65]. Plasma decomposition of HMDSO
results in a variety of chemical structures. HMDSO molecules can be cleaved in plasma
into hydrophobic fragments incorporated into the substrate surface, ensuring its high
hydrophobicity [65,66]. Since organosilane-based treatments using HMDSO precursor
often lead to hydrophobic and superhydrophobic surfaces, it appears to be promising not
only for incorporation of organosilane functional groups but also for reducing the fiber
agglomeration and moisture absorption [67–70].

The aim of this study is to design and optimize the cellulose fibers treatment process
using low-pressure microwave plasma discharge with HMDSO precursor in order to
prepare hydrophobic, non-moisturizing organosilane functionalized filler for thermoplastic
composites with polypropylene matrix. Particular attention was paid to the study of
agglomeration of cellulosic fibers in the mixture with polypropylene powder to make the
compounding processing more efficient.

2. Materials and Methods
2.1. Materials

In our research we used the following materials and chemical agents:

• Cellulose fibers with a brand name of GW400 F (maximum humidity of 7%, minimum
purity of 99.5%, fiber length 32–100 microns, fiber width 20–45 microns) were supplied
by GreenCel Ltd. (Hencovce, Slovakia);
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• HMDSO monomer (concentration 98–99%, molar mass 162.38 g·mol−1) was purchased
from Mach Chemikalie Ltd. (Ostrava, Czech Republic);

• UV and heat stabilized polypropylene powder with a brand name of Resinex RX 725
Natural (density 900 kg·m−3, melt flow index at 230 ◦C 14 g/10 min, Vicat softening
temperature 122 ◦C, Izod impact strength at 23 ◦C 21 kJ·m−2, flexural modulus
1010 MPa) was purchased from Ravago Chemicals CZ Ltd. (Praha, Czech Republic).

2.2. Experimental Setup

The scheme of the experimental setup is shown in Figure 1. Low-pressure microwave
plasma discharge was generated in cubic vacuum chamber with a volume of 56 L made of
stainless steel. Microwave power supply of total power up to 1 kW powered by a pulsed
microwave power unit MNG 1K-08 supplied by Radan Ltd. (Barchov, Czech Republic) was
set to 500 W microwave power. The cellulose fibers were mixed in a stainless-steel blender
located inside the vacuum chamber. The blender with a base diameter of 20 cm and a
height of 10 cm with a total volume of 3 dm3 was equipped with a horizontal propeller
stirrer maintained at a fixed speed of 150 rpm.
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Figure 1. Scheme of used experimental setup: (1) vacuum chamber; (2) microwave power supply;
(3) blender; (4) mass flow controllers; (5) process gas cylinders; (6) pumping system; (7) evaporator;
(8) needle valve; (9) gas ring.

System of two series-connected rotary oil pumps RV 100/1 supplied by Lavat Plc.
(Chotutice, Czech Republic) and Adixen 2015SD supplied by Pfeiffer Vacuum Components
& Solutions Ltd. (Asslar, Germany) was used to achieve the required pressure 100 Pa inside
the vacuum chamber. The process gas flow rate of 100 sccm and the pressure inside the
vacuum chamber were controlled by a set of mass flow controllers model F201-CV supplied
by Bronkhorst High-TechH B.V. (Ruurlo, Netherlands) and regulated by butterfly valve
of the pumping system controled by Adaptive Pressure Controler PM-3 supplied by VAT
Vakuumventile Plc. (Sennwald, Switzerland), respectively.

An evaporator controled by a thermostatic control unit (maintaining an internal
temperature of 55 ◦C) with a heated pipe (60 ◦C) connected to a vacuum chamber through
a needle valve was used to evaporate the liquid precursor (HMDSO). The flow rate of the
evaporated HMDSO was set to 5 sccm by needle valve. A gas ring device was used in
order to evenly supply the precursor vapors to the treated substrate.
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2.3. Characterization of Cellulose Fibers

Plasma treatment influences the wettability of cellulose fibres, chemical composition,
and morphology of the surface. Therefore, water contact angle measurements (WCA),
chemical composition analysis by the X-ray photoelectron spectroscopy method (XPS),
and analysis of surface morfology based on emission scanning electron microscopy (SEM)
were applied.

The water contact angle (WCA) was measured by the drop test method as described
in [71] and also as reported in [72–74], in accordance with ISO 27448:2009. This method
allows an easy evaluation of the characteristics of increasing hydrophobicity of the cellulose
surface. Experimental setup was made of a portable computer-based instrument for contact
angle measurement See System E supplied by Advex Instruments Ltd. (Brno, Czech
Republic). The wettability of the cellulose surface was measured by initial WCA as well
as the duration of absorption of water droplets (10 µL) settled on a compressed cellulose
surface (dynamic WCA) in order to evaluate the surface hydrophobicity. The used water
was distilled and colored with Acid Orange 7 organic dye for higher contrast.

The analysis of the chemical composition by the X-ray photoelectron spectroscopy
method (XPS) was performed at the J. Heyrovsky Institute of Physical Chemistry of the
Czech Academy of Sciences in Prague. The measurements were performed in a modified
electron spectrometer ESCA 3 MkII under a vacuum of 10−10 mbar. Al Kα radiation
(hυ = 1686.6 eV) was used to excite the electrons. The transmission energy of the used
hemispheric electron analyzer was 20 eV.

The morphology of the surface of untreated and treated cellulose fibers was charac-
terized using JEOL JSM-7401F field emission scanning electron microscope (SEM) at the
Laboratory of Electron Microscopy of the Institute of Parasitology (Czech Academy of
Sciences, Ceske Budejovice, Czech Republic).

2.4. Processing of PP/Cellulose Mixtures

Before the mixing process, the cellulose was sieved to remove large agglomerates
formed during production. Subsequently, polypropylene powder and cellulose fibers with
a weight ratio of 80:20 were mixed in a cylindrical stainless steel blender located in the
vacuum chamber previously used for mixing cellulose fibers during the low-pressure
microwave plasma treatment process. The PP/cellulose mixtures were mixed for 15 min.

3. Results and Discussion
3.1. Optimization of Organosilane Functionalization Process

In the first stage of our research, we studied the influence of process gas with HMDSO
vapors and treatment time on WCA and the duration of droplet absorption (see variants in
the Table 1 and Figure 2).

Consequently, the drop test has been used for the characterization of the surface
hydrophobicity. Initial WCA has been estimated immediately after droplet settling on the
cellulose surface. Afterwards, the time needed for complete absorption of the droplet into
the material was measured and this value is denoted as duration of droplet absorption.

Whereas the samples treated in argon have almost the same wettability as the zero
sample, samples treated in air and oxygen show clear dependence of both initial WCA and
duration of droplet absorption on the treatment time. The longer the treatment time is,
the longer it takes to absorb the water droplet into the material. In all three process gases
the highest hydrophobicity of the surface has been estimated for the samples treated for
90 min.

Only a very slight increase in initial WCA and duration of droplet absorption can
be observed for the samples treated in argon for longer time i.e., 45, 60, 75, and 90 min.
Therefore, treatment in argon does not lead to a significant increase of the hydrophobicity
of cellulose surface and even after the treatment for 90 min the cellulose surface remains
strongly hydrophilic.
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Table 1. Wettability of cellulose samples depending on the process parameters.

Sample No. Process Gas Treatment Time (min) Initial WCA (◦) Duration of Droplet Absorption (s)

Zero sample - - 20 0.08

1

argon

15 22 0.08
2 30 23 0.08
3 45 25 0.1
4 60 27 0.15
5 75 28 0.17
6 90 29 0.2

7

air

15 26 0.1
8 30 128 1.3
9 45 136 9.8

10 60 137 15.2
11 75 139 20.4
12 90 139 29.8

13

oxygen

15 110 0.17
14 30 124 0.62
15 45 137 40.2
16 60 138 90.3
17 75 143 171.4
18 90 143 229
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All samples treated in oxygen were highly hydrophobic and showed a slightly higher
initial WCA compared to samples treated in air. A significant increase of the initial WCA
can be well observed for samples treated longer than 15 min. Moreover, samples treated in
oxygen also showed a significantly longer duration of droplet absorption, which is up to
229 s in the case of sample 18.

The high hydrophobicity of the sample 18 compared to the zero sample is demon-
strated in the Figure 3. Both photos have been captured immediately after settling of the
water droplet.
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Figure 3. Comparison of surface wettability of compressed (a) untreated and (b) functionalized
cellulose (sample 18) by optimized functionalization process.

Based on the data presented above, we conclude that the treatment of cellulose fibers
in argon leads to only a slight increase in wettability. Conversely, hydrophobic cellulose
was obtained by treatment in air and oxygen. While the initial WCAs are comparable for
samples treated in air and oxygen, samples treated in oxygen show significantly longer
durations of droplet absorption, probably due to a more evenly and densely functional-
ized surface.

The highest hydrophobicity has the sample 18, which was treated in oxygen for 90 min
and which exhibits the highest WCA and duration of droplet absorption. Therefore, this
sample has been subjected to further analyses, including investigation of agglomeration in
the mixture with the powdered polypropylene matrix. In the text below it is referred as
“functionalized cellulose.”

3.2. XPS Analysis

Samples of cellulose have been subjected to XPS analysis. The relative mass fraction
of detected carbon and oxygen in the untreated cellulose (zero sample) was 61.1% and
38.9%, respectively. In the case of functionalized cellulose, the relative mass fraction of the
detected carbon decreased to 42.5%, while the relative mass fraction of the detected oxygen
increased to 46.1%. In addition, significant increase of silicon content has been observed
since the silicon relative mass fraction of 11.4% was also detected in the functionalized
cellulose. The results are summarized in the Table 2.

Table 2. The relative mass fraction of detected elements in the zero sample and in the functional-
ized cellulose.

Elements (%) C O Si

Zero sample 61.1 38.9 -
Functionalized

cellulose 42.5 46.1 11.4

The photoelectron spectra of untreated (zero sample) and functionalized cellulose
are shown in the Figure 4. A photoemission line with a binding energy of 100.9 eV and
a photoemission line with a binding energy of 103.2 eV can be identified in the spectrum
for silicon (Si 2p) of the functionalized cellulose shown in Figure 4b. A photoemission line
with a binding energy of 100.9 eV can be assigned to the Si–C chemical bond. Due to the
hydrophobicity of the functionalized cellulose and the chemical structure of used precursor
(HMDSO), Si–CH3 bonds are likely to be present on the surface. Photoemission lines with
a binding energy near to 103.2 eV are often assigned to the chemical bond of SiO2, SiO2C2,
or SiO3C [67,75,76].
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The photoelectron spectra of the zero sample and the functionalized cellulose prove
significant increase of the proportion of carbon bond (C–H) with a binding energy of
284.8 eV from 21.7% to 33.8% (see Table 3). The Si–C bond has a very close binding energy
of approximately 284.6 eV [75]. Thus, a larger carbon bond population may be responsible
for the binding of silicon to the surface of the functionalized cellulose [67].

Table 3. Population of chemical bonds in the zero sample and in the functionalized cellulose.

Population of Chemical Bonds (%) C–H C–O O–C–O, C=O

Zero sample 21.7 68.9 9.4
Functionalized cellulose 33.8 55.2 11

The chemical bonds probably presented on the surface of the functionalized cellulose
suggest that the detected chemical structures may resemble some silane coupling agents
with organofuctionalities used in natural fiber composites, particularly the VTS coupling
agent with vinyl functionality [62].

3.3. SEM Analysis

Figure 5a shows SEM image of the untreated cellulose fiber (zero sample), while
Figure 5b shows SEM image of the functionalized cellulose fiber. SEM images of the
untreated and treated cellulose fibers show that both fibers are not completely smooth
on their surface. The differences in surface morphology between these two samples are
not observable. Slight difference in the color of both images can be attributed only to the
technical quality of the images.
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Figure 5. SEM images of (a) untreated cellulose fiber (zero sample) and (b) functionalized cellulose fiber.

In the SEM images no inhomogeneous or discontinuous films are visible. Therefore,
considering the significant change in the surface wettability, the cellulose surface has been
very probably functionalized in terms of incorporation of organosilane functional groups
into the treated surface.

Moreover, no burrs or other undesirable morphological changes are observable on
the fiber surface in the SEM images of treated cellulose, so the plasma treatment does
not cause degradation of fiber surface, although the duration of the treatment process is
relatively long.

3.4. Proposed Mechanism of Cellulose Functionalization by Organosilane Groups

Based on the results of XPS and SEM analysis and considering the optimized pro-
cess parameters leading to the highest hydrophobization of the substrate, we propose a
mechanism of cellulose functionalization by organosilane groups during the treatment in
low-pressure microwave plasma discharge.

As can be seen in Figure 6, the chemical conversion of HMDSO is based on the breaking
of the molecule into several fragments. Dissociation can start with the impact of plasma
electrons that can break the Si–C bond which has the lowest bond-dissociation energy
(3.7 eV) of all bonds present in HMDSO molecule. In this case, a relatively large silicon
radical and a methyl group are formed. Recombination of these radicals with hydrogen
atoms leads to the formation of stable pentamethyldisiloxane (PMDSO). Following reaction
of PMDSO with plasma electrons can lead to the formation of another silicon radical
and methyl group. This silicon radical can recombine with a hydrogen atom to form
tetramethyldisiloxane (TMDSO). The formed methyl groups may further form several
hydrocarbon structures such as CH4, C2H6, C2H4, and C2H2 [77].

Dissociation of HMDSO molecule can also start by breaking the Si–O bond with a
bond-dissociation energy of 4.6 eV. In this case, smaller silicon radicals are formed, which
subsequently react with the methyl group and hydrogen atom to form tetramethylsilane
(TMS) and trimethylsilane (TriMS), respectively.

All of the HMDSO fragments mentioned above may be involved in plasma processes,
however, HMDSO dissociation starting with breaking the Si–C bond seems to be dominant.

Considering that the highest increase in hydrophobicity was observed after plasma
treatment in oxygen-containing process gas, oxidation processes with actively involved
oxygen appear to play an important role in the formation of hydrophobic functional groups
on the cellulose surface. Presented results correspond to our previous studies [66,78,79]
and the findings reported in [80] that noble gases, such as argon, show a reduced capability
in HMDSO dissociation compared to oxygen.



Materials 2021, 14, 2005 9 of 14

Materials 2021, 14, x FOR PEER REVIEW 9 of 15 
 

 

radical and methyl group. This silicon radical can recombine with a hydrogen atom to 
form tetramethyldisiloxane (TMDSO). The formed methyl groups may further form 
several hydrocarbon structures such as CH4, C2H6, C2H4, and C2H2 [77]. 

 
Figure 6. Scheme of the interaction of HMDSO dissociation products with reactive plasma species and cellulose fiber 
surface during the low-pressure microwave plasma treatment [77]. 

Dissociation of HMDSO molecule can also start by breaking the Si–O bond with a 
bond-dissociation energy of 4.6 eV. In this case, smaller silicon radicals are formed, which 
subsequently react with the methyl group and hydrogen atom to form tetramethylsilane 
(TMS) and trimethylsilane (TriMS), respectively. 

All of the HMDSO fragments mentioned above may be involved in plasma pro-
cesses, however, HMDSO dissociation starting with breaking the Si–C bond seems to be 
dominant. 

Considering that the highest increase in hydrophobicity was observed after plasma 
treatment in oxygen-containing process gas, oxidation processes with actively involved 
oxygen appear to play an important role in the formation of hydrophobic functional 
groups on the cellulose surface. Presented results correspond to our previous studies 
[66,78,79] and the findings reported in [80] that noble gases, such as argon, show a re-
duced capability in HMDSO dissociation compared to oxygen. 

In addition to electrons, oxygen plasma generates many reactive species, such as 
reactive oxygen, atomic oxygen (O), ozone (O3), superoxide anion (•O2−), peroxide 
(•O2−2). After interaction with hydrogen atoms, hydrogen peroxide (H2O2), hydroxyl 
radical (•OH) and hydroxyl ion (OH−) can also be formed [81,82]. These reactive species 
can react with HMDSO fragments, as well as with the formed hydrocarbons. 

While the HMDSO molecule is fragmented, reactive species generated in the mi-
crowave plasma discharge also affect the cellulose surface by forming the active sites. The 
reaction of reactive plasma species with HMDSO fragments leads to the incorporation of 
hydrophobic functional groups probably bonded by Si–C, SiO2, SiO2C2, or SiO3C bonds to 
the active sites on the cellulose surface. A similar incorporation mechanism has also been 
described in [67]. 
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during the low-pressure microwave plasma treatment [77].

In addition to electrons, oxygen plasma generates many reactive species, such as reac-
tive oxygen, atomic oxygen (O), ozone (O3), superoxide anion (•O2

−), peroxide (•O2
−2).

After interaction with hydrogen atoms, hydrogen peroxide (H2O2), hydroxyl radical (•OH)
and hydroxyl ion (OH−) can also be formed [81,82]. These reactive species can react with
HMDSO fragments, as well as with the formed hydrocarbons.

While the HMDSO molecule is fragmented, reactive species generated in the mi-
crowave plasma discharge also affect the cellulose surface by forming the active sites. The
reaction of reactive plasma species with HMDSO fragments leads to the incorporation of
hydrophobic functional groups probably bonded by Si–C, SiO2, SiO2C2, or SiO3C bonds to
the active sites on the cellulose surface. A similar incorporation mechanism has also been
described in [67].

The observed dependence of the duration of water droplet absorption on the treatment
time can be explained by the gradual incorporation of hydrophobic organosilane functional
groups to the surface of the cellulose fibers during the treatment process, as shown in
Figure 7.
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3.5. Agglomeration of Cellulose in the Mixture with Polypropylene Powder

Changes in agglomeration of untreated cellulose and functionalized cellulose in the
mixture with polypropylene powder after the mixing process have been studied on three
different mixtures of polypropylene with cellulose.

The first mixture contained polypropylene and untreated cellulose without pretreat-
ment. The second mixture contained polypropylene and untreated cellulose, which was
premixed in a blender for 90 min (corresponding to the plasma treatment time of the
functionalized cellulose). The third mixture contained polypropylene and functional-
ized cellulose.

Figure 8 presents photographs of prepared mixtures. High dynamic range (HDR) tech-
nology was used to highlight the bundles of cellulose fibers. The mixture of polypropylene
and untreated cellulose without pretreatment visibly contained large agglomerates despite
the mechanical affecting on cellulose fiber bundles during the 15 min mixing process (see
the Figure 8a).
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In the mixture containing cellulose premixed for 90 min in the blender, the presence
of large agglomerates can also be observed as in the case of the mixture with untreated
cellulose. However, the bundles of cellulose do not have a visibly spherical shape and the
mixture seems to exhibit a slightly higher homogeneity, as shown in Figure 8b.

The third sample of the mixture of polypropylene and functionalized cellulose
(Figure 8c) contained only a small amount of much smaller spherical agglomerates and
overall exhibited significantly higher homogeneity. Since the mixture with the premixed
cellulose contained large agglomerates similar to the mixture with the untreated cellulose
without premixing, it can be ruled out that the mechanical mixing process would have
a significant effect on the higher homogeneity of the mixture with the functionalized
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cellulose. Conversely, it can be stated that the higher homogeneity of the mixture with the
functionalized cellulose is caused mainly by the absence of functional groups present on
the surface of untreated cellulose forming hydrogen bonds between the hydrophilic fibers.

4. Conclusions

1. The functionalization process of cellulose fibers by hydrophobic organosilane func-
tional groups in a low-pressure microwave plasma discharge using HMDSO precursor
was designed and optimized.

a. The degree of the obtained hydrophobicity strongly depends on both tested
process conditions (used process gas and treatment time). With an increase
of the treatment time, the density and uniformity of the organosilane func-
tionalization is likely to increase and the treated cellulose fibers become less
hydrophilic. Considering that treatment in argon causes only a slight change in
wettability, while the treatment in air and oxygen leads to high hydrophobicity
of the cellulosic fibers, oxygen appears to be responsible for hydrophobizing
the cellulose fiber surface through the incorporation of organosilane functional
groups.

b. The application of oxygen/HMDSO microwave low-pressure plasma discharge
enabled the creation of highly hydrophobic cellulose fibers with initial WCA
up to 143◦ and the duration of droplet absorption up to 229 s.

2. The functionalized hydrophobic cellulose was subjected to analyses of chemical
composition and surface morphology.

a. XPS analysis confirmed the presence of silicon in Si–C, SiO2, SiO2C2, and SiO3C
bonds on the surface of the functionalized cellulose.

b. Based on the SEM analysis, the treated cellulose fibers do not exhibit degra-
dation or any differences in surface morphology compared to the untreated
cellulose fibers. The absence of a visible deposited film or other deposited
structures on the surface indicates that the treated cellulose fibers have been
functionalized with organosilane functional groups.

3. The hydrophobic organosilane functionalized cellulose exhibited visibly lower ten-
dency to agglomerate in the significantly more homogeneous mixture with non-polar
powdered polypropylene matrix.

4. With respect to the following perspectives, we conclude that cellulose treated with the
presented plasma functionalization process represents a promising filler for NFPCs.

a. The lower agglomeration of treated cellulose fibers during the mixing pro-
cess can contribute to a more even dispersion of the fibers in the non-polar
polypropylene matrix potentially leading to better mechanical properties of
prepared composites.

b. The hydrophobicity of the treated cellulose fibers can significantly reduce the
moisture absorption avoiding the fiber swelling and the reduction of their
mechanical properties.

c. Due to its similarity to conventional organosilane coupling agents, the organosi-
lane functionalized surface of treated cellulose fibers may be chemically com-
patible with the non-polar polypropylene matrix to form covalent bonds with a
significant increase of interfacial adhesion.
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