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ABSTRACT

Many cells and double-stranded DNA (dsDNA)
viruses contain an AAA+ATPase that assembles into
oligomers, often hexamers, with a central channel.
The dsDNA packaging motor of bacteriophage
phi29 also contains an ATPase to translocate
dsDNA through a dodecameric channel. The motor
ATPase has been investigated substantially in the
context of the entire procapsid. Here, we report
the sequential action between the ATPase and add-
itional motor components. It is suggested that the
contact of ATPase to ATP resulted in its conform-
ational change to a higher binding affinity toward
dsDNA. It was found that ATP hydrolysis led to the
departure of dsDNA from the ATPase/dsDNA
complex, an action that is speculated to push
dsDNA to pass the connector channel. Our results
suggest that dsDNA packaging goes through a
combined effort of both the gp16 ATPase for pushing
and the channel as a one-way valve to control the
dsDNA translocation direction. Many packaging
models have previously been proposed, and the
packaging mechanism has been contingent upon
the number of nucleotides packaged per ATP
relative to the 10.5 bp per helical turn for B-type
dsDNA. Both 2 and 2.5 bp per ATP have been used
to argue for four, five or six discrete steps of dsDNA
translocation. Combination of the two distinct roles
of gp16 and connector renews the perception of
previous dsDNA packaging energy calculations
and provides insight into the discrepancy between
2 and 2.5 bp per ATP.

INTRODUCTION

Most cells and dsDNA viruses contain at least one AAA+

(ATPases associated with diverse cellular activities) protein
that possesses a common adenine nucleotide-binding fold. A
typical characteristic of the AAA+ family is the coupling of
chemical energy by the ATPase, derived from the adenosine
triphosphate (ATP) hydrolysis to mechanical motion using
force exerted on a substrate, such as dsDNA. This process
usually requires a conformational change on the AAA+

protein that assembles into oligomers, often hexamers,
forming a ring-shaped structure with a central channel (1–8).
Double-stranded DNA (dsDNA) viruses package their

genomic dsDNA into a pre-formed protein shell, deemed
procapsid, during maturation (9,10). This entropically un-
favorable process is accomplished by a nanomotor which
also uses ATP as an energy source (11–14). In general, the
dsDNA packaging motor involves a protein channel and
two packaging molecules, with the larger molecule serving
as part of the ATPase complex and the smaller one being
responsible for dsDNA binding and cleavage (11,15).
Besides the well-characterized connector channel core, the
motor of bacterial virus phi29 involves an ATPase protein
gp16 (11,16–22) and a hexameric packaging RNA ring
(15,23,24). In 1998, Guo et al. (15) first proposed that the
mechanism of the intriguing viral dsDNA packaging
motor resembles the action of other AAA+proteins which
form a hexameric ring to translocate dsDNA using ATP
as an energy source [see discussion in Ref. (15)]. This
motor is of particular interest to nanotechnology in
that, it is both simple in structure and can be assembled
in vitro using purified components. The elegant design of
the 30-nm nanomotor, one of the strongest motors (25)
assembled in vitro to date (26), has instigated the re-
engineering of an imitative packaging motor for several
applications. Previous reports indicate that phi29
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nanomotor possesses packaging efficiencies up to 90%
and the ability to switch off packaging through the add-
ition of a non-hydrolyzable ATP derivative, g-S-ATP
(11,16,27). The latter attribute has enabled single-
molecule measurements of motor velocities and force
against an external load using an optical trap, contribut-
ing to the evidence of a stalling force up to 57 pN (25).
About 20 years ago, Guo et al. (11) determined that one
ATP was used to package 2 bp of dsDNA, and later, the
same group demonstrated the sequential action of motor
components (28). Recently, Moffitt and coworkers (29)
confirmed the sequential action mechanism of motor
components. They calculated that during this pro-
cess each ATP that is hydrolyzed, led to about 2.5 bp
of dsDNA translocation (29). Clarification of such discrep-
ancy will help to illuminate the mechanism of motor action.
The packaging of 19.3-kb dsDNA into a confined pro-

capsid is entropically unfavorable and requires a large
amount of energy. The packaged dsDNA undergoes
�30- to 100-fold decrease in volume as opposed to pre-
packaging (30). Previous results suggest that ATPase
activity of gp16 is dsDNA-dependent and may be stimu-
lated by pRNA (20–22,31). It has also been shown that
maximal ATPase activity was generated in the presence of
all packaging components, including the procapsid and all
its constituents (11,21,31).
The dsDNA packaging motor is well characterized in

bacteriophage phi29, however gp16 (the ATPase protein)
has long been an enigma. This protein tends to form ag-
gregates in solution, which has negative consequences
including the hindrance of the study and application of
the protein, as well as contributing to contradictory data
regarding ATPase activity, ATP/dsDNA/pRNA binding
location and stoichiometry studies. Re-engineering tech-
niques have both increased the solubility of this protein
(17,18), as well as served to provide a fluorescent arm (32)
that facilitates identification and application.
The mechanism of ATP hydrolysis is important and ubi-

quitous, but the mechanism of energy conversion from
ATP hydrolysis to physical motion remains elusive. The
mechanism in which gp16 uses ATP to drive the motor is
still not well understood. However, it is well known that
both pRNA and gp16 play roles in the packaging of
19.3 kb of gp3-dsDNA into a pre-formed procapsid dur-
ing maturation. Surprisingly, we also found that gp16
alone is capable of fastening itself to dsDNA and releas-
ing this dsDNA through ATP hydrolysis, independent of
pRNA and the procapsid. Furthermore, the sequence in
which the dsDNA binds to ATP was studied, revealed an
important phenomenon in the packaging mechanism.
Moreover, dsDNA passes through the portal protein dur-
ing its translocation into the procapsid and it has been spe-
culated that the channel plays a role in the process (33).

MATERIALS AND METHODS

Expression and purification of eGFP-gp16 in
Escherichia coli

The engineering of Enhanced green fluorescent protein
(eGFP)-gp16 was published by Lee et al. (32).

eGFP-gp16 was expressed and purified as described pre-
viously (18,19,32) with minor modifications. Briefly, the
protein was over-expressed in E. coli BL21(DE3) with in-
duction of 0.4mM Isopropyl b-D-1-thiogalactopyranoside
(IPTG). The bacterial cells were harvested and resuspended
in His-binding buffer (20mM Tris–HCl, pH 7.9, 500mM
NaCl, 15% glycerol, 0.5mM tris(2-carboxyethyl)-
phosphine (TCEP) and 0.1% Tween-20). The cells were
then lysed by passing though French Press and the lysate
was clarified by centrifugation. Then, 0.1%
Polyethylenimine (PEI) was added to the clarified lysate
to remove nucleotides and other proteins. Homogeneous
eGFP-gp16 was purified by one-step Ni-resin
chromatography.

Electrophoretic mobility shift assay

The samples were prepared in 20 ml buffer A (20mM Tris–
HCl, 50mM NaCl, 1.5% glycerol, 0.1mM Mg2+).
Typically, 1.78 mM eGFP-gp16 was mixed with 7.5 ng/ml
40 bp Cy3-dsDNA at various conditions. The samples
were incubated at ambient temperature for 20min and
then loaded onto a 1% agarose gel (0.5 Tris-Borate
(TB): 44.5mM Tris, 44.5mM boric acid) for electrophor-
esis for 2 h under 80V at 4�C. The eGFP-gp16 and
Cy3-dsDNA in the gel was analyzed by fluorescent
LightTools Whole Body Imager using 488 nm and
540 nm wavelengths for eGFP and cy3, respectively.

Forster resonance energy transfer

Forster resonance energy transfer (FRET) samples were
analyzed using Horiba Jobin Yvon FluoroHub at excita-
tion wavelength of 480 nm and the emission spectra was
scanned from 500 to 650 nm with 5 nm slits at both exci-
tation and emission. Samples were prepared in an appro-
priate cuvette volume (typically 50 ml) and allowed to
incubate at room temperature for at least 5min prior to
excitation in order to allow reaction to fully catalyze.

Sucrose gradient sedimentation

Sucrose was diluted at 5 and 20% (w/v) using a dilution
buffer (50mM NaCl, 25mM Tris pH 8.0, 2% glycerol,
0.01% Tween-20, 0.1mM MgCl2) and a gradient was
made using protocols established by BioComp Gradient
Maker. Samples were subsequently gently added to the
top of the gradient as not to disrupt the formed gradient,
balanced and placed in Beckman Optima L Preparative
Ultracentrifuge for 5.5 h, 35 000 rpm, 4�C. Samples were
then fractionated directly from the bottom of the tube and
analyzed by a Biotek Synergy 4 microplate reader at both
GFP and cy3 wavelengths.

Kinetic assay

The conversion of 7-diethylamino-3-((((2-maleimi-
dyl)ethyl)amino)carbonyl)coumarin (MDCC) emission to
an enzymatic kinetic equation has previously been
reported (20).
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Phage assembly activity inhibition and isolation of
partially filled procapsids

The phage assembly assay has been previously described
(34). To isolate the partially filled procapsid, g-S-ATP was
added to the packaging reaction buffer and the reaction
was added to the top of a sucrose gradient and centrifuged
for an extended period. The gradient was subsequently
fractionated and variations of packaging components
were again added to the individual fractions including
ATP, adenosine diphosphate (ADP) or adenosine
monophosphate (AMP). The fractions were then plated
as performed in the phage assembly assay and tested for
viral activity.

RESULTS

c-S-ATP, a non-hydrolyzable ATP analog, promotes
binding of gp16 to dsDNA

The conditions in which gp16 interacted with dsDNA
were investigated. It was immediately discovered that the
ATPase was capable of binding to dsDNA in the absence
of pRNA and other motor components. An electrophor-
etic mobility shift assay (EMSA) was employed to study
the interaction. Fusion of an eGFP tag at the N-terminus
of gp16 did not affect its biological activity (32), but pro-
vided a fluorescent marker for detection. In Figure 1A, the
binding between eGFP-gp16, dsDNA and g-S-ATP was
explored. Two different fluorescent filters, fluorescein
isothiocyanate (FITC) and cy3, were used to visualize
the protein and dsDNA, respectively. It was hypothesized
that g-S-ATP would lock gp16 onto dsDNA and our

results proved this phenomenon. dsDNA was bound by
eGFP-gp16 in the absence of the nucleotide (Figure 1A,
lane 3). However, stronger binding of gp16 to dsDNA was
observed when gp16 was incubated with g-S-ATP (Figure
1A, lane 4). To further validate the finding, two different
assays were utilized. The FRET analysis revealed an
increase of energy transfer from eGFP-gp16 to
Cy3-dsDNA when g-S-ATP was included (Figure 1B,
blue curve), to the sample in the absence of g-S-ATP
(green curve). FRET decreased significantly upon
addition of excess ATP to the gp16/dsDNA/g-s-ATP
complex (teal curve). Furthermore, when g-S-ATP was
included in the mixture, sedimentation studies utilizing a
5–20% sucrose gradient revealed that gp16–dsDNA
complex was highly prevalent as indicated by overlap in
the eGFP and cy3 wavelength spectra (Figure 1C). These
results suggested that the gp16/dsDNA complex is
stabilized through addition of the non-hydrolyzable ATP
substrate. Furthermore, the data suggested that gp16
possesses both a dsDNA binding domain and a motif to
bind ATP.

ATP induced a conformational change in gp16 that led to
increased binding affinity of gp16 to dsDNA

In order to continue with the previous findings, the mech-
anism of gp16 action in relation to ATP was studied. It
has been extensively reported that gp16 is a dsDNA-
dependent ATPase (11,20), that dsDNA stimulates the
ATPase activity of gp16 (11,20,21) and that the phi29
dsDNA packaging motor uses one ATP to translocate 2
(11) or 2.5 (12,29) bp of dsDNA into the prohead.
However, the interaction of gp16 with dsDNA or ATP

Figure 1. Demonstration of gp16 fastening to fluorescent dsDNA after incubation with non-hydrolyzable ATP derivative through (A) EMSA,
(B) FRET and (C) sucrose gradient sedimentation; (D) EMSA to demonstrate efficiency of binding when ATP substrate is added before dsDNA.
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and the sequential action of these three components was
previously unidentified. In order to tackle this question,
eGFP-gp16 was mixed with either dsDNA or g-S-ATP
and allowed to incubate. Subsequently, the remaining,
missing component was added to the mixture and again
allowed to incubate. All samples were subjected to an
EMSA and imaged. The band representative of gp16 in
complex with dsDNA appeared significantly sharper when
g-S-ATP was incubated first (Figure 1D, lanes 6,7 and 8)
than when dsDNA was initially added (Figure 1D, lanes
3–5). FRET and gradient sedimentation also revealed the
same phenomenon (data not shown). All these data sup-
port the speculation that gp16 binds first to g-S-ATP to
increase the binding affinity to dsDNA, and that g-S-ATP
is capable of fastening gp16 to dsDNA to form a more
stable complex.

Gp16 departed from dsDNA following ATP hydrolysis

It has been reported that gp16 is a dsDNA-dependent
ATPase of the phi29 dsDNA packaging motor
(11,20–22,35), providing energy to the motor by hydrolyz-
ing ATP into ADP and inorganic phosphate. For further
applications, it is important to elucidate the mechanism in
which ATP hydrolysis is related to the motion of motor
components for the translocation of dsDNA.
As aforementioned, g-S-ATP stalled and fastened the

gp16/dsDNA complex. It was subsequently found that
hydrolysis of ATP led to the release of dsDNA from
gp16 (Figures 2 and 3). When increasing amounts of
ATP was added to the gp16/dsDNA/g-S-ATP complex,
the band representing the gp16/dsDNA complex dis-
appeared (Figure 2A). ADP had a lesser effect on
dsDNA release (Figure 2B), whereas AMP was unable
to release dsDNA from gp16 (Figure 2C). This same phe-
nomenon was observed in the previous FRET assay
(Figure 1B, teal curve).
The release of dsDNA from gp16/dsDNA/g-S-ATP

complex by ATP and ADP was also demonstrated by
sucrose gradient sedimentation. Binding of eGFP-gp16
to dsDNA was evidenced by a shift in the dsDNA
profile in the presence of g-S-ATP and in the absence of
ATP (Figure 3A, black curve). With low concentrations of
ATP however, gp16 and dsDNA existed as a free molecule
in solution with slower sedimentation rates (Figure 3A,
colored curves). To investigate the mechanism further,
gp16/dsDNA/g-S-ATP complex was purified using the
sucrose gradient and subjected to an ATP hydrolysis
kinetic assay. The hydrolysis of ATP to ADP and inor-
ganic phosphate was confirmed by the demonstration
that purified gp16/dsDNA/g-S-ATP complex was able
to hydrolyze ATP after addition of ATP to the
purified complex (Figure 3B). Simply, a fluorescent
molecule 7-diethylamino-3-((((2-maleimidyl)ethyl)amino)-
carbonyl)coumarin-phosphate binding protein (MDCC-
PBP) undergoes a conformational change after binding
to inorganic phosphate which gives off fluorescence
emission. The increase in fluorescence emission can be
correlated to the hydrolysis of ATP to ADP with
simple calculations. The results suggested that the

hydrolysis of ATP led to the release of dsDNA from the
gp16.

Evaluation of the findings on c-S-ATP, ATP, ADP, AMP
and gp16 interaction using the active ATP-driven dsDNA
packaging motor

All previous experiments involving the interaction between
gp16 and ATP or its derivatives were carried out in the
procapsid-free system. Even though the previous experi-
ments were derived from precursor proteins of the active

Figure 2. EMSA showing release of dsDNA from gp16 after addition
of increasing amounts of (A) ATP; (B) ADP had lower efficiency than
ATP in the release of dsDNA; (C) AMP is unable to release gp16 from
dsDNA.
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motor, it is important to relate this interaction to an active
motor involving the procapsid. A dsDNA packaging and
viral assembly assay was performed in which purified
motor components were added together and allowed to
form an active virion in the presence and absence of
g-S-ATP, ATP, ADP, AMP and gp16 imitating their
interaction in the procapsid-free system. When g-S-ATP
was added with an increased ratio to ATP, dsDNA
packaging and viral assembly was gradually blocked
(Figure 4A). The data agrees perfectly with that from
the procapsid-free system showing that g-S-ATP blocked
the dissociation of dsDNA from gp16 (Figure 1A). The
partially filled procapsids, incubated with optimal
g-S-ATP concentration, were then isolated in a sucrose
gradient and subjected to addition of other motor compo-
nents including ATP, ADP and AMP in the phage assem-
bly assay. The partially filled procapsids were able to be
converted into infectious virion when ATP was added
(Figure 4B, red curve), agreeing with the data from the
procapsid-free system in which ATP promoted the depart-
ure of dsDNA from the fastened gp16/dsDNA complex
(Figure 2A). When ATP was replaced by ADP or AMP,
active phages were not produced (Figure 4B), again in
accordance with the data from the procapsid-free system
showing that ADP and AMP did not allow easy departure
of dsDNA from the gp16/dsDNA complex (Figure 2B and
C). After adding further eGFP-gp16, pRNA, gp9-14 and
ATP, the partially filled procapsids were able to recom-
mence packaging and form an assembled, active
bacteriophage.

Inorganic phosphate inhibited gp16 binding to dsDNA
and elicited dsDNA discharge

Now that we have provided conclusive evidence that hy-
drolysis of ATP by gp16 to ADP and inorganic phosphate
is the catalytic step leading to the translocation of dsDNA,
the question remains as to which of the two resulting
products, ADP and Pi, departs and which component
remains bound to gp16? That is, does the gp16 conform-
ational change result from a departure of ADP or Pi from
gp16?
Inorganic phosphate is one of the products of the

energy-producing reaction when ATP is hydrolyzed to
ADP. A gel retardation assay revealed that in the
presence of high concentrations of phosphate, dsDNA
was released from the gp16/dsDNA/g-S-ATP complex
(Figure 5A, lane 4). It was also found that the presence
of inorganic phosphate prevented the formation of gp16/
dsDNA complex, either in the presence of g-S-ATP or
ATP. The gp16/dsDNA/g-S-ATP complex was incubated
with the phosphate analog sodium vanadate, which also
proved to inhibit binding of gp16 to dsDNA (Figure 5A,
lane 6). A sucrose sedimentation gradient assay revealed
concurring results. In total, 50mM phosphate was able to
completely inhibit the formation of gp16/dsDNA complex
or dissociate the complex into free gp16 and dsDNA, as
evidenced by the shift of the dsDNA peak in the sucrose
gradient (Figure 5B). It is interesting to find that ADP also
stimulated the release of gp16 from the gp16/dsDNA
complex, albeit with lower efficiency (Figure 2B). All
these results questioned whether the inorganic phosphate
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by itself can compete with the ATPase center for ATP
binding and whether the gp16/Pi or gp16/ADP complex
remains as the final product after gp16 propels dsDNA
forward.

DISCUSSION

EMSA, sucrose gradient sedimentation, FRET and kinetic
studies provided evidence to support the hypothesis that
gp16 first interacts with ATP or the ATP analog g-S-ATP
and then with dsDNA. eGFP-gp16 was first incubated
with either g-S-ATP or short cy3-dsDNA and subse-
quently incubated with the third component, either
dsDNA or g-S-ATP (Figure 1D). The mixtures were
then subjected to a low percentage agarose gel to
evaluate the gp16/dsDNA complex. A significantly
sharper cy3 band was detected corresponding to gp16/
dsDNA complex in samples in which g-S-ATP was
added first. This data indicated that more gp16/dsDNA
complex had formed under those conditions.
To further study the g-S-ATP function in fastening gp16

to dsDNA, we carried out three different experiments.
Gp16 was incubated with dsDNA and g-S-ATP. The
sample was then applied to a 5–20% sucrose gradient,
fractionated and analyzed for eGFP (representing gp16)
and cy3 (representing dsDNA) signal (Figure 1C).
Profile-overlay analysis indicated that, in the presence of
g-S-ATP, gp16 tightly bound to dsDNA despite large cen-
trifugal force and dilution factor. Similar samples from
agarose gel electrophoresis revealed a much stronger
gp16/dsDNA complex band when g-S-ATP was present.
Finally, FRET was applied to measure the energy transfer
and distance between eGFP-gp16 (donor fluorophore) and
cy3-dsDNA (acceptor fluorophore). Our data illustrated
that higher energy transfer was present with the addition
of g-S-ATP, which provided indirect evidence that the
protein formed a complex with dsDNA. In combination,

these assays contributed to the principle that the motor
complex can be stalled by addition of a non-hydrolyzable
ATP substrate (16,20) but more importantly, they
expanded our understanding of the phi29 packaging
mechanism.

After gp16/dsDNA complex was formed through add-
ition of g-S-ATP, it was critical to understand what com-
pounds were capable of dissociating gp16 from dsDNA.
Again using an EMSA, gp16–dsDNA complex was
allowed to form by incubating eGFP-gp16, cy3-dsDNA
and g-S-ATP together, but this time, adenosine mono-
phosphate, adenonsine diphosphate and adenosine
triphosphate were subsequently added before electrophor-
esis. Figure 2 clearly shows the concentration of tri-, di-
and monophosphate at which the complex dissociates.
ATP had the highest efficiency in promoting the kicking
away of dsDNA from gp16, ADP had a lesser effect,
but AMP had no effect. The same concept was used in
Figure 3A in which gp16/dsDNA complex was pre-formed
and subsequently incubated with varying concentrations
of ATP. The samples were then added on top of a linear
sucrose gradient and centrifuged for an extended period
of time. In the absence of ATP, complex formed, but
even in low concentrations of ATP, gp16 is released
from its dsDNA substrate. Furthermore, a kinetic study
was applied in which ATP was added to a gp16/dsDNA
complex previously purified by a sucrose gradient. A fluor-
escent substrate was used to detect the release of inorganic
phosphate in solution after ATP was hydrolyzed
and the maximum velocity and Michaelis–Menten
constant were calculated after varying concentrations of
ATP were assayed. The curve is representative of all
kinetic enzymes and again proves that ATP can be hydro-
lyzed and released even after gp16/dsDNA complex has
formed.

To relate the above observed phenomena to a func-
tional phage, an assay was performed in which the

Figure 4. Isolation of the partially filled procapsid to determine effect of ATP, ADP and AMP on viral assembly. (A) Decrease of phage assembly
activity by introduction of non-hydrolyzable ATP derivative. (B) Activity of isolated partially filled procapsids after sucrose gradient sedimentation.
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partially filled procapsids formed via incubation with
g-s-ATP was isolated in a sucrose gradient and subjected
to a phage assembly assay with addition of either ATP,
ADP and AMP. A similar assay has previously been per-
formed (36). The results are consistent with the data from
the procapsid-free system and provide indirect support
for the conclusion that g-S-ATP enhanced the binding of
gp16 to dsDNA and that ATP hydrolysis promoted the
departure of dsDNA from the gp16/dsDNA complex.

The dsDNA packaging mechanism is a universal bio-
logical phenomenon for dsDNA viruses including herpes
viruses, pox viruses, adenoviruses and other dsDNA bac-
teriophages. The mechanism of packaging has provoked
interest among virologists, bacteriologists, biochemists
and especially researchers involved in nanotechnology;
however, the actual mechanism remains elusive. In the
past, many models have been proposed to interpret the
mechanism of motor action including the (i) Gyrase-
driven supercoiled and relaxation (37), (ii) force of osmotic
pressure, (iii) Ratchet mechanism (38), (iv) Brownian
motion (39), (v) 5- or 6-fold mismatch connector rotating
thread (40), (vi) supercoiled dsDNA wrapping (41),
(vii) sequential action of motor components (28,29),
(viii) electro-dipole within central channel (42), (ix) con-
nector contraction hypothesis (43,44) and (x) dsDNA tor-
sional compression translocation mechanism (14,45).
Based on our results, a new sketch has been developed to
describe the mechanism of dsDNA packaging. We coined
the ‘Push through a One-way Valve’ mechanism described

as a combined effort between the gp16 ATPase which
provides energy for pushing and the connector channel
for one-way control. We believe that gp16 possesses at
least four binding motifs for pRNA, dsDNA, adenosine
and phosphate (the P loop). In our theory, at any given
time, gp16 alone is able to bind to dsDNA but with low
affinity. Upon binding to ATP or its derivatives (g-S-ATP)
however, gp16 undergoes a conformational change which
promotes the binding to dsDNA. In this conformation,
gp16 tightly binds to dsDNA in order to eliminate slipping
in the packaging process. However, in order to generate
energy, gp16 cleaves the gamma phosphate of ATP,
producing a force from which gp16 switches to a relaxed
conformation propelling the dsDNA unidirectionally
into the procapsid using pRNA as a fulcrum. In this
relaxed form, the binding site is unoccupied until a new
ATP molecule is introduced to gp16 to restart the cycle
(Figure 6).
In many packaging motors, the ATPase acts to rid itself

of the phosphate but continues to clutch the ADP (12,46).
The data shown in this report clearly shows that both
ADP and phosphate can release gp16 from its substrate
dsDNA. Our results suggest that ADP competes for the
binding pocket better than inorganic phosphate, so it is
assumed that gp16 has higher affinity for ADP than inor-
ganic phosphate. This dictates that inorganic phosphate is
expelled first, as observed in other phages, but also sug-
gests that ADP is released from the pocket to allow the
cycle to restart. The data is unable to clarify which

BA

Figure 5. Effect of phosphate and phosphate derivative sodium vanadate on gp16/dsDNA/g-S-ATP complex formation. Release of eGFP-gp16 from
dsDNA complex by adding excess amounts of phosphate, assayed by EMSA (A) and sucrose gradient (B), as well as excess of phosphate derivative
sodium vanadate (lanes 5 and 6 of A).
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expulsion step catalyzes the motor action, but that both
steps are required to generate a new cycle.
Recently, our group discovered that the channel of

phi29 dsDNA packaging motor exercises a one-way
traffic mechanism of dsDNA translocation from the
N-terminal external end to the C-terminal internal end,
but blocked dsDNA to exit (47). Therefore, we concluded
that phi29 dsDNA packaging went through a schematic
marching mechanism via a unique mechanism by pushing
through a one-way channel valve of the dsDNA packag-
ing motor (Figure 6). The mechanism of providing force
through a one-way valve agrees with the findings of Ray
et al. (48,49) and Dixit et al. (50) in bacteriophage T4 that
dsDNA was compressed if the portal entrance was
blocked at the front end. The authors interpreted that
the force for the compression is due to the torsional
force from coiled dsDNA, but relates to our idea that
dsDNA is rotated into the portal (15). Our suggested
mechanism is also validated through the discovery in T4
in which it was determined that both ends of dsDNA
remain in the portal of the procapsid during the packaging
process (48,49). If the motor functioned by pulling
dsDNA within the procapsid rather than pushing by
gp16, one end of dsDNA would be required to be
internalized for packaging to commence. Finally, this
mechanism agrees with Bustamante et al. who clearly con-
firmed that dsDNA is processed by an unknown
dsDNA-contacting component in one strand (62).
The stoichiometry of gp16 has not been fully addressed

in this proposed mechanism, but in 1998, Guo et al.(15)
proposed that the mechanism of dsDNA packaging is

similar to the hexameric AAA+ ATPase family that has
many functions but also acts to translocate dsDNA during
dsDNA replication and repair. Many well-characterized
dsDNA tracking motors (51–55) and other ATPases
within the AAA+ family (15) possess an even-numbered
protein structure. Furthermore, such phages as phi12
(56,57) and others have proved to possess a hexameric
ATPase. Since the pRNA of phi29 has been determined
to be hexameric (15,24,58), this raises speculation that
gp16 might be similar to the AAA+ family and also exist
as a hexamer.

Twenty years ago, Guo et. al.(11) determined that one
ATP was used to package 2 bp of dsDNA. The stoichiom-
etry of one ATP for two base pairs of dsDNA was also
subsequently confirmed by the T3 system (59). This infor-
mation has been utilized substantially by biochemists
and biophysicists to interpret the mechanism of motor
action(10,12,39,57,60,61). Recently, Bustamante and co-
workers (29) reported the packaging of 2.5 bp per ATP
using single molecule analysis through tweezer-based ex-
periments. Many packaging models have previously been
proposed, and the packaging mechanism has been contin-
gent upon the number of nucleotides packaged per ATP.
Currently, the motion mechanism is interpreted based on
structural and biophysical properties of the dodecameric
channel and the B-type dsDNA linking number of 10.5 bp
per helical turn. It is logical that a specific number of ATP
is required to translocate a definite number of dsDNA if
gp16 and connector are an integrated, concrete motor
structure. From our results, it was revealed that the
dsDNA packaging task is carried out by two different

Figure 6. The ‘Push through a One-way Valve’ mechanism in phi29 dsDNA packaging. Schematic of dsDNA packaging mechanism termed ‘push
through a one-way valve’. ATP binds to gp16, promoting gp16 binding to dsDNA. ATP hydrolysis induced a force or conformational change to
push dsDNA translocation into the connector channel, which is a one-way valve that only allows dsDNA to enter but not exit the procapsid during
dsDNA packaging.
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steps by two separate components: gp16 for active pushing
and the channel serving as a one-way valve to control the
direction. Currently, the debate is whether 2 (11) or 2.5
(29) bp are packaged per ATP and whether the motor
ATPase is a tetramer, pentamer or hexamer for four
(61), five (50) or six (11) discrete steps of motor action.
The calculation of ATP and dsDNA ratio related to the
linking number of B-type dsDNA would have been useful
to interpret the motor mechanism if only one motor
protein, either gp16 or connector, plays a determinative
role in dsDNA translocation speed. However, as reported
here, the pushing force is from the ATPase gp16, but the
dsDNA translocation speed is most likely also affected by
the connector channel. Temporary pauses and slips have
been reported to occur during translocation (12,25,62,63).
The calculated translocation rate resulted from two unco-
ordinated force generating factors, gp16 and connector,
will make it impossible to obtain a definitive and repro-
ducible number of base pairs per ATP consumed. The
translocation rate generated by gp16 is altered by the
channel valve since the temporary pause or slip (25) of
the dsDNA during translocation through the channel
will negatively affect the speed. The newly demonstrated
mechanism of dsDNA packaging demonstrated here can
address the discrepancy between the 2 and 2.5 bp per
consumed ATP debate. The difference depends on the ex-
perimental conditions that can be varied. Finding of the
combination of the two distinct roles of gp16 and connect-
or renews the perception of previous dsDNA packaging
energy calculations and provides insight into the mechan-
ism of motor action (Figure 6).
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