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Abstract

Understanding morphological transformations is essential to elucidating the evolution and developmental biology of many
organisms. The Gram-positive soil bacterium, Streptomyces coelicolor has a complex lifecycle which lends itself well to such
studies. We recently identified a transcriptional regulator, devA, which is required for correct sporulation in this organism,
with mutants forming short, mis-septate aerial hyphae. devA is highly conserved within the Streptomyces genus along with a
duplicate copy, devE. Disruption of devE indicates this gene also plays a role in sporulation; however the phenotype of a
devE mutant differs from a devA mutant, forming long un-septate aerial hyphae. Transcriptional analysis of devA and devE
indicates that they are expressed at different stages of the lifecycle. This suggests that following duplication they have
diverged in regulation and function. Analysis of fully sequenced actinomycete genomes shows that devA is found in a single
copy in morphologically simpler actinobacteria, suggesting that duplication has lead to increased morphological
complexity. Complementation studies with devA from Salinispora, which sporulates but does not form aerial hyphae,
indicates the ancestral gene cannot complement devA or devE, suggesting neo-functionalisation has occurred. Analysis of
the synonymous and non-synonymous nucleotide changes within the devA paralogues suggest subfunctionalisation has
occurred as both copies have diverged from the ancestral sequences. Divergence is also asymmetric with a higher level of
functional constraint observed in the DNA binding domain compared with the effector binding/oligomerisation domain,
suggesting diversification in the substrate specificity of these paralogues has contributed to their evolution.
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Introduction

The origin of biological novelty is a major theme in evolutionary

and developmental biology and understanding key morphological

transformations is paramount to elucidating these mechanisms.

The differentiating soil bacterium Streptomyces coelicolor offers a

genetically tractable model to study such morphological transitions

due to its complex lifecycle, where a germinating spore gives rise to

a colony of vegetative substrate mycelium. Vegetative growth

proceeds by hyphal tip extension and by branching until changes

in nutritional status [1] [2] and the accumulation of extracellular

signalling molecules and surfactants [3,4,5,6] trigger formation of

specialised reproductive structures called aerial hyphae. These

multigenomic aerial hyphae grow from the colony surface into the

air, subsequently compartmentalising and maturing into unige-

nomic spores [2,7,8]. Mutants involved in this process can be

classified into two broad groups: those blocked in their ability to

form aerial hyphae (the bld mutants), and those able to form aerial

hyphae but unable to complete their development into mature

spores (the whi mutants).

The actinobacteria are a particularly diverse phylum both

morphologically and physiologically and allow evolution of

morphological complexity to be studied using phylogenomics

and experimental studies. Isolation of mutants in the develop-

mental process in the particularly well studied in Streptomyces,

coupled with extensive genome sequencing and comparative

genomics has shown that many of these genes fall into families with

orthologues found throughout the phylum [8,9].

The maintenance of large gene families in genomes is a heavily

debated issue in both prokaryotes and eukaryotes [10]. In the

actinomycetes, a general trend would appear that duplication of

certain genes within the chromosome throughout evolution has

contributed to developmental complexity; such as the Chaplins,

Rodlins [11,12,13], ssgA [14], whiJ/bldB and whiA/whiB [8]. It is

interesting to note that several of these genes are present in less-

complex and non-sporulating actinomycetes with copy number

broadly correlating with increasing developmental complexity

suggesting that, through duplication and mutation, they have

acquired sporulation specific roles [8]. The duplication of

sequences in bacterial genomes is being identified more frequently

and has now been demonstrated in a range of organisms [15,16].

In S. coelicolor this also appears to be the case, with 709 genes

having at least one homologue within the genome (with at least

70% sequence similarity, and 70% coverage on both proteins;

Chandra, G., Personal communication). This is approximately 9%

of the genome, which corresponds well with the published figures

from other bacterial genomes [16], however extensive analysis of

these genes is still required to confirm they are bona fide gene
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duplication events, rather than horizontal gene transfer (HGT)

events, which are also known to contribute the expansion of gene

families in bacteria [17].

Gene duplication is an important evolutionary force that

provides an organism with an opportunity to evolve new functions.

One or both of the duplicated genes can diverge to acquire

differential regulation or mutations occur followed by evolution

into a gene product with a new function. Duplication is also used

as a mechanism to acquire a varied substrate spectrum. Thus,

functional variations and differential regulation can be obtained as

a result of gene duplication and provide an adaptive or fitness

advantage in the natural environment. Indeed, data available for

Escherichia coli and Saccharomyces cerevisiae suggest that gene

duplication plays a key role in the growth of gene networks [18].

Classically, gene duplication is thought to enable duplicates to

become specialised in different tissues or developmental stages

[19]. Although a central issue developing from these observations

is why so many duplicate genes have been retained in genomes

even though the most likely fate of a redundant duplicate is non-

functionalisation. The neofunctionalisation [19] and subfunctio-

nalisation [20] models, however, are the most frequently used

models to explain the retention of duplicates. The neofunctiona-

lisation model postulates that the gain of new functions is the

major selective factor for the retention of both duplicates in a

genome. The subfunctionalisation model suggests that both

duplicate genes undergo complementary degeneration, so that

both copies are required to fully complement the ancestral gene

and can be considered an essentially non-adaptive process. Studies

of yeast paralogues suggest that both copies of duplicate genes

become more specialised in their expression, and that neofunc-

tionalisation is more common than subfunctionalisation [21].

However, it is also possible for both mechanisms to work in

parallel, with a large proportion of genes undergoing rapid

subfunctionalisation following duplication, followed by a pro-

longed period of neofunctionalisation [22]. Gene duplication is

therefore an important prerequisite for gene innovation, facilitat-

ing adaptation with paralogues comprising an increasingly

recognised proportion of bacterial genomes. This importance to

biological innovation is likely to contribute to the evolution of

complex lifecycles in actinobacteria, given the observed numbers

of paralogous gene families associated with development and

sporulation in complex actinobacteria, as it has previously been

observed that increasing gene family size often correlates with

increasing developmental complexity [23].

Here we demonstrate that the duplication of a recently

identified metabolite responsive transcriptional regulator in

Streptomyces coelicolor has lead to evolution of novel functions in

each paralogue. DevA is a member of the GntR family of proteins,

which controls the expression of itself and a putative phosphatase

(devB) through negative autoregulation [24]. Adjacent to devA on

the chromosome is a homologue of devA, devE, which has arisen

through gene duplication. These regulators, both essential for

correct development and have diverged from an ancestral

homologue in developmentally less complex actinomycetes,

demonstrating neo and sub-functionalisation during the transition

such that the ancestral gene cannot complement their function.

Results

devA and devE are paralogous regulators which have
distinct roles in the development of streptomycetes

We recently identified a gene encoding a GntR-like regulator,

devA, in S. coelicolor which upon disruption had profound effects on

the formation of aerial hyphae and [24]. Located adjacent to devA

(SCO4190) on the S. coelicolor chromosome is a duplicate,

designated devE (SCO4188; [24]). devE encodes a 303 amino acid

protein which is predicted to be a GntR-like regulator, with a

putative helix-turn-helix motif at residues 46–67 (Score 6.60; 2, 12,

25). DevE shows 57.6% identity with DevA and both genes are

conserved in S. avermitilis and S scabies [24].

It was hypothesised that, if devA is required for correct

sporulation then a mutation in the paralogous devE gene would

also result in defective development. Therefore, we created a

Tn5062 insertion in devE (J3113) to investigate its phenotype

(Fig. 1A). The devE mutant is indeed defective in development,

however morphologically different to a devA mutant; forming aerial

hyphae at normal levels which fail to septate and give rise to spores

(Fig. 1C). This is in contrast to the short, mis-septate aerial

hyphae of a devA mutant, which results in a whi colony phenotype

(Fig. 1B and 1C). These data suggest that DevA and DevE have

distinct roles in the Streptomyces developmental process. To ensure

there was no cross regulation between devA and devE, a devA null

mutant was created using an oligonucleotide co-electroporation

approach (see materials and methods). This approach will likely

result in the constitutive expression of devB, a putative phospha-

tase, due to the lack of a devA coding sequence, whose gene

product has previously been shown to negatively autoregulate its

own transcription [24]. The DdevA mutant (J3106) exhibits a white

(whi) phenotype (Fig. 1B) which is fully complemented by a wild-

type copy of devA on an integrating plasmid, pIJ6970 (Table 1),

suggesting there is no cross regulation of devA by devE. This is

further supported by the observation in Hoskisson et al., [24] of an

increase in transcription from the devA promoter in a devA mutant,

due to the lack of auto-regulation. Thus is devE bound the devA

promoter this increase in transcription would not be observed.

The creation of a devA/devE double mutant (Fig. 1A) does not

appear to affect the phenotype beyond that of a single mutant,

when a copy of cosmid D66 Tn5062::devE (apramycin resistant)

is introduced in to either a DdevA (J3106:unmarked) or a

Tn4560::devA (J3101:viomycin resistan) background. This again

suggests that these genes have diverged in function and do not

cross-complement each other and have separate temporal roles in

development of S. coelicolor.

devA and devE are expressed at different stages of the
lifecycle in S. coelicolor

Evolutionary modifications of gene expression are considered

one of the platforms from which morphological diversification has

arisen (Prud’homme et al., 2007). It has previously been shown by

S1 nuclease mapping that S. coelicolor devA [24] is actively

transcribed until about 24 hours of growth on solid medium.

Given that divergence in expression patterns is important for new

gene functions to emerge from duplicates, the expression of devE

throughout the lifecycle of S coelicolor was investigated (Fig. 2).

Semi-quantitative RT-PCR shows that transcription of devE is

continuous throughout growth however it does show an increase

during spore formation relative to the multiplexed vegetative

sigma factor hrdB. RT-PCR of devA using the same RNA time

course showed the transcript is present up to 16 hrs of growth

confirming previous data [24]. Microarray data from S. coelicolor

grown on minimal medium and on rich medium also confirms this

observation of differential transcription (C.M. Kao, Personal

communication). The expression of devE later in growth under the

same conditions, during the onset of septation is consistent with

the morphological phenotypes observed. devA and devE are

temporally separated during development and this reflects their

activity in two aspects of development; erection of aerial hyphae

(devA) and septation of aerial hyphae (devE). Thus, following

Developmental Gene Duplication in Streptomyces
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duplication, altered regulation of these two genes is likely to have

contributed to their divergence.

The DevA subfamily is duplicated in aerial hyphae
forming and sporulating actinomycetes

A significant number of homologues were identified by using the

DevA sequence to interrogate the non-redundant database

(BLAST; E-value,1210, BLAST Scores.100). This is higher than

that reported in Hoskisson et al., [24] likely as a result of increased

actinobacterial genome sequencing. Analysis and reciprocal

BLAST best-hits of homologues identified during the search,

confirmed the presence of devA-like genes in morphologically diverse

actinomycetes (Fig. 3A/3B). Streptomyces genomes largely contain at

least two paralogues of devA, with a few exceptions, such as S.

clavuligerus and S. griseus which may suggest some degree of niche

specialisation through the addition developmental checkpoints.

Extensive analysis of the sequences indicate a highly conserved

N-terminal helix-turn-helix domain (Fig. 3A) showing high

degrees of similarity in the structurally conserved a-helix regions

(a1–3). The C-terminal effector binding/oligomerisation domain

(Eb/O) also shows high degrees of conservation characteristic of

the DevA-subfamily [24,25].

BLAST analysis reveals that in species containing two copies of

DevA-like proteins there is a paralogue with high amino acid

identity with DevA (SCO4190) and one with more distant

homology, in close proximity on the chromosome suggesting

there has been divergence following a duplication event (Table 2).

Phylogenetic analysis of the sequences (Fig. 3B) confirms that

the sequences are divided in to two distinct lineages, which is

consistent whether the whole protein sequence (Data not shown),

HTH domain (Fig. 3A) or Eb/O (Data not shown) are analysed.

devA-like genes largely display the same genetic context (Fig. 4),

with devA being co-transcribed with the putative phosphatase/

hydrolase (DevB). Divergently transcribed is the devC gene that

encodes a small hypothetical protein of approximately 50 amino

acids. The duplicated devA-like gene, devE, is located upstream, but

the duplication only appears to have maintained the GntR-like

regulator, with the devC-like gene only being maintained in S.

sviceus and S. coelicolor.

The DevA lineage split largely correlates with the developmen-

tal phenotypes observed within the group (Fig. 3B; Table 2).

Phylogenetic analysis of the sequences using neighbour-joining

(NJ; Saitou and Nei, 1987) and maximum Likelihood (ML;

Tamura et al., 2007) trees showed highly similar topologies

enhancing confidence in the trees obtained. This analysis showed

Figure 1. Deletion of devA or devE results in aberrant sporulation in Streptomyces coelicolor. A: Effect of devA & devE disruptions on colony
appearance and complementation of mutants. Strains were grown on MS medium for 5 days. B: Scanning electron microscopy images of devA and
devE mutants grown on MS medium. SEM Bar = 10 mm.
doi:10.1371/journal.pone.0025049.g001
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that Clade A is formed entirely from Streptomyces species which

undergo a complex developmental cycle with the formation of

aerial hyphae followed by septation and the formation of mature

spores. This clade can be further divided in to two sub-groups,

each one consisting of a single homologue from each organism,

those closest to DevA and those closest to DevE. This clearly

indicates that a duplication event has occurred from an ancestral

DevA-like gene and has subsequently diverged resulting in the

observed tree topology. Clade B consists of actinobacteria with less

complex lifecycles and morphologies. Those which fragment their

hyphae rather than forming true spores (Kribella), those which form

aerial hyphae but not spores (Stackebrandtia, Actinosynnema) or species

which form single spores directly on the vegetative mycelium

(Salinispora, Micromonospora) (Table 2). One exception to this is

Streptomyces clavuligerus, which only has one copy of the devA-like

genes, suggesting that maintenance of the duplication has not

occurred in this species. There is no characterisation of these genes

in other streptomycetes, however the maintenance of such gene

duplication events is likely to be highly niche specific, and

understanding the exact micro-niches occupied by such a highly

speciated genus as this suggests different selective pressures acting

on developmental checkpoints.

S. sviceus has four copies of devA-like genes on the chromosome,

suggesting multiple duplication events may have occurred in this

species or they have acquired additional copies through HGT

which may reflect the association with Clade B in some strains

such as S. sviceus (SSEG00372; DevF and SSEG00373; DevG;

Fig. 3B).

devA from Salinispora cannot complement either a devA
or a devE mutant in Streptomyces

The different roles played in development by these genes in S.

coelicolor suggest that their duplication has resulted in divergence

and sub- or neo-functionalisation. To test if this divergence is neo-

functionalisation (change in function) or sub-functionalisation

(division of ancestral function between the duplicates), the devA

Table 1. Strains and plasmids used in this study.

Strain or plasmid Genotype/comments Source or reference

Strains

S. coelicolor

M600 Prototrophic, SCP12 SCP22 [47]

J3101 M600 devA::Tn4560 (viomycin) [24]

J3102 M600 devA::Tn5062 (Apramycin) [24]

J3105 M600 devE::Tn5062 (Apramycin) This work

J3106 M600 DdevA, in-frame deletion of devA CDS This work

sPH101 M600 devA::Tn4560/ devE::Tn5062 (Apramycin and viomycin) This work

sPH102 M600 DdevA/devE::Tn5062 (Apramycin) This work

Plasmids

pIJ6902 Plasmid integrating at phage wC31 attB site, carrying apramycin resistance (apr) and thiostrepton
resistance (thio) with thiostrepton inducible promoter (tipA)

[26]

pIJ6970 pSET152 carrying 1.5-kb devA fragment [24]

pMS82 Plasmid integrating at phage wBT1 attB site, carrying hygromycin resistance (hyg) [52]

pPH800 Plasmid integrating at phage wBT1 attB site, carrying hygromycin resistance (hyg) containing the
1.2-kb devE fragment.

This work

pPH801 Plasmid derivative of pIJ6902 integrating at phage wC31 attB site, carrying apramycin resistance (apr) and
thiostrepton resistance (thio) with thiostrepton inducible promoter (tipA) driving expression of devAsal

This work

pPH802 Plasmid derivative of pIJ6902 integrating at phage wC31 attB site, carrying apramycin resistance (apr)
and thiostrepton resistance (thio) with thiostrepton inducible promoter (tipA) driving expression of devA
from S. coelicolor.

This work

pPH803 Plasmid derivative of pIJ6902 integrating at phage wC31 attB site, carrying apramycin resistance (apr)
and thiostrepton resistance (thio) with thiostrepton inducible promoter (tipA) driving expression of
devE from S. coelicolor.

This work

doi:10.1371/journal.pone.0025049.t001

Figure 2. Transcriptional analysis of devA & devE. RT-PCR of
devA and devE during development of S. coelicolor M600 on MS
medium. The time points at which mycelium were harvested for RNA
and the developmental stage of the culture, as judged by microscopic
examination, are shown above.
doi:10.1371/journal.pone.0025049.g002

Developmental Gene Duplication in Streptomyces

PLoS ONE | www.plosone.org 4 October 2011 | Volume 6 | Issue 10 | e25049



gene of Salinispora tropica was cloned into pIJ6902 [26] under the

control of the tipA promoter (pPH801). The tipA promoter was

used to ensure that differences in promoter recognition of RNA-

polymerase between Streptomyces and Salinispora did not affect

transcription of the gene. In addition both devA (pPH802) and devE

(pPH803) from S. coelicolor were cloned into pIJ6902, and

examined to ensure that driving these genes from the tipA

promoter resulted in complementation of the mutant phenotype.

All strains were tested in the presence (Fig. 5) and absence of the

inducer, thiostrepton (data not shown). Introduction of the devAsal

construct into either a devA or a devE mutant did not complement

the function of these genes in S. coelicolor (Fig. 5). The introduction

of pPH801 in to the devA/devE double mutant also did not

complement the lesions in these strains (Fig. 5). Driving the S.

coelicolor devA (pPH802) and devE (pPH803) from the tipA promoter

(Fig. 5) in each mutant background resulted in complementation.

This indicates that divergence following the duplication event has

been sufficient to render the ancestral homologue incapable of

complementation in the duplicate copies in Streptomyces, suggesting

that neo-functionalisation has occurred in both duplicates in

Streptomyces.

Evolutionary and functional constraints on devA-like
genes

The apparent neo-functionalisation of the devA-like genes in

Streptomyces raises interesting questions regarding the process of

divergence of these genes in actinomycetes; does the neo-

functionalisation model adequately explain the inability to

complement both genetic lesions? To test this we aligned the

nucleotide sequences of the devA-like genes and calculated the

number of non-synonymous substitutions per non-synonymous site

within the sequences (dN). These are all ,1 (mean = 0.4),

suggesting a functional constraint upon these proteins. Interest-

ingly when these values are calculated for each of the clades, the

dN value differs between each group, with a lower number of non-

synonymous substitutions per non-synonymous site being observed

in Clade A, containing the species with duplicated genes.

To further investigate the levels of selection imposed on these

genes the ratio of non-synonymous substitution to synonymous

substitutions per site was calculated [27]. All proteins exhibit a dN/

dS ratio of ,1 indicating that purifying selection is constraining

these genes, through the removal of non-synonymous mutations

(Table 3). There is however a marked difference when Clade A and

Figure 3. Bioinformatic and evolutionary analysis of devA and its homologues. A: Multiple alignment of the N-terminus of the DevA-like
protein sequences. The a-helices (1–3) of the helix-turn-helix motif are shown to indicate the structure based homology. B: A ML tree based on the
alignment of whole DevA-like sequences displaying the two main clades (A - duplicates & B - singletons). Please see Table 2 for details on homology
and morphology of the strains.
doi:10.1371/journal.pone.0025049.g003
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Clade B are compared, as for dN (Table 3) indicating that selection

is acting differently upon the species containing one or two copies of

a devA homologue, although standard deviations of these data

suggest it may not be significant. The calculation of dN and dN/dS

for devA and devE homologues separately however indicates that

purifying selection is acting to remove non-synonymous mutations

and constraining function in duplicates and is significant when

compared to Clade B (singleton) devA homologues.

To gain an understanding of how rapid the divergence between

DevA homologues has been, the synonymous substitutions per site

were calculated between devA (0.15+/20.03) and the devE

paralogues (0.33+/20.04), suggesting a higher rate of divergence

for devE following the duplication event, consistent with this being

the duplicated gene.

Division of the proteins into their domains (N-terminal HTH

and C-terminal Eb/O) and then recalculation of the dN/dS ratio

for each of the domains revealed that the purifying selection is

higher on the N-terminal HTH domain in both clades, suggesting

that maintenance of DNA binding ability is a key selective pressure

on these genes (Table 3). Relaxed selective pressure on the C-

terminal domain is indicative of functional divergence by

diversifying the Eb/O domain at a faster rate than DNA binding,

perhaps broadening the metabolite binding capabilities.

Discussion

Bacteria can adapt to selective conditions by either altering

regulatory responses to the environment, by acquisition of stable,

adaptive mutations or through gene duplication-amplification,

which alters gene dosage and copy number [15]. Gene duplication

is a major source of biological novelty throughout the three

kingdoms of life and can facilitate adaptation through the

acquisition of novel functions. Here we have shown that duplication

of a regulatory protein in actinomycete bacteria has contributed to

the increased complexity of the developmental process in these

organisms through duplication and sequence divergence.

The HTH containing GntR family is widely distributed

throughout the bacteria, where they regulate diverse biological

processes. In general, these proteins contain a DNA-binding HTH

domain at the N-terminus and an Eb/O domain at the C-terminus

[25]. Upon binding of an effector molecule at the C-terminal

domain, a conformational change occurs in the protein dimer which

influences the DNA-binding properties of the HTH domain of the

protein, altering transcription at its cognate promoters. The DNA-

binding domain is conserved throughout the GntR family [28], with

the regions outside the DNA-binding domain being more variable

[25]. Often these proteins are negatively autoregulatory and this

ability to tightly control gene expression in response to metabolites

allows cells to respond to the environmental conditions and

physiological state of the cell. In developing organisms the

commitment to differentiate is tightly regulated to ensure that the

profound cellular consequences of the process are not undertaken

during transient environmental changes. In Streptomyces six GntR

regulators are known to be involved in the regulation of sporulation

[24,29,30,31,32], indicating that sensing and responding to

metabolic changes is fundamental to regulating this process.

Phenotypic and regulatory divergence between devA
and devE

The presence of two copies of devA-like genes in Streptomyces,

which have different functions in development and exhibit

Table 2. Homology and Morphology of selected strains containing devA-like genes.

Organism /homologue Developmental morphology
% identity to DevA
(SCO4190)

% identity to DevE
(SCO4188) Reference

Streptomyces coelicolor –DevA (SCO4190) Filamentous, aerial hyphae & spores - 58 [24,53]

Streptomyces coelicolor –DevE (SCO4188) Filamentous, aerial hyphae & spores 57 - [24,53]

Streptomyces ghanaensis –SghaA1010100019556 Filamentous, aerial hyphae & spores 77 78 [53]

Streptomyces ghanaensis – SghaA1010100019546 Filamentous, aerial hyphae & spores 59 77 [53]

Streptomyces avermitilis –SAV4021 Filamentous, aerial hyphae & spores 76 60 [53]

Streptomyces avermitilis –SAV4023 Filamentous, aerial hyphae & spores 56 75 [53]

Streptomyces sviceus –SSEG08364 Filamentous, aerial hyphae & spores 74 59 [53]

Streptomyces sviceus – SSEG00377 Filamentous, aerial hyphae & spores 60 78 [53]

Streptomyces sviceus – SSEG00373 Filamentous, aerial hyphae & spores 33 29 [53]

Streptomyces sviceus – SSEG00372 Filamentous, aerial hyphae & spores 31 31 [53]

Streptomyces scabies –SCAB49751 Filamentous, aerial hyphae & spores 74 58 [53]

Streptomyces scabies – SCAB49731 Filamentous, aerial hyphae & spores 59 71 [53]

Streptomyces clavuligerus –SSCG00120 Filamentous, aerial hyphae & spores 33 33 [53]

Salinispora tropica –STROP0072 Filamentous, single spores on
vegetative hyphae

35 34 [54]

Salinispora arenicola –SARE1572 Filamentous, single spores on
vegetative hyphae

35 34 [54]

Kribella flavida –KflaDRAFT6164 Filamentous fragmenting, aerial
hyphae formed

33 34 [55]

Stackebrandtia nassauensis –SnasDRAFT27490 Filamentous fragmenting , aerial
hyphae formed

32 31 [56]

Actinosynnema mirum – AmirDRAFT51580 Filamentous fragmenting, aerial
hyphae formed, motile spores

35 30 [57]

doi:10.1371/journal.pone.0025049.t002
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different expression patterns indicates that the novel function

evolved following duplication in these genes, given the inability of

a pre-duplication copy of devA (Salinispora) to complement the

genetic lesions in Streptomyces. The devA mutant [24] forms spores

and short aberrant aerial hyphae, suggesting that this gene may be

responsible for sensing a metabolite during growth of aerial

hyphae and may signal when aerial hyphae extension should stop.

The devE mutant forms normal length aerial hyphae which fail to

curl or septate, suggesting that metabolite sensing plays a role in

the initiation of septum formation. Our understanding of the

functions, regulons and metabolites sensed by these proteins is still

in its early stages, however we know of at least one gene controlled

by DevA, a putative phosphatase/hydrolase, devB [24] which also

exhibits a developmental phenotype. A devB mutant is condition-

Figure 4. A maximum likelihood tree based on the alignment of the 16S rRNA gene of selected devA-like containing species
coupled with the devA gene context of each species indicating the duplication event in the Streptomyces lineage.
doi:10.1371/journal.pone.0025049.g004

Figure 5. Effect of complementation of devA and devE disruptions with devA from Salinispora tropica, under the control of the
thiostrepton inducible promoter (tipA), on colony appearance. Strains were grown on MS medium for 5 days in the presence of thiostrepton.
doi:10.1371/journal.pone.0025049.g005
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ally bald and here we have shown through deletion of the

complete devA coding sequence, that constitutive expression

throughout out the lifecycle results in the inability to form aerial

hyphae. This suggests that tight regulation of this putative

phosphatase/hydrolase is required for correct sporulation. How

this fits in to the wider developmental hierarchy is currently

unknown.

Following the duplication event these genes have also diverged

in terms of their transcription, devA is expressed early in growth,

correlating with the observed phenotype of shortened aerial

hyphae and devE is expressed throughout growth, although

apparently in increased amounts when aerial hyphae and spores

are present. The divergence of expression has long been

considered a key step in the emergence of a new gene from a

duplicate copy [33] and may lead to tissue specific expression as

we have observed here.

Paralogous regulators found in aerial hyphae forming
and sporulating actinomycetes

Sporulation is an adaptive process allowing survival under sub-

optimal growth conditions [34]. The devA-like genes have only

been found in actinomycetes that differentiate [24]. The

duplication event and its subsequent preservation in Streptomyces

indicate that both copies of the devA-like genes are performing a

specific function in this group, observed by the different

phenotypes in the mutants and their differential transcription.

The origin of this gene is difficult to ascertain through extensive

PSI-BLAST searching and sequence analysis (Data not shown).

However, the distribution throughout several actinobacterial sub-

orders (Glycomycineae, Micromonosporineae, Proprionibacterineae, Pseudo-

nocardineae, Streptomycineae) suggests it may have been lost in some

lineages within the actinomycetales order (based on the 16S

phylogeny in Stackebrandt et al., [35], with several well studied

sub-orders not containing hyphae forming or sporulating species

or copies of devA-like genes. However extensive genome sequenc-

ing has not been undertaken in many sub-orders, mainly due to a

lack of medical or industrial interest and further genomes and

ecological studies may allow increased insight in to the evolution of

the developmental process in this group and the possible roles that

certain metabolite responsive proteins such as GntR regulators

may play in niche specialisation.

The devA subfamily in Streptomyces has undergone
subfunctionalisation followed by neofunctionalisation

Evolutionary analysis of the devA subfamily indicates that

subfunctionalisation occurred initially following the duplication

event, probably at the emergence of the Streptomycinae, given the

different gene expression profiles observed and the conservation of

both duplicates within the lineage. The levels of purifying selection

identified by the dN/dS ratio (,1) indicates a functional constraint

maintaining these genes, however it is known that proteins with

dN/dS,1 may still contain sites under positive selection [36]. The

different values obtained for synonymous changes per synonymous

site (dS) for the paralogous devA and devE groups indicate that

subfunctionalisation is occurring as both genes are diverging from

each other, fitting with the subfunctionalisation model, which

predicts that two genes with identical functions and regulation are

unlikely to be maintained in a genome [22,37,38]. Additionally the

devA and devE mutants exhibit different phenotypes and neither is

complemented by the ancestral copy of devA from Salinispora which

in consistent with the neofunctionalisation model of duplicate fates

[20,39].

Comparison of dN/dS ratio of each domain suggests there is an

asymmetric functional constraint on each domain of DevA, with

purifying selection acting stronger on the N-terminal HTH

domain than on the C-terminal Eb/O domain. The constraint

therefore acts upon DNA binding domain more strongly,

maintaining the regulatory role of the protein while freeing

selection of the Eb/O domain, which can potentially evolve novel

effector binding capabilities allowing responses to more diverse

substrates.

Subfunctionalisation followed by neofunctionalisation is not

unprecedented and appears to explain the evolution of many

duplicate genes due to relaxed constraint following duplication in

plants and fungi [40,41,42]. It remains to be seen if duplication is a

major route to gene innovation in prokaryotes, given the

importance of horizontal gene transfer in these organisms [17],

yet the evolution of large gene families in higher organisms has

established these models of evolution and bacterial systems

exhibiting these processes offer unique, tractable model systems

to understand these processes in molecular detail.

Materials and Methods

Bacterial strains, plasmids, growth conditions and
conjugal transfer from E. coli to Streptomyces

The S. coelicolor strains used in this study are summarised in

Table 1. All strains were cultivated on minimal medium (MM)

containing mannitol (0.5% w/v) or mannitol and soya flour (MS)

agar [43]. Conjugation of plasmids from the E. coli strain ET12567

(dam dcm hsdS), containing the driver plasmid pUZ8002, was used

to bypass the methyl-specific restriction system of S. coelicolor [44].

Construction of a devA null mutant, a devE and a devAE
double mutant

A derivative of cosmid D66 carrying Tn5062 insertion in devE

(gifts of Dr Lorena Fernández-Martı́nez and Professor Paul Dyson,

University of Swansea) generated using the in vitro transposition

method of Bishop et al. [45], was introduced into S. coelicolor M600

by conjugation from E. coli ET12567/pUZ8002. Mutants

exhibiting the double-crossover phenotype (apramycin resistant,

kanamycin sensitive) were confirmed by Southern hybridisation

and designated J3105 (devE::Tn5062).

Construction of a devA in-frame deletion null mutant was

achieved by PCR-targeting of linearised cosmid D66 in l-RED-

proficient E. coli, using the method of Gust et al. [46] as partially

described in [24]. Briefly, the rare cutting AflII site in Tn5062 (27

sites in the S. coelicolor genome) was utilised to remove the complete

devA coding sequence. A derivative of cosmid D66 carrying a

Tn5062 insertion in devA was linearised within the transposon by

digestion with AflII (the parent D66 cosmid contains no AflII sites).

Uncut cosmid was eliminated by gel electrophoresis and the

Table 3. Evolutionary analysis of DevA-like homologues.

Sequence group dN dN/dS

All devA homologues 0.40 (+/20.05) 0.13 (+/20.24)

Clade A - (devA/E duplicates) 0.25 (+/20.04) 0.57 (+/20.42)

Clade B - (devA singletons) 0.55 (+/20.06) 0.86 (+/20.33)

Clade A - (devA paralogues only) 0.25 (+/20.04) 0.20 (+/20.13)

Clade A - (devE paralogues only) 0.25 (+/20.04) 0.12 (+/20.12)

All devA homologues - N-terminal domain 0.35 (+/20.18) 0.68 (+/20.40)

All devA homologues -C-terminal domain 0.39 (+/20.15) 0.95 (+/20.20)

doi:10.1371/journal.pone.0025049.t003

Developmental Gene Duplication in Streptomyces

PLoS ONE | www.plosone.org 8 October 2011 | Volume 6 | Issue 10 | e25049



linearised cosmid was co-electroporated into BW25113/pIJ790

along with a 100-mer oligonucleotide (59-AAACAAGTTTCAAA-

CAACTCCCTATAGGTAGGTCGAAGTTGTAGCGTTTGA-

TCACAGAAGTGGTTCGACGCCCTCTGGGAAACCATCA-

CCACGGACATGA-39), consisting of two 50-nt sequences

corresponding to the upstream and downstream regions of the

devA gene (leaving the desired deletion junction underlined above).

Re-circularisation of the cosmid was brought about by double

crossing over between the 59- and the 39- ends of the oligo-

nucleotide and the linearised cosmid, resulting in colonies resistant

to kanamycin (cosmid marker) and sensitive to apramycin (carried

by Tn5062, confirming deletion of the transposon). The mutant

cosmid D66 (D66DeltadevA) was confirmed by sequencing [24].

To introduce the null allele into S. coelicolor the devA mutant (J3102)

was protoplasted according to Kieser et al. [47] and these were

transformed with the mutant cosmid lacking the devA coding

sequence (D66DeltadevA). Single-crossover mutants were selected

on kanamycin and subsequent double crossover (devA null) mutants

were selected following a round of growth on non-selective media

and replication to apramycin and kanamycin to confirm loss of the

cosmid. The chromosomal location of the devA null mutant was

confirmed by sequencing and verified by Southern blotting. This

strain was designated J3106.

The original devA mutant, J3101 was used to create a double

devAE mutant as follows: the devE::Tn5062 derivative of cosmid

D66 used above was introduced in to the viomycin resistant J3101

(devA:Tn4560; [24]) and double cross-over mutants were selected

using apramycin and viomycin resistance and kanamycin

sensitivity, to ensure both transposons were maintained in the

mutants, avoiding homogenitization of devA with a wild-type copy

of devA. This strain was designated sPH101. An additional devAE

double mutant was created by introducing the devE::Tn5062

derivative of cosmid D66 in to J3106 to create a devAE double

mutant which ensured that no polar effects were observed on devB.

The absence of devA in the double-crossovers was checked by PCR

using the primers used in the RT-PCR reactions for devA (Data not

shown). This strain was designated sPH102.

Plasmid construction
Plasmids used in this work are described in Table 1. Plasmids

were constructed as follows. pPH800: a 1.2-kb fragment carrying

devE was amplified from cosmid D66 using oligonucleotides 59-

GCCCGTACTTCCACTGCA -39 and 59-CCAAGAGCCC-

CTCCGTCA-39 and ligated into the EcoRV site of pMS82.

pPH801: an 880-bp fragment carrying the devASal was amplified

from Salinispora tropica (DSM 44818) genomic DNA using the

oligonucleotides 59- GGGCATATGAGCGAGAACCTTGAC-

TT-39 (containing an engineered NdeI site) and 59- CTGA-

ATTCTCATGTGTCGTACCGGT-39 (containing an engine-

ered EcoRI site) and was cloned in to pGEM-T-Easy (Promega)

according to the manufacturers instructions. The fragment was

sequenced to confirm its identity. The 880 bp fragment was

excised using NdeI and EcoRI and subcloned in to pIJ6902 cut

with NdeI and EcoRI, resulting in devASal being cloned upstream of

the Thiostrepton- inducible promoter tipA, this plasmid was named

pPH801.

To ensure that devA and devE can complement their corre-

sponding mutants when expressed from a tipA promoter, both

sequences were cloned in to pIJ6902 and introduced in to the

appropriate strains. The devA sequence was subcloned from a

pGEM-T-Easy derivative, containing devA with an engineered 59-

NdeI site [24], in to pIJ6902, resulting in pPH802. The devE

sequence was amplified by PCR from cosmid D66 using

oligonucleotides 59-CATATGGTCGTGGTTCGACGC-39 (con-

taining an engineered NdeI site) and 59-TGGGCGAGGGCG-

GACTGAGCTC-39 and cloned in to pGEM-T-Easy. The

fragment was subcloned, using NdeI (oligonucleotide) and EcoRI

(in pGEM-T-Easy), in to pIJ6902 resulting in pPH803.

RNA isolation RT-PCR of devA and devE
RNA samples were isolated throughout the lifecycle of wild-type

and mutant strains of S. coelicolor as previously described [24].The

Qiagen One-Step RT-PCR kit was used to amplify sequences of

interest according to the manufacturers instructions, using 25

cycles of amplification. The following primers were used for

amplification of devA (forward 59-GAGGAGTTCGGCGTGGA-

39; Reverse 59- AGCCGAGCGCGTCGTA-39), for devE (forward

59-TCGACGCGCTCTGCCTGA-39; Reverse 59-TCCCCCA-

CAGTGCGTCGA-39) and the vegetative sigma factor hrdB was

used as a control in a multiplex PCR for constitutive expression

and amplification using the following primers (forward 59-

GAGGCGACCGAGGAGCCGAA-39; Reverse 59-GCGGAG-

GTTGGCCTCCAGCA-39).

Microscopy
Light microscopy and scanning electron microscopy were

performed as described previously [48].

Sequence alignment and Phylogenomic analysis
All predicted protein sequences and nucleotide sequences were

downloaded from the NCBI database (www.ncbi.nlm.nih.gov).

Homologous sequences were identified by BLASTP against the

non-redundant protein sequence database using DevA from

Streptomyces coelicolor as a query. Paralogues and orthologues were

confirmed by reciprocal best hit BLAST searching between the

genomes.

Alignments of DevA orthologues were generated using Clus-

talW [49] with default options. Phylogenetic trees were recon-

structed using neighbour-joining (NJ; [50]) and maximum

Likelihood (ML) with default parameters as implemented in

MEGA 4.0 [27]. The reliability of these trees was estimated by the

bootstrapping with 1000 replicates.

The number of synonymous nucleotide substitutions (dS) to

non-synonymous nucleotide substitutions (dN) and the ratio of

synonymous nucleotide substitutions and nonsynonymous nucle-

otide substitutions (dN/dS) were calculated by the model of

modified Nei-Gojobori method [51], applying the Jukes-Cantor

corrections in the MEGA 4.0 software suite [27].

The 16S rRNA genes were downloaded from the NCBI

database (www.ncbi.nlm.nih.gov) and they were aligned using

ClustalW with phylogenetic reconstruction performed using NJ

and ML methods in MEGA 4.0 [27,49].
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