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Quantifying Quantum-Mechanical 
Processes
Jen-Hsiang Hsieh, Shih-Hsuan Chen & Che-Ming Li

The act of describing how a physical process changes a system is the basis for understanding observed 
phenomena. For quantum-mechanical processes in particular, the affect of processes on quantum 
states profoundly advances our knowledge of the natural world, from understanding counter-intuitive 
concepts to the development of wholly quantum-mechanical technology. Here, we show that quantum-
mechanical processes can be quantified using a generic classical-process model through which any 
classical strategies of mimicry can be ruled out. We demonstrate the success of this formalism using 
fundamental processes postulated in quantum mechanics, the dynamics of open quantum systems, 
quantum-information processing, the fusion of entangled photon pairs, and the energy transfer in a 
photosynthetic pigment-protein complex. Since our framework does not depend on any specifics of the 
states being processed, it reveals a new class of correlations in the hierarchy between entanglement 
and Einstein-Podolsky-Rosen steering and paves the way for the elaboration of a generic method for 
quantifying physical processes.

A physical process is comprised of a series of actions that, in themselves, evolve in a way that is independent of a 
systems initial state. In the field of the foundations of quantum physics, there is strong interest in identifying pro-
cesses that cannot be explained using classical physics. The identification of such processes helps clarify whether 
quantum mechanics can describe the rationale behind observed phenomena, such as transport in solid-state 
nanostructures1 and functional roles in biological organisms2. Furthermore, as one wishes to take advantage 
of quantum-mechanical effects for some task, for instance, from atomic networks, semiconductor spintronics3, 
quantum information4–8 and quantum simulation9,10 to the creation of nonclassical phenomena using supercon-
ducting circuits11–13, there is always a need to ensure that key procedures or processes involved in the task are 
reliably performed in the quantum regime. Considerable progress has been made in responding to this need14–19. 
However, characterizing the output-state responses to a process, for instance, based on imposing what can be 
thought of as a classical constraint20,21 or through deduction from the predictions of quantum theory22,23, remains 
a paradigm for qualitatively reflecting the existence of a nonclassical process. This approach is significant in its 
own right, but the most exciting aspect is the questions it raises: can a quantum-mechanical process be quanti-
fied? If so, what are the implications of such quantification?

Motivated by these questions, we present a rigorous framework for quantifying quantum-mechanical pro-
cesses. This formalism simultaneously addresses a wide range of physical processes described by the general the-
ory of quantum operations and provides benchmarks for problems of greater interest in quantum information4–8. 
It also gives insightful connections between quantum processes and the essence of other concepts, for example, 
non-Markovian quantum dynamics24,25. In addition, but not less importantly, this framework enables quantum 
states to be explored and defined to uncover new characteristics for both composite and single systems.

Results
Classical processes.  We define a classical process as a set of steps involving the general descriptions of a 
classical state and its evolution: the initial system can be considered a physical object with properties satisfying the 
assumption of realism;20 then, the system evolves according to classical stochastic theory26 (Fig. 1a). The assump-
tion of realism specifies that the system is in a state described by a set of measurement outcomes, for example, a 
set of outcomes for N physical properties of interest vξ ≡ (v1, v2, ..., vN). If each physical property has d states, then 
we have dN possible sets, ...v v, , d1 N . The dynamics of these classical states are fully described by the transition 
probabilities, Ωvξμ, from vξ to a final state denoted by μ. The above concept can be applied to the cases in which 
the state of the system is probabilistically prepared according to a probability distribution P(vξ). Furthermore, if 

Department of Engineering Science, National Cheng Kung University, Tainan, 701, Taiwan. Jen-Hsiang Hsieh and 
Shih-Hsuan Chen contributed equally to this work. Correspondence and requests for materials should be addressed 
to C.-M.L. (email: cmli@mail.ncku.edu.tw)

Received: 27 June 2017

Accepted: 26 September 2017

Published: xx xx xxxx

OPEN

mailto:cmli@mail.ncku.edu.tw


www.nature.com/scientificreports/

2Scientific REPOrTS | 7: 13588  | DOI:10.1038/s41598-017-13604-9

we focus on a specific initial state of the kth physical property, e.g., vk = v′k, then the corresponding final state of 
the system has the form

P vv( ) ,
(1)

k vv k∑∑ ∑ρ ρ| ′ Ω = Ω
′

µ ξ
ξ µ µ

µ
µ µξ

where Ω
′

= ∑ | ′ Ωµ ξ µξ ξ
P vv( )v k vk

. Indeed, the final states (1) conditioned on different properties and states v′k can 
be used to capture the essence of the classical process. We use process tomography (PT), an application of the 
quantum operations formalism4, to systematically exploit these experimentally measurable quantities and then 
completely characterize the classical process using a positive Hermitian matrix, called the process matrix,

(2)
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We will hereafter use a process matrix to refer to a physical process within the text. In the following, we will 
illustrate the derivation of a classical process matrix.

Derivation of χc for classical processes.  In order to show explicitly how to apply PT to a classical process 
to completely characterize its classical features, a classical-process scenario for single two-level systems is given as 
a concrete example of Eq. (2). Since a classical process treats the initial system as a physical object with properties 
satisfying the assumption of realism, the system can be considered as a state described by a fixed set vξ. We assume 
that the system is described by three properties, say V1, V2 and V3, where each one has two possible states. There 
exist 23 = 8 realistic sets underlying the classical object: vξ(v1, v2, v3), where v1, v2, v3 ∈ {+1, −1} represent the 
possible measurement outcomes for V1, V2 and V3, respectively. The subsequent classical evolution changes the 
system from vξ to a final state denoted by μ according to the transition probabilities vΩ µξ

. Such evolution can 
always be rephrased as the transition from a specific state set vξ′ to some final state μ′ with Ω

′
=

′µξ
1v . Next, by 

using state tomography, each final state is reconstructed as a density operator ρμ′. Then the states under the 
assumption of realism evolve according to
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Figure 1.  Quantifying quantum-mechanical processes. (a) Suppose that a physical process is experimentally 
determined by a process matrix χexpt; how a system evolves from an arbitrary initial state ρinitial to some final 
state ρfinal is specified by the process matrix χexpt through the mapping χexpt(ρinitial) = ρfinal, which preserves 
the Hermiticity, trace, and positivity of the system density matrix. The amount of quantumness χQ of the 
process, which cannot be described at all by any classical processes χC, can be characterized and quantified 
by α (composition), β (robustness), Fexpt (process fidelity) and S (von Neumann entropy). For instance, for a 
perfect (worst) experiment on a target quantum process, α, β and Fexpt will attain their individual maximum 
(minimum) values whereas S will reach the minimum (maximum) uncertainty of the quantum process. 
These variables have significant applications to aid in the exploration and evaluation of all physical processes 
described by the quantum operations formalism, such as (b,c) the dynamics of open quantum systems, (d) 
the generation of multipartite entanglement, and (e,f) quantum-information processing. (g) This framework 
shows a new correlation model in the class between genuine multipartite EPR steering and genuine multipartite 
entanglement, called the χC-nonclassical correlations.
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We now consider specific states of physical properties as the input states. If we focus on a state of the third property, 
say v3 = v′3, the final state is described as 

v
c

vfinal
( )

3 3
ρ ρ= ∑ Ωµ µ| ′ ′ µ

, where Ω µ′v3
 shows the probability of transition from v3′ 

for all the possible sets vξ to the final state ρμ. The transition probabilities therein read P vv( )v 1,3,5,7 33
δΩ

′
= ∑ | ′µ ξ ξ ξµ=  

and P vv( )v 2,4,6,8 33
δΩ

′
= ∑ | ′µ ξ ξ ξ µ=  for v′3 = +1 and v′3 = −1, respectively. See Eq. (1). Since P(v′3)P(vξ

|v′3) = P(vξ)P(v′3|vξ) and P(v′3) = 1/2 under the assumption of a uniform probability distribution of vk, the final states 
are written as
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Similarly, for the other states v′1 = ±1, v′2 = ±1 under the condition P(v′1) = P(v′2) = 1/2, the classical process has 
the following output states:
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The essence of PT is that a process of interest is completely characterized by a process matrix. Using the outputs of 
three complementary observables (e.g. the Pauli matrices I, X, Y, and Z) from the process4, it is experimentally feasible 
to determine the process matrix. A classical process makes these observables decomposable in terms of Eqs (4) and 
(5): I Ic v

c
v

c
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3 3
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. Then the classical process matrix specifying how states evolve regardless of 

inputs can be written as the form:
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where ρC,00 = (Ic + Zc)/2, ρC,01 = (Xc + iYc)/2, ρC,10 = (Xc − iYc)/2 and ρC,11 = (Ic − Zc)/2.
The above concepts and methods can be extended to multi-level and multipartite physical systems. For 

instance, a d-level system can be classically described by a fixed set vξ with d2 − 1 properties. As illustrated in Eq. 
(3), the system evolves according to classical stochastic theory from v v v vv ( , , , , , )k d1 2 12... ...ξ −  to ρμ. For a given 
initial state of a specific property, the final state can be written as the same form as Eqs (4) and (5) by 

dP v( )vfinal k
ρ ρ

′
= ∑µ µ µ|

. Furthermore, the classical process makes d2 − 1 complementary observables (e.g., the gen-
eralized Pauli matrices27) chosen for PT decomposable in terms of the final states vfinal k

ρ
′|
. These observables then 

can be used to determine χC of the classical process for the d-level system.

Quantifying quantum-mechanical processes.  We now turn to the question of how to quantitatively 
characterize quantum-mechanical processes. Suppose that a process of interest is created and that its normalized 
process matrix, χexpt, is derived from experimentally available data using the PT procedure. If the experimental 
result cannot be described at all by any classical processes, then we say that χexpt is a genuinely quantum process, 
denoted by χQ (Fig. 1a). To place this concept into a wider context, we introduce four different approaches for the 
quantitative characterization of χQ in χexpt:
(A1) Quantum composition:

(1 ) , (7)Q Cexptχ αχ α χ= + −

where α denotes the minimum amount of χQ that can be found in χexpt. The minimum amount of χQ that can 
be found in χexpt is obtained by minimizing the following quantity via semi-definite programming (SDP) with 
MATLAB28,29:





min [1 tr( )],
(8)C

C

α χ≡ −
χ

such that

 
0, 0 , (9)C Qexptχ χ χ ρ µ− = ≥ ≥ ∀µ

where χQ  and 

χC are both unnormalized process matrices.

(A2) Process robustness:

χ βχ

β
χ

+ ′

+
=

1 (10)C
expt

where β represents the minimum amount of the noise process χ′. The minimum amount of noise process is 
determined via SDP:
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χβ ≡ −
χ

min [tr( ) 1],
(11)C

C





such that

 
χ χ χ ρ µ≥ − ≥ ≥ ∀ .µtr( ) 1, 0, 0 (12)C C expt

The first criterion in (12) guarantees that β ≥ 0, and the rest ensures that the noise χ′ and the output states ρμ are 
positive semi-definite. For example, when 0C expt

χ χ− = , χexpt is a genuinely classical process with β = 0.
(A3) Fidelity: χexpt is detected as nonclassical close to a target quantum process QT

χ  if the process fidelity satisfies 
that

χ χ χ χ≡ > ≡
χ

F Ftr( ) max tr( ),
(13)Q C C Qexpt expt T

C
T

or F Fs s C,expt ,> , stated in terms of the average state fidelity30 = + +F dF d( 1)/( 1)s C C,expt( ) expt( ) . The concept of 
(13) is to rule out the best classical mimicry to an ideal target quantum process QT

χ . Such capability of classical 
mimicry is evaluated by performing the following maximization task via SDP:

χ χ≡
χ


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F max tr( ),
(14)C C Q

C
T

such that


χ ρ µ= ≥ ∀ .µtr( ) 1, 0 (15)C

The first constraint in (15) ensures that χ
C is a normalized process matrix satisfying the definitions of the 

fidelity and a density operator.
(A4) Entropy: The process is certified as truly quantum mechanical if

χ χ< ≡
χ

S S S( ) min ( ),
(16)C Cexpt

C

where S(χexpt(C)) ≡ − tr(χexpt(C)logχexpt(C)). Here, SC can be analytically derived from the basic properties of χC and 
S. See Methods for the proof.

While the approaches (A1)-(A3) are based on different concepts and points of view, the following three prop-
erties of quantum and classical processes reveal close connections between the quantities derived from them:

(P1) If an experimental process consists of two sub-processes: χexpt = χ2χ1, where χk = αkχQk + (1 − αk)χCk for 
k = 1, 2, then both its 

2 1
α α≡ χ χ  and 

2 1
β β≡ χ χ  are not larger than that of the individual sub-process χk, i.e., 

k2 1
α α≤χ χ  and β β≤χ χ k2 1

.
(P2) Not only does (A3) indicate whether χexpt is reliable with respect to QT

χ , both α and β reflect the reliabil-
ity of χexpt as well: χexpt is verified as reliable close to χQT

 if α > (FC − Fc)/(Fq − Fc), where χ χ≡F tr( )c C QT
 and 

χ χ≡F tr( )q Q QT
. Similarly, if β > (FC − Fc)/(Fc − F′), where χ χ′ ≡ ′F tr( )QT

, then χexpt is identified as nonclassical 
and close enough to χQT

.
(P3) Suppose that, given a process χexpt, a classical process χC is derived from the definition of process robust-

ness (A2). Only when Qexpt T
χ χ=  the fidelity of χC and the target χQT

 may reach the classical upper bound of the 
process fidelity FC.

The proof of (P1) is based on a condition under which two sub-processes can constitute a quantum-mechanical 
process. Since a classical process matrix is composed of the matrix elements specified by the classical theories for 
the initial system and the subsequent state transitions, the product of such matrix and any second process matrix 
is still a classical one since its matrix elements are linear combinations of those matrix elements of the classical 
process matrix.

A product of two sub-process matrices is quantum only when both the sub-processes are nonclassical. This 
implies that only the term χQ2χQ1 with an intensity α2α1 in the expansion of χ2χ1 is not a classical process. Then 

2 1
αχ χ  determined by SDP can be smaller than or equal to α2α1, which concludes that k2 1

α α≤χ χ  for k = 1, 2. 
Compared with the individual sub-process χk, the process robustness of χexpt remains or decreases in its intensity 
βχ χ2 1

 in response to such a non-increasing quantum composition.
For (P2), the conditions for a reliable process can be shown by using the reliability criterion, Fexpt > FC, and 

the basic definitions of α, β and the process fidelity. These conditions on α and β can be represented in terms of 
average state fidelities as well.

The last property reminds us that, from the point of view of process robustness, only when Qexpt T
χ χ=  the 

derived χC is the classical process that has the minimum deviation from QT
χ  by an amount of noise β. Therefore 

the fidelity of χC and χQT
 may be larger than any other classical similarities and then equal to FC.

Examples and applications.  The quantum operations formalism underlying our framework is a general 
tool for describing the dynamics experienced by either closed or open quantum systems in a wide variety of phys-
ical scenarios. Relying on this important feature, the utility and application of our formalism is illustrated by the 
following examples. The detailed derivations of these results are given in the Methods section.
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(E1) Processes postulated in quantum mechanics. For any unitary transformation of finite size, we have α = 1 
and S = 0. By contrast, the projective measurements are identified as classical, i.e., α = 0. The POVM measure-
ments31 can be quantified in the same manner, depending on their concrete realizations.

(E2) Dynamics of open quantum systems and measuring non-Markovianity. (A1)-(A4) adapt naturally to 
unitary transformations affected by quantum noise in open quantum systems. See Fig. 2a. Moreover, α and β 
provide a fruitful source of information regarding a measure and the finest detection of non-Markovian dynamics 
of a system coupled to an environment. If an experimental process is Markovian, χexpt can be arbitrarily divided 
into sub-process matrices which satisfy the law of decomposition24,25 χexpt = χ2χ1. For instance, the property (P1) 
implies that, with explicit reference to the passage of time for each sub-process, α and β should monotonically 
decrease with time for a Markovian process. Hence, if we observe an increasing result from χexpt, then the process 
is verified as non-Markovian. Furthermore, there should be no differences between α and β of the whole process, 

expt
αχ  and 

expt
βχ , and those of the process composed of two sub-processes, 

2 1
αχ χ  and 

2 1
βχ χ , for Markovian dynam-

ics. An invalidation of this consistency reveals that the process is non-Markovian. See Fig. 2b.
(E3) Fusion of entangled photon pairs. Our framework inherits the far-reaching utility of the quantum oper-

ations formalism such that quantum dynamics can be explored by our novel quantification under a wide range of 
circumstances. The fusion of entangled photon pairs32 superposes two individual photons in two different spatial 
modes at a polarizing beam splitter (PBS) and post-selects both outputs in different modes (Fig. 1d): α = 1, 
β ∼ .0 657, and ∼ .F 0 604C .

(E4) Quantum transport in the Fenna-Matthews-Olson (FMO) complex. The FMO complex is a seven-site 
structure used by certain types of bacteria to transfer excitations from a light-harvesting antenna to a reaction 
centre (Fig. 1c). Figure 3 suggests the first quantifications of nonclassical energy transfer in the FMO complex33,34, 
where several pigments are chosen as a subsystem and single excitation transport is considered therein.

(E5) Quantum computation. We now examine concrete scenarios in which our formalism offers general 
benchmarks for quantum information. A valid quantum gate is specified by a unitary transformation (α = 1), 
and an arbitrary quantum gate can be expressed using single qubit and controlled-NOT (CNOT) gates4 (Fig. 1e). 
We say that an experiment reliably implements quantum-information processing if χexpt goes beyond the classical 
descriptions, such as superconducting circuits used for quantum information5,8 and the quantum gates realized 
by the IBM quantum computer35; see Table 1.

(E6) Quantum communication. An ideal qubit transmission between two parties acts as an identity unitary 
transformation on the transmitted qubit, which can be implemented by either sending qubits through an ideal 
communication channel36 or using teleportation37 (Fig. 1f) to move qubits around6. For teleportation, both α and 
β can reflect the qualities of entangled states shared between the sender and the receiver; see Fig. 4a. In particular, 
our state-fidelity threshold is tighter than the well-known upper bound on the classical teleportation (i.e., 
F 2/3 0 667s ,expt = ∼ . 38) and guarantees faithful teleportation of the entangled qubits39 (Fig. 4b). Classical telepor-
tation is a measure-prepare scenario in which the sender measures the unknown input state directly, and then 
sends the results to the receiver to prepare the output state38,40. Such measure-prepare strategy attains its maxi-
mum process fidelity Fexpt = 1/2 at the output state fidelity 2/3 for all arbitrary input states, and therefore is weaker 

Figure 2.  Open quantum systems. (a) Quantum noise on a state-preserving quantum process. For zero noise 
intensity pnoise = 0, χD (depolarization), χAD (amplitude damping), and χPD (phase damping) are identified as 
genuinely quantum, as an identity unitary transformation. α and β for all the noise processes monotonically 
decrease with an increase in the noise intensity pnoise. These noise processes are identified as reliably close to the 
target state-preserving process if their α and β are greater than certain thresholds as marked with • and , 
respectively. See the property (P2). (b) Non-Markovian dynamics. Since α and β monotonically decrease with 
time for Markovian dynamics, the non-Markovianity of χexpt can be measured by integrating the positive 
derivative of α or β with respect to time: 





∫∆ ≡
>

∆h t qdt( )q q

t

0; 0
, for q = α, β. As shown in Fig. 1b, we consider a 

system that is coupled to an environment with a state + −p p0 0 (1 ) 1 1  via a controlled-Z-like interaction 
= ∑ −=

⋅H ij ij1/2 ( 1)i j
i j

, 0
1  and depolarized with a rate γ. For example, we have ∼ .αh (15) 0 86 for p = 0.5 and 

γ = 0.015. (i)-(iii) illustrate the invalidation of 
expt 2 1

α α=χ χ χ . Such detection is more sensitive than the existing 
non-Markovianity quantifiers, such as the Breuer-Laine-Piilo (BLP)75 and Rivas-Huelga-Plenio (RHP)76 
measures. For example, for γ = 0.25 and p = 0.1, we find that α α≠χ χ χexpt 2 1

 when t < 1.1, whereas they certify 
the dynamics as Markovian. The certifications by the BLP and RHP measures are detailed in ref.77 Indeed, our 
method is finer than the BLP and RHP measures for all the settings of γ and p considered therein.
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than the best classical strategy with F 0 683C ∼ .  and F 0 789s C, ∼ .  found by our method. Alternatively, the criterion 
S(χexpt) < 1 restricts the external disturbance to quantum-information processing, which remarkably coincides 
with the existing result for qubit transmission under coherent attacks41–43.

Usage and comparison.  As illustrated above, (A1)-(A4) can quantify the quantum nature of processes applied to 
a quantum systems in a wide variety of circumstances. The classification of an experimental process based upon 
its purpose determines exactly which of the methods (A1-A4) is most useful. For example, compared to (A1) and 
(A2), for the task-oriented process aiming to experimentally realize quantum-information processing, (A3) can 
be used to directly evaluate whether χexpt is close to χQT

 and superior to the best mimicry of a classical process. 
However, for general experiments with the purpose of investigating whether χexpt is a quantum process, such as 
the energy transfer in FMO complex, (A1) and (A2) offer the advantage in performing two different types of 
quantitative analysis. The former focuses on the quantum composition of χexpt and concretely determines the 
maximum proportion of the classical process of χexpt in terms of 1 − α. See Eqs (7) and (8). Whereas, (A2) char-
acterizes how close χexpt is to a classical process in the sense that how large the minimum amount of noise, β, is 
required to make χexpt classical [Eqs (10) and (11)]. Such a notion helps us understand and appreciate the roles α 
and β have played in the quantitative analysis. For instance, it is easy to see why an experimental process may 
possess β which is much smaller α, as shown in Fig. 2a for χAD at pnoise → 1.

Quantum correlations.  With our classical-process model (2) at hand, we can be precise regarding the state-
ment about final states generated by a generic classical process, and uncover new characteristics of quantum 
states. Let us consider a composite system of N qubits and divide the system into two groups, A and B, consisting 
of nA and nB qubits, respectively, where nB ≥ 1, and nA + nB = N. An N-qubit state is called χC-nonclassical iff it 
cannot be generated by performing any classical processes on each qubit in A: ( )C

A( ) ( )
initial
( )

C
ρ χ ρ=χ

κ κ , where χC
A( ) 

denotes any operation composed of classical processes for each single qubit in A on an initial state ρ κ
initial
( )  (Fig. 1g), 

and κ signifies the bipartition type for A and B. Otherwise, the state is called the χC-classical state. When consid-
ering all the possible partitions of κ, we call a state genuinely multipartite χC-nonclassical iff it cannot be repre-
sented by ρ ρ= ∑χ κ κ χ

κp ( )
C C

 for all possible bipartitions and probability distributions of pκ. The basic concept behind 
χC-classical states can be considered a hybrid of separable-states44,45 and the local hidden state (LHS)46–48 models, 
implying a new property between genuine multipartite entanglement and genuine multipartite 
Einstein-Podolsky-Rosen (EPR) steering49,50, as shown in Methods.

A witness operator that detects genuinely multipartite χC-nonclassical states that are close to a pure target state 
Tψ  is given by

 �w , (17)T TC
ψ ψ= −χ

where � is the identity operator for N qubits, and

w max
(18)

T TC
C

C
ψ ρ ψ≡ .χ

ρ χ
χ

Thus, any experimental state ρexpt with tr( ) 0exptρ < , i.e., the quality in terms of the state fidelity F ws ,expt C
> χ  

is a truly multipartite χC-nonclassical state close to Tψ . For example, we have = + ∼ .χw (1 3 )/4 0 683
C

 for the 
Greenberger-Horne-Zeilinger (GHZ) states of three qubits51. We show how to determine w

Cχ  in Methods.
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Figure 3.  Quantum transport in the FMO complex. We take two-site and three-site subsystems for examples 
and show how the amount of quantum transport (α: green, blue, and red; β: purple) at temperatures of 77 K 
(solid) and 298 K (dash) varies with time (t) therein. A Lindblad master equation is used to model the dynamics 
of subsystem expressed in the site basis66, including the coherent evolution, the dissipative recombination of 
exciton (χAD) with a rate ∼ × −5 10 4 ps−1 for all the sites, the dephasing interaction with the environment (χPD), 
and the trapping of exciton in the reaction centre through site 3 with a rate 6 ps−1. See Methods. The dephasing 
rates 2.1 ps−1 and 9.1 ps−1 corresponding to 77 K and 298 K, respectively, are considered.
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Characterizing quantum states with process quantifications.  Note that the characterization of 
quantum states can benefit by including a quantum-mechanical process. For example, EPR steering46–48 can be 
enlarged by considering that the untrusted party proceeds to perform a quantum-information process, e.g., tele-
portation (Fig. 4) or one-way quantum computing52. Moreover, the model of quantum process explicitly sheds 
light on the temporal analogue of EPR steering53–56 and naturally provides its optimum quantification, which 
cannot be provided by existing methods57.

Let us take the temporal steering for single systems transmitted by a sender, Alice, to a receiver, Bob as an 
example. The concepts of EPR steering and the LHS model are used for timelike separations between Alice and 
Bob. For instance, in the temporal version of the LHS model, the joint probability of observing va by Alice at time 
ta and vb by Bob at time tb, where ta < tb, is specified by µ σ= ∑ | |µ µ µP v v p P v P v( , ) ( ) ( )a t b t a t b t, , , ,a b a b

, where σμ denotes 
the state of system held by Bob. It is easy to see that this representation of the joint probability can be described 
through Eq. (1) in the model of classical process, i.e., P v v P v P v( , ) ( ) ( )a t b t a t v b t, , , ,a b a a ta b,

σ= ∑ Ω |µ µ µ .
Our formalism can explain the rationale behind the temporal version of the LHS model and show the result 

that cannot be provided by existing methods, such as the optimal quantification of temporal steering. The 
approach introduced in57 is parallel to the method for quantifying EPR steering. The state of Bob’s system condi-
tioned on Alice’s result va t, a

 can be described by

(1 )v
T

v
T S

v
T US, ,

a ta a ta a ta, , ,
σ τσ τ σ= + − .

Without loss of generality we may suppose =v va t k, a
 for the state of the k th physical property of Alice’s system. 

Each unnormalized unsteerable state in the unsteerable assemblage σ{ }v
T US,
k

 can be written in the hidden-state 
form: p P v( )v

T US
k

,
k

σ µ σ= ∑ |µ µ µ. See Eq. (3) in the work57. The temporal steerable weight τ measures the “steerability 
in time” for a given assemblage σ{ }v

T
k

, and is obtained by an minimization procedure with respect to σ{ }v
T S,
k

. Such 
approach to describing temporal steering in terms of τ is nonoptimal in the sense that it depends on the number 
and types of measurements being used for vk.

Methods

Single-qubit gate Two-qubit gate

U1 I X Y Z H T U2 CNOT

α 1 0.884 0.941 0.871 0.863 0.836 0.799 1 0.782

S 0 0.276 0.158 0.304 0.318 0.358 0.438 0 1.302

Fexpt 1 0.959 0.980 0.960 0.953 0.947 0.934 1 0.757

Table 1.  Quantum gates in the quantum computer of IBM Q. We implement seven essential quantum gates 
with IBM Q. U1 and U2 represent the ideal (target) single-qubit and two-qubit gates, respectively. The process 
fidelities of all experimental cases considered here:4 the identity gate (I), the Pauli operators (X, Y, Z), the 
Hadamard gate (H), the π/8 gate (T), and the CNOT gate, are all greater than the process fidelity thresholds 
F (1 3 )/4 0 683C = + ∼ .  and 0.467 (implying the average state-fidelity thresholds F 0 789s C, ∼ .  and 0.574, 
respectively), for single-qubit and two-qubit gate operations, respectively. Using (A4), conditioned on 
logarithms to base 2, their entropies are all less than the ultimate entropies of classical process SC = N, where N 
denotes the number of qubits being processed.

Figure 4.  Teleportation. (a) Without loss of generality we suppose a two-qubit system of the state 
φ θ θ θ= +( ) cos 00 sin 11  is used for teleportation (Fig. 1f). The entanglement of φ θ( )  measured by 
concurrence C(θ) = |sin2θ| can be strictly revealed by α and β for the teleportation process. In particular, α 
exactly coincides with C. (b) Using the relation C ≥ 2Fexpt − 178, as C F, 2 1 0 366Cα> − ∼ .  (yellow region), two 
such entangled pairs enable teleportation of entanglement of qubits39. Compared to the steerable weight for 
quantifying EPR steering that are maximum for all pure entangled states79, both α and β can provide the 
qualities of entanglement previously shared between the sender and receiver for teleportation.
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Our method quantifies the optimal temporal steering. One can use α to represent the maximum temporal 
steering that can be found in a process through single systems. It is easy to see that, after a process χexpt (7), an 
initial state ρinitial becomes

ρ αχ ρ α χ ρ= + − .( ) (1 ) ( )Q Cfinal initial initial

To faithfully show the effects of a process on the system, ρfinal is assumed to be pure. Then χQ(ρinitial) is still 
pure to go beyond the description (1). Whereas, by Eqs (1) and (4), χC(ρinitial) follows the classical model, which 
explains the unsteerable state by

∑∑

χ ρ σ

ρ δ ρ

= ′ ′
=

′
= ′ | .

µ ξ
ξ ξ ξµ µ

−

|

P v

P P v

( ) ( )

(v ) (v )
C k v

T US

v
c

k

initial
1 ,

final
( )

k

k

Compared with the steerable weight, α is optimum for all input states and therefore larger than τ under a 
given assemblage σ{ }v

T
k

 with finite elements. See Table 2 for concrete illustrations and comparison.

Discussion
In this work, we clarified and broadened basic ideas behind the distinction between classicality and quantumness, 
addressing the most basic problem of how to quantitatively characterize physical processes in the quantum world. 
We showed for the first time that quantum-mechanical processes can be quantified. We revealed that such quan-
tification can have profound implications for the understanding of quantum mechanics, quantum dynamics, and 
quantum-information processing. Our approach is more general than many existing methods, and much broader 
in scope than theories based on state analysis. Our formalism is applicable in all physical processes described by 
the general theory of quantum operations, including but not limited to the fundamental processes postulated in 
quantum mechanics, the dynamics of open quantum systems, and the task-orientated processes for quantum 
technology. This far-reaching utility of our framework enables us to explore quantum dynamics under a wide 
range of circumstances, such as the fusion of entangled photon pairs and the energy transfer in a photosynthetic 
pigment-protein complex. In addition, our formalism enables quantum states to be characterized in new ways, to 
uncover new properties of both composite and single systems.

Since all of our approaches are experimentally feasible, they can be readily implemented in a wide variety 
of the present experiments3,32, such as the quantum channel simulator58 and ground-to-satellite teleportation59. 
However, it is important to have a clear appreciation for the limitations of the quantum operations formalism 
underlying the constructions for our framework, such as the assumption of a system and environment initially in 
a product state4,25,60. Such prior knowledge about the system and environment is therefore required to perform 
process quantifications.

For future studies and applications of our concept and methods, we anticipate their use in general physical 
processes, such as superpositions3, asymmetries31, and randomness61. Using modern machine learning tech-
niques62 could improve the performance and scalability of PT and quantification of complex system processes, 
such as those found in condensed-matter physics. Furthermore, provided the measurement outcomes are con-
tinuous and unbound, it is enlightening to attempt to extend our formalism to encompass the quantifications of 
nonclassical processes in harmonic systems such as nanomechanical resonators63. These essential elements could 
promote novel recognition and classification of physical processes with a generic process quantifier.

Approaches

Target channels

I H T

α 0.884 0.836 0.799

τ8 0.769 0.688 0.603

τ7 0.768 0.687 0.602

τ6 0.767 0.677 0.602

τ5 0.766 0.677 0.600

τ4 0.765 0.674 0.599

τ3 0.764 0.671 0.597

τ2 0.688 0.522 0.391

Table 2.  Comparison of quantum composition (α) and temporal steerable weight (τ). We consider how 
temporal steering is demonstrated by single qubits undergoing practical channels in IBM Q35 and quantified in 
terms of α and τ57. These experimental channels are created with respect to the gates I, H and T. Here, the 
subscript of τn indicates that an assemblage σ{ }v

T
k

 with n elements has been used to determine τ for the 
experimental states. In determining τ2, the eigenstates of X and Y were chosen as the input states of the 
experimental channels. For n > 2, the eigenstates of X, Y and Z together with 2n − 6 randomly-chosen pure 
states as the input states were used in calculating τn. Since our framework is optimal, α is higher than τn for each 
experimental channel, irrespective of the type and number of input states chosen to obtain τ.
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Methods
Fundamental processes in quantum mechanics and quantum noise.  The evolution of quantum 
systems and the application of quantum measurements are two essential kinds of processes prescribed by quan-
tum mechanics. The evolution of a closed quantum system and the effects of measurements are described by a 
unitary transformation U and a collection of measurement operators M = {Mm}, respectively, where the index m 
denotes the measurement outcomes that obtained in the experiment64. For any U of finite size, its process matrix 
χU always can be expressed in an orthonormal basis as a diagonal matrix with only one non-vanished matrix 
element, i.e., S(χU) = 0, which makes any classical process matrices unable to represent χU at all and implies that 
α = 1. When unitary transformations are affected by quantum noise to become noise processes, their quantifica-
tion is dependent on the type of noise and the noise intensity, as shown in Fig. 2a. The three important examples 
of quantum noise considered therein: depolarization (χD), amplitude damping (χAD), and phase damping (χPD), 
are defined as follows:4

p I I p X X Y Y Z Z

p I I p Z Z

p
I

p
Z

p
I

p
Z

p
X iY X iY

( ) 1 3
4

1
4

( ),

( ) 1 1
2

1
2

,

( )
1 1

2

1 1

2

1 1

2

1 1

2 4
( ) ( )

(19)

D noise noise

PD noise noise

AD
noise noise

noise noise noise

χ ρ ρ ρ ρ ρ

χ ρ ρ ρ

χ ρ

ρ ρ

=


 −



 + + +

=


 −



 +

=






+ −
+

− − 











+ −
+

− − 




+ + − .

Projective measurements is an important special case of the measurement postulate where the measurement 
operators satisfy the conditions of projectors, δ

′
=

′
M M Mm m mm m  and =M Mm m

† . Since the process matrix χMm
 

of a given Mm expressed in M is diagonal, this matrix can be fully described by a classical process matrix χC. Thus 
the process of the state changes effected by the projector Mm is identified as classical, i.e., α = 0. On the other 
hand, the quantification of the positive operator-valued measure (POVM) measurements depends on the realiza-
tion or structure of Mm under consideration.

Fusion of entangled photon pairs.  The fusion of entangled photon pairs combines quantum interference 
with post selection for photon pairs to provide an excellent experimental method for fusing different entangled 
pairs as genuinely multipartite entangled photons of multi-photon Greenberger-Horne-Zeilinger (GHZ) states 
(illustrated in Fig. 1d)65. When superposing two individual photons in two different spatial modes at a polarizing 
beam splitter (PBS) that transmits H (horizontal) and reflects V (vertical) polarization, a coincidence detection of 
the both outputs in different modes implements a photon fusion described by MPF ≡ MH1⊗MH2 + MV1⊗MV2, 
where M m mmk kk=  for m = H, V and k = 1, 2. It is nonclassical: α = 1, β ∼ .0 657, and ∼ .F 0 604C . The pho-
tonic Bell-state and GHZ-state analyzing processes32 can be quantified by the same method. The Bell-state ana-
lyzer, which exploits quantum interference due to the bosonic nature of photons at a 50:50 beam splitter, has the 
same results as the photon fusion. As an extended process of photon fusion, the basic process underlying the 
GHZ-state analyzer can be described by M M MN k

N
Hk k

N
VkGHZ 1 1≡ ⊗ + ⊗= =  for N-photon GHZ states. For 

instance, it is identified as a truly nonclassical process with α = 1, β ∼ .0 798, and ∼ .F 0 556C  for N = 3.

Quantum transport in the FMO complex.  Distinguishing quantum from classical processes for the 
energy transport in the FMO pigment-protein complex33,34 is crucial to appreciate the role the nonclassical fea-
tures play in biological functions2. Figure 3 shows that the quantum transport in the FMO complex is identified 
and quantified on considerable timescales. Here we assume that the FMO system is in the single-excitation state 
of the form:66,67

i j ,
(20)i j E

i j
, {1, , 7, }

,∑ρ ρ=
∈ ...

where j  in the site basis 
=

i{ }i 1
7  represents the excitation is shown at site j and E  means an empty state in the 

absence of excitation. The time evolution of the state ρ is described by the Lindblad master equation:

Hi[ , ] ( ) ( ) ( ) (21)diss sink deph
ρ ρ ρ ρ ρ= − + + + .  

The Hamiltonian H for the coherent transfer of single excitation between sites is68

≡















− . . − . . − . − .
− . . . . . .

. . − . . − . .
− . . − . − . − . − .

. . . − . . − .
− . . − . − . . .
− . . . − . − . .















.H

215 104 1 5 1 4 3 4 7 15 1 7 8
104 1 220 32 6 7 1 5 4 8 3 0 8
5 1 32 6 0 46 8 1 0 8 1 5 1
4 3 7 1 46 8 125 70 7 14 7 61 5

4 7 5 4 1 0 70 7 450 89 7 2 5
15 1 8 3 8 1 14 7 89 7 330 32 7
7 8 0 8 5 1 61 5 2 5 32 7 280 (22)
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The incoherent dynamics is described by the three Lindblad superoperators diss, sink , and deph in (21). The 
superoperator diss specifies the dissipative recombination of excitation by

∑ρ Γ ρ ρ= −
=

E i i E i i( ) (2 { , }),
(23)i

idiss
1

7


where the recombination rate at each site is Γ ∼ × − −5 10 psi
4 167. The second Lindblad superoperator describes 

the trapping of excitation from site 3 to the reaction centre:

 ρ Γ ρ ρ= −E E( ) (2 3 3 { 3 3 , }), (24)sink sink

with the trapping rate 6 pssink
1Γ ∼ − 67. The superoperator deph  shows the dephasing interaction with the envi-

ronment by

∑ρ γ ρ ρ= −
=

i i i i i i( ) (2 { , }),
(25)i

ideph
1

7


where the dephasing rates at each site are 2 1 psi
1γ ∼ . −  and 9.1 ps−1 for 77 K and 298 K, respectively69,70.

To quantify the quantum transfer in the FMO system, taking the subsystem composed of the pigments 4, 5 and 
6 for example, we implement PT on this subsystem to get the corresponding process matrix χexpt(t). We first use 
eight properties which correspond to a set of eight complementary observables {Vk} where each one has three 
possible outcomes vk∈ {+1, 0, −1} to describe such a three-dimensional subsystem. As illustrated at the begin-
ning of the Methods section, a process matrix χ t( )expt

 can be obtained by analyzing the outputs of the eight com-
plementary observables from the process: V V t t t( ) ( ) ( )k k v v,expt final 1

(expt)
final 1
(expt)

k k
ρ ρ→ ≡

′
−

′| =+ | =−
, where t( )vfinal

(expt)
k

ρ
′|

 
denotes the eigenstate of Vk corresponding to the eigenvalue ′v k under the time evolution specified by Eq. (21). It 
is clear that Vk,expt(0) = Vk. Note that, since the excitation can transfer between all the seven pigments and eventu-
ally leave the subsystem, the process matrix χ t( )expt

 derived from Vk,expt(t) is not trace-preserving. The trace of 
t( )expt

χ  specifies a probability of observing single excitation transport in the subsystem71. Here our approaches 
(A1) and (A2) are applied to quantify the normalized process matrix χ χ χ=

 
t t t( ) ( )/tr( ( ))expt expt expt  under time 

evolution, as shown in Fig. 3. With our tool at hand, one can quantitatively investigate how the characteristics of 
the FMO system change under a variety of external operations or noise processes72–74.

Criterion for reliable qubit transmission.  For the threshold SC = 1 for single two-level systems (d = 2), 
the classical processes with the minimum entropy SC show that the maximum mutual dependence between the 
sender and receiver’s results of two complementary measurements: ≡ ∑ =I ISR k S R1

2
k k

, is restricted by ISR,C = 1, 
where IS Rk k

 denotes the mutual information between their results of the kth measurement. Hence ISR > ISR,C indi-
cates that their communication process is reliable. For example, considering a phase damping channel χPD with 
noise intensity pnoise = 1 which is identified as a classical process, we have the mutual information =I 1S R C,1 1

 
measured in the basis { 0 , 1 } and =I 0S R C,2 2

 in the basis + −{ , } where ( 0 1 )/ 2± = ± . When rephras-
ing ISR in terms of the average state fidelity Fs and the error rate D = 1 − Fs by

+ = +I I F F D D2( log log ), (26)S R C S R C s s, , 2 21 1 2 2

the classical threshold ISR,C = 1 provides an upper bound of the error rate for reliable communication as D = 0.110. 
Importantly, this criterion coincides with the existing result for quantum communications under coherent 
attacks41–43.

Comparison of entanglement, steering and χC-nonclassical correlations.  We first assume that the 
measurement outcomes for each qubit correspond to some observable with a set of eigenvalues {va,k} or {vb,k} for 
the k th qubit in A and B, respectively. The classical realistic elements vξ and vΩ µξ

 in a classical process performed 
on the k th qubit in A prescribe the initial state of qubit with v va k a k, ,= ′  a final state composed of states ρμ, as 
shown in Eqs (1) and (2) in the main text. After χC

A( ) has been done on ρ κ
initial
( ) , the corresponding characteristics of 

states for A and B jointly can be revealed by considering the joint probabilities of obtaining outcomes of the meas-
urements vA = {va,k|k ∈ nA} and vB = {vb,k|k ∈ nB}:

∑ ρ ρ=





|







Ω
′

| ∈











µ
µ µ

κP v v P v v k( , ) , n , ,
(27)

A B A B v A initial
( )

a k,

where nA = {1, 2, ..., nA} and nB = {1, 2, ..., nB}.
The nonseparability of quantum states (sometimes called entanglement)44,45 and the EPR steering46–48 go 

beyond the predictions of the model of separable states and the local hidden state (LHS) model46, respectively. The 
basic concept behind Eq. (27) can be considered a hybrid of these models. Without loss of generality, we consider 
the case for two particles (N = 2). Compared to the states of particle A that are determined by shared variables μ 
such that P(va,vb) = ∑μpμP(va|μ)P(vb|σμ) holds in the LHS model, the output states of χC involving ρμ are 
described by density matrices according to the prescribed realistic elements Ω µva k,

 in the χC-nonclassical model; 
see Eq. (27). While these states in the χC-nonclassical model and those in the separable-state model which 
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predicts that P(va,vb) = ∑μpμP(va|ρμ)P(vb|σμ), are represented by density operators, A and B do share μ in the 
latter but A and B do not in the former. For these differences, the χC-nonclassical correlation is stronger than 
nonseparability, but EPR steerability can be stronger than or equal to the χC-nonclassical correlation. Here we 
illustrate such hierarchy by showing concrete quantum states of multipartite systems with the witness operators 
 . In Eqs (17) and (18), the maximum similarity between ψT  and 

C
ρχ

 can be explicitly determined by

ψ ρ ψ=χ
ρ χ

κ

χ
κ

w max ,
(28)

T T
( )

C
C

C( )

which is equivalent to finding the best operational strategy for A and B such that a target state after the action on 
A is closest to the original. As nA = 1 (i.e., nB = N − 1), w

Cχ  is obtained by evaluating the maximum overlap 
w max ( )T C

A
T T T,

( )
C C

ψ χ ψ ψ ψ=χ κ χ  through SDP. For the three-qubit GHZ states51, we have w 0 683
C

∼ .χ  
which is grater than the maximum value that can be attained for biseparable states 1/222 and equal to the thresh-
old for genuinely multipartite EPR steering50. When taking W states as the target state, whereas the identified EPR 
steerability is stronger than the χC-nonclassical correlation. For example, ∼ .χw 0 717

C
 for N = 3 is grater than the 

threshold of 2/3 for genuine tripartite entanglement22 but is weaker than the upper bound of (1 2 )/3 0 805+ ∼ .  
that can be attained by non-genuine tripartite EPR steering50.
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