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Insect glutathione-S-transferases (GSTs) play essential roles in metabolizing endogenous

and exogenous compounds. GSTs that are uniquely expressed in antennae are assumed

to function as scavengers of pheromones and host volatiles in the odorant detection

system. Based on this assumption, antennae-specific GSTs have been identified and

functionally characterized in increasing number of insect species. In the present study,

17 putative GSTs were identified from the antennal transcriptomic dataset of the Indian

meal moth, Plodia interpunctella, a severe stored-grain pest worldwide. Among the

GSTs, only PiGSTd1 is antennae-specific according to both Fragments Per Kilobase

Million (FPKM) and quantitative real-time PCR (qRT-PCR) analysis. Sequence analysis

revealed that PiGSTd1 has a similar identity as many delta GSTs from other moths.

Enzyme kinetic assays using 1-chloro-2,4-dinitrobenzene (CDNB) as substrates showed

that the recombinant PiGSTd1 gave a Km of 0.2292 ± 0.01805mM and a Vmax of

14.02 ± 0.2545 µmol·mg−1·min−1 under the optimal catalytic conditions (35◦C and

pH = 7.5). Further analysis revealed that the recombinant PiGSTd1 could efficiently

degrade the sex pheromone component Z9-12:Ac (75.63± 5.52%), as well as aldehyde

volatiles, including hexanal (89.10 ± 2.21%), heptanal (63.19 ± 5.36%), (E)-2-octenal

(73.58 ± 3.92%), (E)-2-nonenal (75.81 ± 1.90%), and (E)-2-decenal (61.13 ± 5.24%).

Taken together, our findings suggest that PiGSTd1 may play essential roles in degrading

and inactivating a variety of odorants, especially sex pheromones and host volatiles

of P. interpunctella.

Keywords: Plodia interpunctella, glutathione S-transferases, pheromone, volatile, semiochemicals, degradation,

enzyme

INTRODUCTION

Glutathione S-transferases (GSTs, EC 2.5.1.18) exist ubiquitously in various organisms (Enayati
et al., 2005). As a family of multifunctional detoxification enzymes, GSTs play vital roles in
metabolizing a wide range of endogenous and exogenous compounds as well as in degrading
them into less-toxic metabolites by catalyzing the conjugation of electrophilic molecules with
glutathione (GSH) (Singh et al., 2001; Huang et al., 2017). It is widely accepted that GSTs exert their
detoxification function via two domains: One is the highly conserved N-terminal GSH binding
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domain (G-site) and the other is the C-terminal hydrophobic
substrate binding domain (H-site) (Enayati et al., 2005).
Insect GSTs are classified into the cytosolic, microsomal, and
mitochondrial subgroups based on their cellular locations (Hayes
et al., 2015). The majority of insect cytosolic GSTs are divided
into six subclasses (i.e., delta, epsilon, omega, sigma, theta, and
zeta) mainly according to their sequence identities, genomic
structures, and biochemical properties (Sheehan et al., 2001; Yu
et al., 2008). Among these subclasses, only delta and epsilon are
considered insect-specific, while others are found in a variety of
invertebrates and vertebrates (Labade et al., 2018).

During the past two decades, an increasing number
of studies have focused on the crucial roles of insect
GSTs in the detoxification of harmful stimuli, such as
phytochemicals and insecticides (Glaser et al., 2013; Liu et al.,
2015; Zou et al., 2016). NlGST1-1 from Nilaparvata lugens
can detoxify various plant metabolites so this planthopper
can rapidly adapt to a broader host range (Sun et al.,
2013). SlGSTE1 in the gut of Spodoptera litura and HaGST-
8 from Helicoverpa armigera show higher binding activity to
insecticides like chlorpyrifos, deltamethrin, malathion, phoxim,
and dichloro-diphenyl-trichloroethane (DDT), resulting in
insecticide resistance in pests (Xu et al., 2015; Labade et al.,
2018). Besides the functions of metabolism and detoxification,
antennae-specific GSTs can also function as odorant-degrading
enzymes (ODEs) as part of the olfactory system. During the
process of odor recognition, antennal GSTs can quickly remove
or degrade the odorants from olfactory receptors (ORs) to
maintain sensitivity and fidelity of the chemoreceptor (Vogt
and Riddiford, 1981; Younus et al., 2014; Durand et al., 2018).
BmGSTd4, an antennae-specific GST in the male silk moth, plays
a dual role in the detoxification of xenobiotic compounds and
the signal termination of sex pheromone signals (Tan et al.,
2014). GST-msolf1 from antennal sensilla of Manduca sexta can
modify (E)-2-hexenal, suggesting that the GST is involved in
inactivating host plant volatiles (Rogers et al., 1999). Hence, our
study on antennae-specific GSTs could deepen understanding
of insect olfactory recognition and contribute to the subsequent
development of potential pest control strategies.

The Indian meal moth, Plodia interpunctella (Lepidoptera:
Pyraloidea, Pyralidae), a cosmopolitan stored-product pest,
causes severe economic loss yearly (Mohandass et al., 2007).
The sex pheromone-based monitoring approach has been
proven accurate and efficient in monitoring populations of P.
interpunctella (Campos and Phillips, 2014). Therefore, revealing
the mechanism of pheromone recognition could benefit the
development of novel attractants or repellents against this
pest. Recently, Jia et al. (2018) have identified a series of
odorant-related proteins and chemoreceptors from the antennae
of P. interpunctella through transcriptomic sequencing. More
recently, we reported that antennal-specific carboxylesterases of
P. interpunctella (PintCXEs) respond to sex pheromone and
environmental volatiles (Liu et al., 2019). However, whether GSTs
are involved in pheromone recognition remains unknown.

This study aimed to identify GSTs from P. interpunctella
antennae, analyze their sequences, and evaluate the
characteristics of antennae-specific PiGSTs in degrading

sex pheromone and host volatiles. Our results will provide
fundamental information on the GSTs in the antennae of P.
interpunctella and pave the way for further research on the
semiochemical-based control of this pest.

MATERIALS AND METHODS

Insects and Tissue RNA Collection
P. interpunctella were reared on crushed wheat seeds in the
laboratory of the Plant Protection Institute, Hebei Academy of
Agricultural and Forestry Sciences, at 28 ± 1◦C, 60 ± 5% RH
and 14:10 L:D photoperiod (Jia et al., 2018). The last-instar larvae
were separated and individually reared in glass vials (diameter
2 cm, height 4.5 cm) until their eclosion. The samples from tissues
(antennae, thoraces, abdomens, legs, and wings) were prepared
following our previousmethod (Liu et al., 2019). All samples were
immediately frozen in liquid nitrogen and stored at −80◦C until
further RNA extraction. Total RNA extraction, purity evaluation,
and concentration determination were performed as previously
reported (Jia et al., 2018).

Identification of GST Genes
The identification of antennal GSTs from P. interpunctella was
mainly based on previously reported transcriptome datasets
(accession number: SRR6002827 and SRR6002828) (Jia et al.,
2018). The putative GSTs were preliminarily retrieved from
annotations based on the latest database, including non-
redundant protein (NR), Gene Ontology (GO), Swiss-Prot,
and the Kyoto Encyclopedia of Genes and Genomes (KEGG).
Subsequently, all candidates were manually validated using the
NCBI BLASTx (http://blast.ncbi.nlm.nih.gov/) with an E-value
of < 10−5.

Expression of GST Genes Using
Quantitative Real-Time PCR (qRT-PCR)
Quantitative real-time PCR tests were conducted on an ABI
7500 (Thermo Fisher Scientific, United States) using Bestar R©

SybrGreen qPCR mastermix kit (DBI R© Bioscience) and using
the β-actin gene, which was identified from the antennal
transcriptome of P. interpunctella, as the reference gene (paired
primers: 5′-GTATCAACGGATTTGGTCG-3′ and 5′-CACCTT
CCAAGTGAGCAGAT-3′) (Liu et al., 2019). Each reaction was
completed in a 20 µL system blend, comprising 10 µL of Bestar
SyBr Green qPCR mastermix, 0.2µM of each primer, 0.4 µL
of 50x ROX Reference Dye, 2 µL of cDNA template, and 6.8
µL of RNase-free water at conditions of 1 cycle of 95◦C for
2min, followed by 40 cycles of 95◦C for 10 s, 55◦C for 34 s,
and 72◦C for 30 s. Each sample had three independent biological
replicates, and each replicate was tested in three technical
repeats. All primers are available in Supplementary Table 1.
The amplification efficiency for each primer pair ranged
from 91.6% to 100.3% based on the standard curve analysis.
Relative expression of all GST genes was determined using the
comparative 2−11Ct method (Livak and Schmittgen, 2001). The
heatmaps were created by Heatmapper (http://www.heatmapper.
ca/) based on the transformed data of log2 (2−11Ct + 1) values
(Babicki et al., 2016).
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Bioinformatics Analyses
The GST sequences were characterized by corresponding
bioinformatics tools. GST-ORFs were identified using ORF
Finder (http://www.ncbi.nlm.nih.gov/gorf/gorf.html). The
sequence lengths, molecular weights (MWs), and isoelectric
points (pI) were predicted by using ExPASy tools (https://web.
expasy.org/compute_pi/) (Gasteiger et al., 2005). The conserved
domains were predicted by using the hmmsearch tool from
the pfam website (http://pfam.xfam.org/) (Mistry et al., 2021).
Identification of conserved motifs of GSTs was conducted
with the MEME online program for protein sequence (http://
meme.nbcr.net/meme/intro.html) (Bailey et al., 2009) with
the optimized parameters being any number of repetitions, a
maximum number of 10 motifs, and optimum 6–50 residue
length per motif.

Phylogenetic Construction
Deduced amino acid sequences of GST genes from different
insects were aligned with the GST sequence identified from
the antennae of P. interpunctella using ClustalW with default
parameters (https://www.genome.jp/tools-bin/clustalw). After
sequence alignments, the phylogenetic tree was constructed by
MEGA5.0 software using the neighbor-joining method with
the following parameters: Poisson model, pairwise deletion,
and 1,000 bootstrap replications (Tamura et al., 2011). The
dendrogram was further decorated using Evolview software
(https://www.evolgenius.info/evolview/). The homologous GST
sequences were used to reconstruct a phylogenetic tree from
eight species, including Plutella xylostella (You et al., 2015),
Cydia pomonella (Huang et al., 2017), Bombyx mori (Yu et al.,
2008), Chilo suppressalis (Liu et al., 2015), Acyrthosiphon pisum
(Francis et al., 2001), Drosophila melanogaster (Younus et al.,
2014), Anopheles gambiae (Ding et al., 2003), and Tribolium
castaneum (Shi et al., 2012). All sequences were obtained from
NCBI (https://www.ncbi.nlm.nih.gov/).

Homology Modeling of PiGSTd1
The homology model was constructed by the SWISS-MODEL
server (https://swissmodel.expasy.org/interactive). Themodels of
PiGSTd1 were built based on the target-template alignment using
ProMod3 (Guex et al., 2009). The QMEAN scoring function was
used to assess the global and per-residue model quality (Studer
et al., 2020). Then, an automated model BmGSTd1 (PDB ID:
4e8e.1) was selected as the template from PDB database. Pictures
of three-dimensional structures were generated with PyMOL
(DeLano, 2002). Multisequence alignments were performed
using ClustalX 2.1, and the results were presented by GeneDoc
software (http://nrbsc.org/gfx/genedoc). The secondary structure
was predicted with PSIPRED software (McGuffin et al., 2000).

PiGSTd1 Plasmid Construction,
Expression, and Purification
The PiGSTd1 sequence without signal peptide was amplified
by PCR using TransStart R© FastPfu PCR SuperMix (TransGen
Biotech, China). The paired primers were forward 5′-ATGCC
GGCTCAAGCCATCAA-3′ and reverse 5′-CTAATCTTTCTTC
AGAAATGATGC-3′. The amplification was carried out under

the conditions of denaturation at 95◦C for 1min followed by 35
cycles of 95◦C for 20 s, 55◦C for 20 s, and 72 ◦C for 1min, and a
final extension at 72◦C for 5min. The PCR products were ligated
into a pEASY-Blunt E1 Expression vector (TransGen Biotech,
China) and transformed into Escherichia coli Trans-T1 (Liu et al.,
2017). After sequence confirmation by Sangon Biotechnology
(Shanghai, China), the positive recombinant plasmids were
designated as pEASY-Blunt E1-PiGSTd1.

PiGSTd1 expression and purification were conducted as
previously described with a slightmodification (Song et al., 2020).
Briefly, the recombinant vector (pEASY-Blunt E1-PiGSTd1) was
transformed into E. coli BL21 (DE3), and the positive clones
were isolated for expression. Cultures were started from single
colonies, in LB broth with 50µg/mL ampicillin in a 37◦C shaker
(220 rpm). When OD of 600 nm reached 0.6, isopropyl β-
D-1-thiogalactopyranoside (IPTG) was added to 1mM. After
cultured for 6 h at 25◦C and 220 rpm, cells were harvested by
centrifugation at 8,000 g at 4◦C and suspended in 20ml of PBS
buffer (pH= 7.0).

After ultrasonic cell disintegration, the collected bacteria were
centrifuged at 14,000 rpm at 4◦C for 20min. After confirming
the expression by 12% SDS–PAGE, the supernatants were
loaded on a Ni-chelating affinity column (GE, United States),
which had been equilibrated with 20mM Tris–HCl (pH = 7.9)
supplemented with 100mMNaCl, and eluted with imidazole (50,
100, 150, and 200mM) in an ascending series. The recombinant
PiGSTd1 purity was assayed by SDS–PAGE. Its concentration
was determined using Bradford’s method with BCA Protein
Assay Kits (Legend biotech, Beijing, China). Proteins were stored
at−20◦C before use.

Kinetic Properties of PGSTd1
The kinetic parameter of PiGSTd1 was determined based on the
CDNB (1-chloro-2,4-dinitrobenzene) method (Li et al., 2018).
Briefly, 0.4 µg of the purified PiGSTd1 was added into 200 µL
acetate–phosphate buffer (pH 7.5) containing 50mM GSH and a
series of CDNB (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and 1.4mM) at 35◦C
in a transparent 96-well plates, and the absorbance at 340 nm
in 0–1min was recorded in a Multiskan Spectrum Microplate
Spectrophotometer (BioTek, Shoreline, WA). Heat-inactivated
PiGSTd1 was used as the negative control. The Km and Vmax
were calculated by the linear regression of a double reciprocal
plot (Balakrishnan et al., 2018). To optimize the reaction pH
and temperature of PiGSTd1, the assays were conducted at
fixed concentrations of GSH (1mM) and CDNB (0.5mM) with
varying acetate–phosphate buffer (pH = 5.5, 6.0, 6.5, 7.0, 7.5,
8.0, 8.5 and 9.0) and reaction temperature (20, 25, 30, 35, 40,
50, 55, and 60◦C for 30min). All determinations were performed
three times.

Enzymatic Degradation Tests of
Recombinant PiGSTd1
A GC-MS (7890A-5975C; Agilent, United States) with a
DB-WAX column (30m × 0.25mm × 0.25µm, Agilent)
was used to evaluate the degradation activities of PiGSTd1
on the main sex pheromone and environmental volatiles
(Supplementary Table 2). The degradation assays were
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conducted in 1mL acetate–phosphate buffer (pH = 7.0)
containing 2.5 µg purified PiGSTd1, 10mM GSH, and 20 µg
substrates. After reacting for 1 h at 35◦C, the reaction mixture
was extracted with 1mL hexane immediately. Subsequently,
substrates in the organic phase were qualitatively and
quantitatively analyzed on the GC-MS with the chromatographic
conditions setting as helium carrier gas at 1 ml·min−1; oven
temperature initiated at 50◦C (hold 1min), increased to 120◦C at
5◦C·min−1 (hold 2min), and subsequently increased to 230◦C at
10◦C·min−1 (hold 5min). The ionization current and ionization
voltage were 100 µA and 70 eV, respectively. All assays were
repeated three times with the heat-inactivated PiGSTd1 as the
negative control. Degradation data were analyzed by one-way

ANOVA (SPSS 19.0 for Windows) with Tukey’s test. The least
significant difference was set at P < 0.05.

RESULTS

Identification and Classification of PiGSTs
From the antennal transcriptome of P. interpunctella, we
identified a total of 17 sequences encoding putative GSTs, which
were designated as PiGSTd1-PiGSTm3. Sequence characteristics
(ORFs, MW, and pI) and Blastx results are listed in Table 1.
Among all PiGSTs, 15 sequences were intact ORFs, while
PiGSTo4 and PiGSTd2 were incomplete with truncated 3′-
regions. The sequence lengths of the PiGSTs ranged from 149

TABLE 1 | Details of the 17 GSTs identified in Plodia interpunctella antennae.

Clade Gene

Name

GenBank

accession

Full

Length

ORF(aa) pI MW(Da) Blastx annotation

(Name/Species)

Accession

number

Score E-value Identity

Delta PiGSTd1 MZ410553 Y 245 5.15 27761.04 Glutathione S-transferase

delta 1 [Chilo suppressalis]

AKS40338.1 379 3E-131 73%

PiGSTd2 MZ410560 N 237 - - Glutathione S-transferase

delta 1 [Aphis gossypii]

AFM78644.1 444 3E-157 89%

PiGSTd3 MZ410545 Y 215 6.91 24098.6 Glutathione S-transferase

delta [Antheraea pernyi]

ACB36909.1 399 3E-140 89%

Epsilon PiGSTe1 MZ410556 Y 228 6.76 25835.97 Glutathione S-transferase 1

[Papilio xuthus]

KPJ03136.1 312 2E-105 63%

PiGSTe2 MZ410551 Y 217 5.29 24549.23 Glutathione S-transferase

GSTD1 [Helicoverpa

armigera]

AIB07715.1 330 7E-113 73%

Omega PiGSTo1 MZ410557 Y 256 6.15 29124.28 Glutathione S-transferase

[Plutella xylostella]

AHW45906.1 436 3E-153 79%

PiGSTo2 MZ410559 Y 290 8.39 33155.47 Glutathione S-transferase

omega 2 [Bombyx mori]

ABD36306.1 348 1E-117 56%

PiGSTo3 MZ410550 Y 242 7.64 27990.27 Glutathione S-transferase

omega 3 [Cnaphalocrocis

medinalis]

AIZ46903.1 365 6E-126 70%

PiGSTo4 MZ410558 N 241 - - Glutathione S-transferase

gst [Trifolium pratense]

PNX77761.1 376 2E-130 80%

Sigma PiGSTs1 MZ410548 Y 206 6.34 23737.23 Glutathione S-transferase

sigma 4 [Cnaphalocrocis

medinalis]

AIZ46904.1 277 3E-92 64%

PiGSTs2 MZ410552 Y 205 6.35 23572.19 Glutathione S-transferase

sigma-1 [Cydia pomonella]

ARM39007.1 318 2E-108 70%

Theta PiGSTt1 MZ410547 Y 232 8.8 27123.11 Glutathione S-transferase

theta-1 [Helicoverpa

armigera]

XP_021200219.1 341 1E-116 68%

Zeta PiGSTz1 MZ410546 Y 215 8.06 24615.57 Glutathione S-transferase

zeta-1 [Cydia pomonella]

ARM39005.1 432 2E-153 97%

Unclassified PiGSTu1 MZ410554 Y 234 6.23 26630.45 Glutathione S-transferase

1-1 [Papilio polytes]

NP_001298693.1 400 6E-140 79%

Microsomal PiGSTm1 MZ410561 Y 154 9.55 17032.02 Microsomal glutathione

S-transferase [Antheraea

yamamai]

AII16887.1 214 4E-69 69%

PiGSTm2 MZ410555 Y 149 9.98 16654.6 Microsomal glutathione

S-transferase 1-1

[Spodoptera litura]

AIH07603.1 186 6E-58 62%

PiGSTm3 MZ410549 Y 149 9.77 16357.2 Microsomal glutathione

transferase [Heliothis

virescens]

ADH16761.1 232 3E-76 74%
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to 290 amino acid (aa), and their calculated MWs ranged
from 16.35 to 33.15 kDa. BLASTX search of the best hits
showed that all PiGST sequences shared relatively high sequence
identities (62−97%) with their respective orthologs from other
lepidopteran species (Table 1).

Phylogenetic Tree Analysis
The phylogenetic tree was reconstructed with 169 GST sequences
from nine species, including model insects (e.g., B. mori
and D. melanogaster), typical species in varying families,

as well as congeneric Pyraloid moths. Although these GSTs
were derived from diverse species, they showed relative
conservation in classification. According to their sequence
similarities, 17 PiGSTs were distributed into eight branches
of the phylogenetic tree: delta (PiGSTd1 to PiGSTd3), epsilon
(PiGSTe1 and PiGSTe2), omega (PiGSTo2 to PiGSTo4), sigma
(PiGSTs1 and PiGSTs2), theta (PiGSTt1), zeta (PiGSTz1),
and unclassified class (PiGSTm1) (Figure 1). PiGSTd1 was
clustered with CpGSTd2, a well-characterized enzyme involved
in odorant degradation for chemosensory perception in C.

FIGURE 1 | Phylogenetic tree of GSTs from nine insect species. Eight GST branches are distinguished with different background color, and PiGSTs were marked with

red stars. Dots with different colors present different bootstrap values: gray, ≤40; orange, 40–80; red, 81–100. Ag, Anopheles gambiae; Ap, Acyrthosiphon pisum; Bm,

Bombyx mori; Cs, Chilo suppressalis; Cp, Cydia pomonella; Dm, Drosophila melanogaster; Pi, Plodia interpunctella; Px, Plutella xylostella; Tc, Tribolium castaneum.
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pomonella (Huang et al., 2017), indicating it could potentially
degrade odorants.

Conserved Domains and Motif
Composition Analysis of PiGSTs
The analyses of conserved domains among the PiGSTs revealed
two domains of the protein sequences: a fairly conserved
N-terminal domain and a more variable C-terminal domain
among different subclasses (Supplementary Figure 1). Besides,
a member of conserved membrane-associated proteins was
identified in eicosanoid and glutathione metabolism (MAPGE)
from microsomal GSTs (Supplementary Figure 1). A schematic
representing the structure of all complete PiGSTs sequences
was constructed from the MEME motif analysis results.
PiGSTs in the same subclass usually shared a similar motif
composition and showed highly similar motif distributions,
e.g., the clustered PiGST pairs, PiGSTs1-2 and PiGSTe12
(Figure 2). Among all motifs, motif 3 and motif 4 were
found in all cytosolic GST proteins, while motif 2, motif
6, and motif 9 were exclusively expressed in microsomal
GSTs (PiGSTm1-3).

Tissue Expression Profile of PiGSTs
Based on qRT-PCR determination, only PiGSTd1 expression
was antennae-specific, and its expression level was significantly
higher in males than in females (Figure 3), indicating that it
has a close association with odorant recognition. In contrast,
PiGSTe2 was almost equally expressed in female and male
antennae and was also found in the abdomens, but it was not
antennae-enriched. PiGSTo2, PiGSTo3, PiGSTm1, PiGSTm2,
PiGSTm3, PiGSTs1, PiGSTs2, PiGSTz1, PiGSTe1, PiGSTd3, and
PiGSTt1 were abundantly expressed in the abdomens of both
sexes (Figure 3). Other GST genes were ubiquitously expressed
in all tested tissues.

Sequence Analysis of PiGSTd1
According to a multiple alignment of PiGSTd1 with delta GSTs
from other moths, PiGSTd1 showed relatively high identities
(63.11–68.83%) with HvGSTd1 (AWX68884.1), OfGSTd1
(QIC35737.1), CsGSTd1 (AKS40338.1), SeGSTd1 (ASN63930.1),
BmGSTd1 (NP_001037183.1), and PrGSTd1 (APW77568.1)
(Supplementary Figure 3), indicating high conservation
between PiGSTd1 and moth delta GSTs. Additionally, the
multiple alignments and homology modeling on the basis of

FIGURE 2 | Phylogenetic relationships, FPKM of PiGSTs, and architecture of the conserved motif patterns. The phylogenetic tree was constructed based on the

full-length sequences of PiGSTs using MEGA 5.0 software. The sequence information for each motif is provided in Supplementary Figure 2. The conserved motifs

are displayed in colored boxes, and the length of protein can be estimated using the scale at the bottom.
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FIGURE 3 | Tissue expression pattern of the PiGST Genes. Levels of gene expression were normalized relative to that in the leg (one-fold). FMA, female antennae;

MA, male antennae; FMH, female heads; MH, male heads; FMT, female thoraxes; MT, male thoraxes; FMAB, female abdomens; MAB, male abdomens; FMW, female

wings; MW, male wings; FML, female legs; ML, male legs.

BmGSTd1 suggested that PiGSTd1 adopted the classic GST
fold and was composed of an N-terminal domain, a C-terminal
domain, and a linker in between (Figure 4). In the conserved
N-terminal domain, a three α-helices and four β-strands motif
(βαβαββα) of thioredoxin fold-served as the glutathione binding
site (G-site). Ser40 in PiGSTd1 appeared to be responsible for
enzyme catalysis.

Enzymatic Properties of PiGSTd1
The entire coding sequence of PiGSTd1 was successfully
expressed in E. coli strain BL21 through pEASY-Blunt
E1 vector. SDS–PAGE showed that Ni+-column-purified
PiGSTd1 displayed a single band with a MW of ∼27kDa
(Figure 5A). Using CDNB and reduced GSH as substrates,
the optimized catalytic conditions for PiGSTd1 were 35 ◦C
and pH=7.0 (Figures 5B,C). Under these conditions, Km and
Vmax of recombinant PiGSTd1 were determined as 0.2292 ±

0.01805mM and 14.02± 0.2545µmol·mg−1·min−1, respectively
(Figure 5D).

In vitro Degradation Ability of Recombinant
PiGSTd1
The ability of recombinant PiGSTd1 to degrade odorants
was evaluated by GC-MS. The results showed that PiGSTd1

more efficiently degraded the sex pheromone component Z9-
12:Ac (75.63 ± 5.52%) as compared with the pheromone
analog Z8-12:Ac (58.47 ± 1.64%), despite only a differently
positioned double bond. Besides sex pheromones, PiGSTd1 also
displayed high efficiency in degrading various host odorants and
environmental volatiles (Supplementary Table 2), e.g., α-pinene
(68.83 ± 2.37%), hexanal (89.10 ± 2.21%), heptanal (63.19 ±

5.36%), (E)-2-octenal (73.58 ± 3.92%), (E)-2-nonenal (75.81 ±

1.90%), and (E)-2-decenal (61.13± 5.24%). The results indicated
that PiGSTd1 highly expressed in P. interpunctella antennae was
involved in degrading sex pheromones and host volatiles.

DISCUSSION

Insect antennal-specific GSTs play important roles in
metabolizing a wide range of endogenous and exogenous
compounds, including plant secondary compounds, insecticides,
and odorant molecules (Huang et al., 2017). Therefore,
deciphering the role of insect antennal GSTs will greatly
extend our knowledge of the insect olfactory system. In the
present study, we identified 17 PiGST genes from the antennal
transcriptome of P. interpunctella, which is more than the
number identified from the antennae of C. suppressalis (16 genes)
(Liu et al., 2015) and C. pomonella (10 genes) (Huang et al.,
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FIGURE 4 | Structural characterization of PiGSTd1. (A) Sequence alignment of PiGSTd1 and BmGSTd1 (PDB ID: 4e8e.1). (B) Homology model of PiGSTd1. Yellow,

red, and blue represent N-terminal domain, C-terminal domain, and linker, respectively. Ser40 in green is proposed to be catalytically essential.

FIGURE 5 | Kinetic properties of recombinant PiGSTd1. (A) Purification of recombinant pEasy-Blunt-E1-PiGSTd1. Induced: the crude extracts from the bacterial

pellets with 1mM isopropyl β-D-1-thiogalactopyranoside (IPTG) induction. 1–4: samples eluted with binding buffers containing 50, 100, 150, and 200mM imidazole,

respectively. (B) Enzyme kinetic of PiGSTd1 with different CDNB concentrations and a fixed GSH concentration. (C) Optimal pH of PiGSTd1 assayed using 100mM

acetate-phosphate buffer at varying pH. (D) The catalytic activity of PiGSTd1 was determined by preincubating enzyme solution at different temperatures.

2017), but fewer than the number in other insects, for example,
S. littoralis (33 genes) (Legeai et al., 2011) and D. melanogaster
(31 genes) (Younus et al., 2014) (Supplementary Table 3). This
massive expansion of GSTs in insects is possibly for meeting the
requirements of metabolizing odorant molecules and resisting

the damages of insecticides and/or plant secondary compounds
(Durand et al., 2018). Based on sequence analysis, these 17
PiGSTs were classed into eight subcategories: three delta, two
epsilon, four omega, two sigma, one theta, one zeta, three
microsomal, and one unclassified (Figure 1).
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FIGURE 6 | Degradation percentages against various substrates using recombinant PiGSTd1. Columns with different lowercase letters indicate significant differences

at the 0.05 level by Tukey’s HSD multiple range test.

Insect GSTs play various roles in degrading endogenous
and exogenous compounds (Huang et al., 2017; Song et al.,
2020). GSTs that metabolize specific substrates are usually
expressed specifically in corresponding organs or tissues. For
example, GSTs that function as pesticide-degrading enzymes
are usually distributed in the insect digestive system, especially
the midgut (Xu et al., 2015; Yang et al., 2020). Consequently,
odorant-degrading GSTs are presumably antennae-specific.
Tissue expression analysis indicated that the majority of PiGSTs
genes were highly expressed in the abdomen of both female
and male P. interpunctella with one exception that PiGSTd1
from a delta subclass showed significant antennae specificity
(Figure 3). Multiple alignments of amino acid sequences revealed
that PiGSTd1 contains conserved residues across antennae-
specific GSTs with moths (Supplementary Figure 3). PiGSTd1
shares 65.31% identity with GST-msolf1 from M. sexta,
which is involved in the degradation of aldehyde odorants
(Rogers et al., 1999). Our degradation assays also verified
that PiGSTd1 is a putative aldehyde scavenger in the odorant
recognition pathway. PiGSTd1 showed low similarity (40.16%) to
GmolGSTd1 (Supplementary Figure 3), which could efficiently
degrade sex pheromone component (Z)-8-dodecenyl alcohol
in antennae of Grapholita molesta (75.01%) (Li et al., 2018),
suggesting different functions between two GSTs. The results of
degradation evaluations are essentially in line with the sequence
alignment: PiGSTd1 showed higher degradation efficiency to

aldehyde compounds but rather lower efficiency to (Z)-3-hexenol
(Figure 6).

Both FPKM and qRT-PCR results showed that PiGSTd1
expression was significantly higher in male antennae than in
female antennae (Figures 2, 3), suggesting that PiGSTd1 is
associated with recognizing sex pheromones produced and
released from females (Kuwahara et al., 1971). The function of
insect GSTds in degrading pheromone has been studied and
verified in some moths. For instance, CpomGSTd2 is solely
expressed in the antennae of C. pomonella, suggesting it is
involved in odorant degradation (Huang et al., 2017). Our
degradation evaluation showed that purified PiGSTd1 degraded
75.63 ± 5.52% of Z9-12:Ac, the sex pheromone component, in
1-h incubation. However, PiGSTd1 displayed lower degradation
activities to Z8-12:Ac (58.47 ± 1.64%), a sex pheromone analog
with a differently positioned double bond (Figure 6).

Besides degrading sex pheromones, insect delta GSTs also play
roles in degrading host volatiles and environmental odorants (Li
et al., 2018; Wang et al., 2021a,b). To evaluate the degradation
activity of PiGSTd1 to host volatiles, we selected various volatiles
from wheat flour or grains as substrates, including alkanals,
2E-alkenals, isopentanol, and phenylacetaldehyde (Uechi et al.,
2007; Buda et al., 2016), as well as their analogs. Among all
tested volatiles, recombinant PiGSTd1 showed best degradation
activities to hexanal (89.10 ± 2.21%), (E)-2-octenal (73.58
± 3.92%), and (E)-2-nonenal (75.81 ± 1.90%), which could
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attract P. interpunctella (Uechi et al., 2007; Buda et al., 2016).
Unexpectedly, PiGSTd1 showed lower efficiency in degrading
common green leaf volatile (Z-3-hexenol) and flower fragrance
(phenylacetaldehyde), with degradation rates of 30.91 ± 5.17%
and 13.97 ± 2.76%, respectively. Presumably, P. interpunctella
infests processed foods and inhabits indoor areas, resulting in
low degradation against green leaf volatiles and flower fragrances.
However, how PiGSTd1 affects the olfactory recognition of P.
interpunctella remains to be investigated in vivo.

In conclusion, we identified 17 PiGSTs based on antennal
transcriptomic analysis of P. interpunctella, analyzed their
phylogenetic relationships with GSTs from other moths, and
investigated their tissue expression patterns. Furthermore,
we cloned and purified the antennae-enriched PiGSTd1
and evaluated its enzymatic properties. The recombinant
PiGSTd1 displayed GST activity to CDNB and high degradation
efficiency toward pheromones and host volatiles. Thus,
our results indicate that PiGSTd1 functions as an odorant
degradation enzyme to ensure the sensitivity of the odorant
detection system.
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