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Malaria is a great concern for global health and accounts for a large amount of
morbidity and mortality, particularly in Africa, with sub-Saharan Africa carrying the
greatest burden of the disease. Malaria control tools such as insecticide-treated bed
nets, indoor residual spraying, and antimalarial drugs have been relatively successful
in reducing the burden of malaria; however, sub-Saharan African countries encounter
great challenges, the greatest being antimalarial drug resistance. Chloroquine (CQ) was
the first-line drug in the 20th century until it was replaced by sulfadoxine–pyrimethamine
(SP) as a consequence of resistance. The extensive use of these antimalarials intensified
the spread of resistance throughout sub-Saharan Africa, thus resulting in a loss of
efficacy for the treatment of malaria. SP was replaced by artemisinin-based combination
therapy (ACT) after the emergence of resistance toward SP; however, the use of ACTs
is now threatened by the emergence of resistant parasites. The decreased selective
pressure on CQ and SP allowed for the reintroduction of sensitivity toward those
antimalarials in regions of sub-Saharan Africa where they were not the primary drug for
treatment. Therefore, the emergence and spread of antimalarial drug resistance should
be tracked to prevent further spread of the resistant parasites, and the re-emergence
of sensitivity should be monitored to detect the possible reappearance of sensitivity in
sub-Saharan Africa.

Keywords: antimalarial drug resistance, chloroquine, malaria, malaria control, sulfadoxine–pyrimethamine

INTRODUCTION

Malaria is a global health concern regarding morbidity and mortality, with approximately 228
million worldwide cases and an estimated 405,000 deaths in 2018 (World Health Organisation
(WHO), 2019). Underprivileged, rural populations consisting of young children and pregnant
women are disproportionately affected by malaria. The cornerstone of malaria control efforts for
the past decade has been to address the inequalities, including the availability of commodities
(Taylor et al., 2017). Sub-Saharan Africa experiences the greatest burden of the malaria disease,
accounting for approximately 90% of the world’s Plasmodium falciparum infections and deaths
with almost all malaria caused by P. falciparum in this area (Yeka et al., 2012; Maitland, 2016).
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P. falciparum is the most virulent of the malaria parasites
that infect humans (Recker et al., 2018). Therefore, the
utilization of effective tools for malaria control has increased
to lessen the burden of malaria (Greenwood et al., 2005). In
spite of increased efforts, many countries in Africa are still
confronted with challenges with malaria control, partially as
a consequence of the identified limitations in public health
structures as well as the infrastructure of primary health
care (Xia et al., 2014). The development of resistance toward
antimalarial drugs is one of the main challenges when dealing
with malaria control and elimination, as such antimalarial drug
resistance in a setting where access to health care is limited
has severe consequences (Takala-Harrison and Laufer, 2015).
Drug pressure, which refers to the extensive and/or misuse
of antimalarial drugs, is an identified factor associated with
the emergence of resistance; additionally, the misuse or sole
use of a drug can encourage selection of resistant strains
(Hanboonkunupakarn and White, 2016).

In Africa, malaria control programs rest majorly on
vector control and the use of antimalarial drugs (Conrad
and Rosenthal, 2019). There are different types of malaria,
namely, asymptomatic, uncomplicated, and severe malaria.
Asymptomatic malaria refers to malaria parasites being present
in the blood, providing a reservoir for transmission, without
the individual displaying symptoms (Chourasia et al., 2017).
Uncomplicated malaria refers to malaria symptoms presented
by a patient together with a positive parasitological test
(Grobusch and Kremsner, 2005). Severe malaria is defined by
positive parasitological test (microscopy or rapid diagnostic
test) detecting P. falciparum and at least one condition for
severe disease such as severe anemia or respiratory distress
(Conroy et al., 2019).

Sub-Saharan African countries used chloroquine (CQ) as the
first-line drug for malaria up to the start of this millennium.
However, it was replaced with sulfadoxine–pyrimethamine (SP)
after CQ was declared ineffective as a result of resistant parasites
(Lusingu and Von Seidlein, 2008) but soon lost its efficacy
when parasites began to develop resistance toward it. Mutations
in the P. falciparum CQ-resistant transporter (pfcrt) gene and
the P. falciparum multidrug-resistance gene 1 (pfmdr-1) have
been implicated in CQ resistance (CQR) (Bin Dajem and Al-
Qahtani, 2010). CQR was observed on the Thai-Cambodian
border and concurrently in South America in the late 1950s
(Young and Moore, 1961; Harinasuta et al., 1965). In Southeast
Asia, specifically Thailand and Myanmar, drug resistance in local
parasite populations is a serious concern, with P. falciparum in
the region tending to develop resistance (Parker et al., 2015).
Key factors associated with drug resistance in these regions is
drug pressure, which results in selection of resistant parasites and
their propagation by local transmission and reservoir migration
(Wernsdorfer, 1994). In 1978, resistance spread to Africa, with
confirmed treatment failures in both Kenya and Tanzania, later
reaching West Africa in 1980. CQ continued to be the first-
line treatment for uncomplicated P. falciparum malaria in the
most sub-Saharan countries until after 2,000 despite its declining
use (Flegg et al., 2013). However, some countries, including
South Africa, Zambia, Tanzania, and Kenya (D’Alessandro and

Buttiëns, 2001; Mwendera et al., 2016), were only forced to switch
to SP as the new first-line treatment for malaria, as levels of
CQR increased (Gatton et al., 2004). Shortly after its introduction
as the new first-line treatment for malaria, polymorphisms
in the parasite’s genes—pfdhps [P. falciparum dihydropteroate
synthase (DHFR)] and pfdhfr [P. falciparum dihydrofolate
reductase (DHPS)]—became widespread throughout Africa
(Winstanley et al., 2004). The association of the mutations with
SP treatment failure in children made the antimalarial unsuitable
for therapy (Desai et al., 2015). In Africa, the use of SP for clinical
malaria was stopped as a consequence of its extensive resistance.
However, in malaria endemic areas, it is still used for intermittent
preventative treatment during pregnancy (Zhao et al., 2020). By
2007, 90% of sub-Saharan Africa had implemented policies of
artemisinin-based combination therapy (ACT) for the treatment
of uncomplicated malaria as a consequence of widespread CQ
and SP resistance (Frosch et al., 2011). The efficacy of ACTs
leads to substantial declines in morbidity and mortality in areas
with high malaria endemicity. But the success of such therapies
is threatened by the appearance of artemisinin-resistant strains
of P. falciparum from Thai-Cambodian and Thai-Myanmar
borders (Ajayi and Ukwaja, 2013). There have been isolated
reports of artemisinin-resistant parasites in sub-Saharan Africa,
but they have not become established on the continent yet
(Lu et al., 2017a). The emergence and spread of artemisinin-
resistant parasites would have an immense impact on Africa’s
control efforts (Raman et al., 2019), especially as the world
is anticipating a global elimination strategy (World Health
Organisation (WHO), 2020). P. falciparum contains Kelch13
(K13), which is needed in the asexual erythrocytic development
stage. Although details of its function are not fully known
(Siddiqui et al., 2020), they are highly conserved, and single-point
mutations are associated with artemisinin resistance (Birnbaum
et al., 2020). According to Meshnick (1998), the mechanism of
action of artemisinin is in two steps: first, an initial activation that
catalyzes the cleavage of endoperoxide produces free radicals. In
the second step, these free radicals are responsible for killing the
parasites. However, a single-nucleotide polymorphism (SNP) in
the gene associated with up-regulated pathway antagonizes the
artemisinin oxidation activity (Fairhurst and Dondorp, 2016).
A recent study revealed that parasites with inactivated K13 or
its mutated form displayed reduced hemoglobin endocytosis
(Birnbaum et al., 2020). K13 is important in the uptake and
degradation of hemoglobin, which is vital for parasite survival.
The mutations and mislocalization of K13 induce artemisinin
resistance (Xie et al., 2020); therefore, a close observation of ACT
resistance is necessary, as they are the current first-line treatment
for P. falciparum malaria (Siddiqui et al., 2020).

A key challenge for malaria control is the emergence and
spread of antimalarial drug resistance, particularly in the
malaria endemic areas of sub-Saharan Africa where disastrous
consequences are observed as a result of the spread of
CQ- and SP-resistant P. falciparum strains (von Seidlein
and Dondorp, 2015). Furthermore, the development of ACT
resistance threatens the control efforts in malaria elimination.
This review aims to track the spread of CQ and SP resistance
in sub-Saharan Africa. It identifies malaria control strategies
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employed and ways to combat the challenges being faced to
further prevent the emergence and spread of resistant parasites.

MALARIA CONTROL IN SUB-SAHARAN
AFRICA

A global public health concern of this century includes
controlling vector-borne diseases such as malaria; therefore,
much effort has focused on the development of vector control
approaches (Tizifa et al., 2018). These approaches encompass
methods directed toward the malaria vector by restricting its
ability to transmit malaria by shielding areas that are recognized
as receptive areas for transmission. Receptivity of the disease is
dependent on the vectorial capacity of local vector populations,
besides the presence of the vector; this includes the vector
population size, biting habits, and the longevity of the sporogony
period. These parameters are greatly affected by local ecology,
climate, and human and vector behaviors (Smith Gueye et al.,
2016). Examples of vector control strategies include insecticide-
treated nets (ITNs) and indoor residual spraying (IRS).

In Africa, ITNs are the most extensively used intervention
for malaria control, signifying the main tool for vector control
in almost all malaria endemic African countries (World Health
Organisation (WHO), 2017). ITNs act as a direct barrier
to mosquito biting, hence proving effective in the reduction
of malaria-related morbidity and mortality. Additionally, they
reduce vector density and the average life span by providing
community-wide protection through the killing of mosquitoes
(Scates et al., 2020). They exploit the indoor feeding and resting
behavioral patterns displayed by some Anopheles mosquitoes
(Steinhardt et al., 2017). The universal coverage of ITN
distribution, with mass distribution campaigns conducted in
intervals, is implemented by most national malaria control
programs (World Health Organisation (WHO), 2017). More
than 800 million ITNs have been distributed in sub-Saharan
Africa between 2011 and 2016, to ultimately achieve universal
coverage (Olapeju et al., 2018). Through this initiative, a greater
proportion (30% in 2010 to 54% in 2016) of Africans in malaria
endemic areas slept under ITNs (Olapeju et al., 2018). In sub-
Saharan Africa, 67–73% of the total 663 million prevented
malaria cases in the past 15 years have been credited to
the widespread distribution and use of ITNs (World Health
Organisation (WHO), 2017). Another main method used for
malaria control on a large scale includes the spraying of houses
with insecticides, referred to as IRS. This method has aided
the elimination of malaria from large parts of Latin America,
Europe, Russia, and Asia. There are also successful IRS programs
implemented in parts of Africa (Pluess et al., 2010). It is believed
to function by repelling mosquitoes from entering houses as
well as through killing female mosquitoes that rest inside houses
after taking up a blood meal, thus suggesting that IRS is largely
effective against endophilic mosquitoes (those species resting
indoors). Additionally, this method is reliant on the vectorial
mass effect, which refers to the reduction in transmission
as a result of increased mortality of adult vectors typically
after feeding (Najera and Zaim, 2001). Considering the slow

development and implementation of alternative interventions,
ITNs and IRS continue to be the foundation of the malaria control
agenda. Consequently, a great challenge is the optimization
of the continued use and sustained success of existing ITNs
and IRS, while new vector control tools are being studied
(Okumu and Moore, 2011).

Antimalarial drugs are used as a malaria control strategy to
essentially reduce transmission. During the 20th century, CQ, a
safe and inexpensive antimalarial, was a pillar of malaria control
and eradication; however, it has lost its effectiveness. Of late, SP
was the only alternative extensively available, but the increase
and spread of drug resistance have compromised its effectiveness.
Resistance to CQ and SP appeared in Southeast Asia, thereafter,
spread to Africa (Naidoo and Roper, 2010). Therefore, the World
Health Organization (WHO) recommended the implementation
of policies approving ACTs as the primary treatment strategy
for uncomplicated malaria in the majority of malaria endemic
countries (Frosch et al., 2011). In spite of this, according to the
2008 World Malaria Report, ACTs were used to treat only 3%
of children with suspected malaria (World Health Organisation
(WHO), 2008), implying that CQ and SP were still used to treat
malaria in children. Although ACTs are the recommended first-
line treatment for malaria in both Asia and Africa, artemisinin-
resistant P. falciparum strains have appeared and spread within
Southeast Asia, subsequently leading to a reduction in treatment
efficacy (Dondorp and Ringwald, 2013). Since Africa holds
the greatest burden of malaria, there is a concern regarding
the impact of artemisinin resistance on malaria morbidity and
mortality (Slater et al., 2016).

THE MECHANISMS AND
CONTRIBUTING FACTORS ASSOCIATED
WITH ANTIMALARIAL DRUG
RESISTANCE IN Plasmodium falciparum

Drug resistance is a growing problem in the fight to control
malaria, as pathogens regularly develop mechanisms that allow
them to survive the use of drugs. These mechanisms are generally
the result of mutations that affect the drug’s target site, thereby
hindering or completely preventing binding between the drug
and its target (Table 1). Another way that drug resistance may
occur is by the increased levels of the target—this means that
more drug is needed to reach inhibition of the parasite.

Chloroquine functions by accumulating in the parasite’s acidic
food vacuole (Lehane et al., 2012; Lawrenson et al., 2018).
The xenobiotic inhibits heme catabolism (i.e., the mechanism
by which the malaria parasite “feeds”). Upon infection, host
hemoglobin is degraded by the parasite; this releases heme
and leads to the ultimate development of an acidic lysosome-
like digestive vacuole (Coban, 2020). Downstream, there is
accumulation of heme–CQ complexes, which negatively impact
parasite survival (Loria et al., 1999; Lehane et al., 2012).

CQ is able to move through biological membranes
and accumulate in the acidic digestive vacuole (Ehlgen
et al., 2012). This digestive vacuole functions to conduct
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TABLE 1 | Summary of chloroquine- and sulfadoxine–pyrimethamine-resistant genes, their mutation sites, site, and mode of action.

Antimalarial and the stage it
targets

Resistance gene(s) Mutation site Site of action Mode of action

Chloroquine Stage of
lifecycle—erythrocytic asexual
stages (Lehane et al., 2012)

Pfcrt [located on
chromosome 7
(Ikegbunam et al.,
2019)]

Polymorphism at position 76 (K76T) in
the first transmembrane domain
(Pulcini et al., 2015)

Digestive vacuole
(Shafik et al., 2020)

Mutant Pfcrt-mediated CQ
efflux lessens access of CQ to
its heme target (Ecker et al.,
2012)

pfmdr-1 [located on
chromosome 5
(Ikegbunam et al.,
2019)]

The amino-terminal mutations N86Y
and F184Y—common to Asian and
African parasites (Veiga et al., 2016).
The 3 carboxy-terminal mutations
S1034C, N1042D, and
D1246Y—common to South
American isolates (Veiga et al., 2016).

Digestive vacuole
(Reiling et al., 2018)

Acts as an auxiliary mechanism
alongside diffusion for drug
entry into the digestive vacuole
(Ibraheem et al., 2014)

Sulfadoxine–pyrimethamine Stage
of life cycle—liver and blood
stages (Raphemot et al., 2016)

Pfdhfr [located on
chromosome 4 (Fortes
et al., 2011)]

Amino acid point mutations at codons
N51I, C59R, S108N, and I164L (Jiang
et al., 2019)

Folate metabolic
pathway (Sharma et al.,
2015)

Pfdhfr—associated with
pyrimethamine resistance
(Sharma et al., 2015)
Pfdhps—associated with
sulfadoxine resistance (Sharma
et al., 2015). These mutations
reduce the binding affinity of SP
to the targeted enzymes
(Kümpornsin et al., 2014)

Pfdhps [located on
chromosome 8 (Fortes
et al., 2011)]

Amino acid point mutations at codons
S436A, A437G, K540E, A581G, and
A613S (Jiang et al., 2019)

Folate metabolic
pathway (Sharma et al.,
2015)

CQ, chloroquine; SP, sulfadoxine–pyrimethamine.

proteolysis of hemoglobin, which produces dipeptides and
ferriprotoporphyrin IX (a substance that is toxic to the
parasite at high concentrations). The parasite biocrystallizes
ferriprotoporphyrin IX to hemozoin—this is inhibited by use
of CQ (Reiling et al., 2018). CQR arises when CQ cannot
accumulate at this active site to break the parasite’s hemoglobin
degradation cycle that Plasmodium needs (Loria et al., 1999).

CQR is often associated with genes pfcrt and/or pfmdr-1.
The P. pfcrt gene is 424-amino acid long and is made up of
10 predicted transmembrane domains (Griffin et al., 2012). It
is expressed at all infected erythrocyte stages with maximal
expression at the trophozoite stage (Roepe, 2011). In its natural
state, CQ is able to permeate the membrane of the food vacuole
but becomes protonated in the vacuole and cannot pass the
membrane to exit the vacuole (Homewood et al., 1972; Chinappi
et al., 2010). As a result, there is a collection of CQ in the vacuole
that binds to heme.

However, mutation on the gene increases export of CQ
molecules. It has been reported that mutations in pfcrt lead to
CQ and hydrogen ions being transported out of the food vacuole,
which is where CQ exerts its effects from (Lehane and Kirk, 2008;
Ecker et al., 2012). As a result, CQ is not activated and does not
perform as it should. This is seen phenotypically as CQR.

Gene pfmdr-1 has also been implicated in CQR. It mediates the
production of P-glycoprotein homolog 1. The protein is localized
to the food vacuole membrane (Cowman et al., 1991; Njokah
et al., 2016). It is a member of a family of proteins that couple
ATP hydrolysis to translocation of solutes across cell membranes
(Cowman et al., 1991). Structural modeling of pfmdr-1 assesses
biophysical mechanisms of this gene and its protein in conferring

resistance with respect to aminoquinoline (Ferreira et al., 2011).
It has been established that pfmdr-1 is involved in transporting
xenobiotics (such as CQ) to the food vacuole. To do this, it is
located along the food vacuole membrane and pushes CQ away
off the cytosol (Dorsey et al., 2001; Ibraheem et al., 2014). The
binding domain is on the cytosol-facing side of the food vacuole,
allowing it to first encounter antimalarials—this side is where
most resistance-causing mutations occur (Ibraheem et al., 2014).
Mutations in pfmdr-1 prevent movement of antimalarials from
cytosol into the food vacuole—this reduces potency of some
drugs such as CQ, which act in the food vacuole, but drugs that
inhibit targets outside the food vacuole can become more potent
(Wicht et al., 2020).

SP is an antifolate that is routinely used to treat uncomplicated
malaria (Terlouw et al., 2003). Sulfadoxine (SDX) inhibits the
activity of DHFR, and pyrimethamine (PYR) inhibits DHPS;
these constituents are active against asexual erythrocytic stages
of P. falciparum (Sandefur et al., 2007). Both DHFR and
DHPS are central in parasite metabolism. Specifically, these
enzymes are in the folate metabolic pathway. At the end of the
pathway, reduced folate cofactors are produced, which are needed
for DNA synthesis and metabolism of particular amino acids
(Hyde, 2009).

Dihydrofolate reductase is the third enzyme involved in the
folate-synthesis pathway in which it combines pteridine with
para-amino benzoic acid to form dihydropteroate (Heinberg
and Kirkman, 2015). SDX is a structural analog of para-amino
benzoic acid, allowing it to inhibit the DHPS enzyme through
competitive inhibition (Nzila, 2006). PYR is a competitive
inhibitor of DHFR (Sandefur et al., 2007); thus, in its presence,
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the folate-metabolism pathway is halted or made less effective.
Both SDX and PYR function through competitive inhibition of
different targets. In combination, two different enzymes of the
same pathway are disrupted and present as resistance to SP.

THE SPREAD OF CHLOROQUINE
RESISTANCE IN SUB-SAHARAN AFRICA

Introduced in the mid-1940s, CQ became the most extensively
utilized therapeutic antimalarial drug by 1950. Quinine was
essentially swapped out for CQ in areas such as tropical Africa,
which lacked systematic malaria eradication programs, therefore
making it a pillar of presumptive and mass treatment in
eradication campaigns (Nuwaha, 2001). CQ was used as the main
malaria treatment therapy up to 1990, owing to its safety, efficacy,
and low cost. However, CQR emerged in various parts of the
world and quickly spread to West Africa in the 1980s and 1990s
(Dagnogo et al., 2018) (Figure 1). Treatment failure, particularly
in children who are too young to have acquired immunity, in
malaria endemic regions is attributed to the presence of CQR
(Trape et al., 1998). CQR is primarily related to an SNP in pfcrt,
thus leading to an amino acid mutation from threonine to lysine
at codon 76 (wild-type K to the mutant T-K76T) (Fidock et al.,
2000); additionally, SNPs in exons 2, 3, 4, 6, 9, 10, and 11 of
the pfcrt gene display possible association with CQR (Awasthi
and Das, 2013). Three main haplotypes occur in codons 72–
76 of pfcrt, thus resulting in the wild-type CVMNK and CQR
haplotypes CVIET and SVMNT. In Africa, the most dominant
mutant haplotype is CVIET (Thomsen et al., 2013). Another
mutation conferring resistance to CQ is the N86Y allele of pfmdr-
1 (Ebel et al., 2020). The role of pfmdr-1 mutations (N86Y, Y184F,
S1034C, and D1246Y) in facilitating in vitro and in vivo CQR has
received a lot of interest in research (Oladipo et al., 2015). CQR
advances in three particular ways in each newly affected country,
including its increasing spread over a number of locations and
regions, the increased prevalence of resistant strains in each area,
and the increase in the intensity of resistance (Trape, 2001).

The first reported cases of CQ-resistant infections were
confirmed in non-immune tourists in Kenya and Tanzania in
1978, followed by semi−immune Kenyans in 1982 (Shretta et al.,
2000). According to Annual Report: Diagnosis, Treatment and
Prevention of Malaria: Nairobi, Kenyan Ministry of Health, 61–
80% of isolated parasites were resistant to CQ, and 30% of cases
treated with CQ experienced clinical treatment failure (Shretta
et al., 2000). According to a study, 92% (22 of 24) of isolates
assessed for CQR carried the point mutation, Asn to Tyr in
pfmdr-1 codon 86, which was the most frequently reported
sequence variation related to CQR in Africa. Furthermore, 83%
(20 of 24) had an Asp to Tyr mutation, and both mutations
were observed in 82% (18 of 24) of the isolates. Both alleles
have reported association with CQR. In addition, 75% (18 of 24)
of samples each had polymorphisms on both cg2 and pfmdr-l
(Omar et al., 2001). Polymorphisms in the cg2 gene, located in
the 36-kb region on chromosome 7, are also related to CQR.
This gene is characterized by 12 point mutations and three length
polymorphisms, namely, kappa, gamma, and omega, and are
associated with clones encompassing CQR phenotypes (Viana

et al., 2006). Durand et al. (1999) used DNA sequencing to
confirm the association of cg2 with CQR. It was found that
the cg2 genotype including identical κ14 repeats and particular
ω16 repeats displayed a strong association with CQR in all
P. falciparum isolates from the African countries included in the
study. CQR was heightened during the 1980s but continued to
be the first-line treatment for uncomplicated malaria. In 1998,
revised guideline for malaria treatment officially replaced CQ
with a combination of SDX and PYR (Shretta et al., 2000).

In Tanzania, CQR was first demonstrated in semi-immune
citizens in 1982 and in 1983 resistance spread and was reported at
34% among a Zanzibar school population. Furthermore, studies
between 1982 and 1985 in various Tanzanian revealed a 20%
average in vivo-resistant rate in schoolchildren (Trape, 2001).
Consequently, CQ was the official first-line antimalarial drug
for uncomplicated malaria until the end of July 2001. The
parliament of Tanzania was notified by the Minister of Health,
during the 2002–2003 budgetary session, that a decision was
made to suspend CQ as the first-line antimalarial drug. The
grounds for that decision were based on researched evidence of
high cure-rate failure observed for CQ, of approximately 60%
(Mubyazi and Gonzalez-Block, 2005).

By 1983, CQR had been reported in several sub-Saharan
countries such as Madagascar, Burundi, Sudan, Uganda,
Zambia, Comoros, Burkina Faso, Malawi, and Mozambique
(Nuwaha, 2001).

The prevalence of CQR in Malawi by 1992 was an estimated
85% (Kublin et al., 2003), therefore prompting Malawi to be
the first country in sub-Saharan Africa to terminate the routine
use of CQ in 1993. This was supported by the increased
failure of CQ treatment and its inability to produce sufficient
clinical and hematological recovery. In 1990, more than 80%
of Malawian children treated with CQ presented high-level
parasitological resistance (Bloland et al., 1993). The removal for
CQ in Malawi was supplemented by reduced prevalence of the
CQR molecular marker, pfcrt T76, from 85% to 13% between
1992 and 2000 (Kublin et al., 2003). Widespread sensitivity to
CQ was observed in Malawi after the removal of CQ as the first-
line drug for malaria treatment. In 2005, a clinical trial estimated
CQ efficacy at 99%, 12 years after removal. Furthermore, CQ
susceptibility was maintained when used for recurring malaria
episodes (Takala-Harrison and Laufer, 2015).

In 1999, a 90% prevalence of the pfcrt K76T mutation was
identified in infected Mozambican children. A trial in southern
Mozambique estimated an average of 47% for CQ’s clinical
efficacy between 2001 and 2002. Furthermore, another study
revealed more than 90% occurrence of the mutant CVIET
haplotype in the same area (Thomsen et al., 2013). This led
to the abandonment of CQ treatment for malaria in 2003
(Galatas et al., 2017).

By 1984, CQR was observed in countries including Gabon,
Angola, Namibia, Senegal, Zimbabwe, and South Africa
(Nuwaha, 2001). A study in Senegal examined the prevalence of
pfcrt to determine the molecular level of CQR. A high prevalence
of single pfcrt CVMNK wild-type haplotype was observed in
the study, and the data suggested that increased prevalence of
pfcrt wild types is occurring country-wide (Ndiaye et al., 2012).
The use of CQ was abandoned by health authorities in 2003
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FIGURE 1 | The appearance and global spread of chloroquine resistance (CQR) in P. falciparum. Resistance is thought to have arisen in at least six independent
origin (gray circles) and moved progressively as a CQ-driven selective sweep, including from Asia to Africa, where it established itself on the East coast in the late
1970s (black circle). The geographic spread of CQR is overlaid onto a current map of P. falciparum endemicity modeled for 2010. This map was derived from
P. falciparum parasite rate (PfPR) surveys, age standardized to the 2- to 10-year age range, using model-based geostatistics (Ecker et al., 2012).

(Trape et al., 1998). In Zimbabwe, 50% of the population reside
in malaria-risk areas, and malaria transmission occurs in 51
out of 59 administrative regions (Mlambo et al., 2007). Until
1983, there were no cases of CQR in Zimbabwe; however, in
1984, the first seven cases were reported in Zambezi Valley. CQR
was initially confined to the Zambezi Valley, but by 1990, it
was clear that the problem had spread throughout the country
(Makono and Sibanda, 1999). According to a study facilitated in
the Njelele area of Gokwe following a malaria outbreak, 83% of
infections were CQ resistant, with only 3% of cases responding
to CQ treatment (Mharakurwa and Mugochi, 1994). The
establishment of maintainable national surveillance approaches
was necessary to counteract the increasing CQR and monitor
its spread throughout the country (Makono and Sibanda, 1999).
The clinical failure of CQ was exceptionally high and, thus, only
remained the drug of choice until 2000 (Mlambo et al., 2007).

Since 1932, South Africa had faced sporadic malaria
epidemics, with KwaZulu Natal, Mpumalanga, and Limpopo
bearing the greatest burden within the country (Knight et al.,
2009). In 1985, KwaZulu Natal had its first report of in vitro CQR,
which spread under persistent CQ pressure, thereby leading to an
escalation in cases and treatment failures. In spite of being treated
with CQ four times, 3% of malaria-treated patients remained
positive (Ukpe et al., 2013). CQ was replaced and no longer
used as the first-line drug for malaria treatment by February 1988
(Knight et al., 2009). Malaria parasites stayed susceptible to CQ
in Mpumalanga and Limpopo until the mid-to-late 1990s. The
number of CQ-resistant parasites escalated, thus prompting the
replacement of CQ as the drug of choice in Mpumalanga and
Limpopo in 1997 and 1998, respectively (Maharaj et al., 2013).

THE SPREAD OF
SULFADOXINE–PYRIMETHAMINE
RESISTANCE IN SUB-SAHARAN AFRICA

Africa, most predominantly, sub-Saharan Africa, still remains
a home to malaria, bearing high morbidity, mortality, and risk

of transmission, in spite of significant reduction in malaria
incidence in the region, with children and pregnant women being
the most vulnerable (Zareen et al., 2016). Malaria in pregnancy is
estimated to cause hundreds of thousand infant deaths every year
(Kajubi et al., 2019). Therefore, in 2012, WHO recommended
SP as an intermittent preventive treatment (IPT) for fetal
malaria prevention in pregnant women across malarious regions
(Capan et al., 2010). However, efficacy of chemoprophylaxis
with SP was halted by poor compliance of patients, which
has led to emergence of drug-resistant strains of P. falciparum
(Oyibo and Agomo, 2011).

The SP is a combination comprising SDX, which
inhibits DHPS, a bifunctional protein that interacts
with hydroxymethylpterin pyrophosphokinase, and PYR,
which inhibits DHFR bifunctional protein (Nzila et al., 2000); it,
therefore, synergistically inhibits the folate biosynthesis pathway
of P. falciparum (Ahmed et al., 2006).

The molecular basis of Plasmodium resistance to SP is shown
to be point mutations (Gatton et al., 2004) at seven sites in
the DHPS gene (dhfr) that confer resistance to PYR and five
sites in the DHFR (dhps) gene that confer resistance to SDX.
Different combinations of mutations in each gene lead to varied
resistance levels of SP (Pearce et al., 2003). For pfdhps, several
point mutations—Ser→ Ala at codon 436, Ala→ Gly at codon
437, Lys → Glu at codon 540, Ala → Gly at codon 581, and
Ser → Phe at codon 436—coupled with either Ala → Thr or
Ala→ Ser at codon 613 confer resistance to SDX. For pfdhfr, a
point mutation of Ser→ Asn changes at position 108 (S108N);
resistance mutations Asn→ Ile at codon 51 and/or Cys→ Arg
at codon 59 (C59R) and a Ser→ Thr mutation at position 108
(S108N) with an Ala→ Val change at position 16, synergistically
confering PYR resistance in Plasmodium species (Kublin et al.,
2003). The DHPS domain of the bifunctional 7,8-dihydro-6-
hydroxymethylpterin pyrophosphokinase (PPPK)-dhps enzyme
for SDX and the DHFR domain of the bifunctional DHFR-
thymidylate synthase (DHFRTS) enzyme for PYR are key targets
of SP drug, as these enzymes are responsible for the folic acid
biosynthetic pathway (Basco et al., 1998). After approximately
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50 years of SP’s introduction, kinetics in children is still poorly
understood; therefore, dosing is predominantly based on age
for practical reasons, which may result in the administration of
inaccurate quantities (De Kock et al., 2018). Increasing resistance
to SP is linked to the stepwise acquisition of specific point
mutations at specific codons in the dhfrdhps genes, which alter
the drug-binding sites of SP (Oyibo and Agomo, 2011). However,
the prophylaxis treatment of malaria was selected for double and
triple mutations in dhps and dhfr genotypes, respectively, which
are implicated in Plasmodium resistance to SP across sub-Saharan
Africa (Capan et al., 2010; Sridaran et al., 2010). Accumulation of
mutations within the genes (N51I, C59R, and S108N) in pfdhfr
and mutations in codons A437G, K540E, and A581G within
pfdhps, which confer resistance of Plasmodium to SP (Takala-
Harrison and Laufer, 2015), has spread across sub-Saharan Africa
(Figure 2).

In Benin, pfdhps, which confers resistance to SDX, contained
a mixture of wild-type and mutant alleles (A437 and G437).
High mutated alleles of pfdhfr were reported for codons N51I,
C59R, and codon S108N. The pfdhfr (N51I, C59R, and S108N)
proportion of single, triple, and quadruple mutations was very
high in the study population (Ogouyèmi-Hounto et al., 2013).
In Nigeria, parasite clearance was observed in pregnant women
using SP (Kalanda et al., 2006), with mutations, N51I, C59R,
S108N, and the triple mutation conferring a high level of
Plasmodium resistance to SP (Iriemenam et al., 2012). A study
conducted in Mali between August 2004 and January 2006 and
in Ghana in 2003 supported the use of SP + AS (SP and
amodiaquine) to treat young children with uncomplicated P.
falciparum malaria and IPT in pregnant women (Tagbor et al.,
2006; Tekete et al., 2011; Maiga et al., 2015). Additionally, in
Mali, prevalence of each of the three pfdhfr mutations at codons
N51I, C59R, and S108N was observed in 2007. Notably, pfdhps
mutations at codons A437G and K540E as well as pfdhfr triple
and pfdhps A437G quadruple mutations were present (Dicko
et al., 2010). SP resistance was still quite low (Figueiredo et al.,
2008; Dicko et al., 2012) in 2008 but rapidly increased in Mali
in 2010 and Burkina Faso in 2012 (Coulibaly et al., 2014).
The triple mutant pfdhfr in Africa evolved from the southeast
Asian lineage (Coulibaly et al., 2014), while the N51I + S108N
double-mutant pfdhfr alleles are a local origin. Both the pfdhps
double mutants (Gly-437 and Glu-540) and the pfdhfr triple
mutants were individually associated with SP treatment failure
in children aged less than 5 years, with pfdhps and pfdhfr
quintuple mutations being highly associated with SP treatment
failure in Ibadan, Nigeria (Happi et al., 2005). The pfdhfr
N51I, C59R, S108N triple mutation had a prevalence close to
100% in Cameroon, western Africa. The most frequent pfdhps
mutation there was A437G, with a prevalence of 76.5% and had a
higher significant prevalence in pregnant women with SP uptake
(Chauvin et al., 2015).

Ghana, a western African country, in 2003 also recorded the
quadruple mutation in pfdhps A437G and pfdhfr—N51I, C59R,
and S108N (Marks et al., 2005)—but SP was still effective in
2001 for treating uncomplicated P. falciparum malaria whether
as monotherapy or combined therapy in Cameroon (Basco et al.,
2002). Meanwhile, emergence of SP combination resistance was

sustained for many years before introduction of ACTs as a
frontline antimalarial in Africa (Marks et al., 2005). There is a
strong relationship between protective efficacy and the frequency
of resistance mutations, as negative correlation exists between
SP prophylaxis efficacy and parasite mutations, indicating
that as resistance increases, protective efficacy decreases. This
decreased efficacy of SP on IPTi was reported across Ghana
and Gabon where decreased efficacy was linked to pfdhfr triple
mutation (Griffin et al., 2010). A study in Niger showed a
high proportion of pfdhfr N51I, C59R, and S108N haplotypes
associated with resistance to PYR and pfdhps S436AFH and
A437G mutations associated with reduced susceptibility to SDX
(Grais et al., 2018). In 2004, a molecular genotyping study
conducted in Laine, Guinea, found three pfdhfr mutations in
85.6% patients and quintuple pfdhfr/pfdhps mutations in 9.6%
showing a progressive increase in resistance to SP (Bonnet et al.,
2007). No pfdhfr I164L or pfdhps A581G mutations were found,
but pfdhps K540E mutation was found in Mali, with a very low
prevalence in Mali and Burkina-Faso (Coulibaly et al., 2014).

In Central Africa, between 2002 and 2003, there was
adequate clearance of parasitemia in children treated with
SP with low presence of pfdhfr S108N, pfdhfr triple, and
pfdhfr/pfdhps quadruple mutation genotypes. This shows that
studies conducted a decade ago still showed some SP efficacy
despite accompanying resistance genotypes. The parasite
population of Uige, Angola, revealed high frequency mutations
in pfcrt, pfdhps, and pfdhfr, conferring resistance to CQ and SP
(Coulibaly et al., 2014).

The frequency of the double A437G, K540E mutant pfdhps
allele (conferring SDX resistance) increased from 200% to 300%,
and the triple mutant pfdhfr (N51I, C59R, and S108N) allele
(conferring PYR resistance) increased by 37–63% in Tanzanian
population when SP was used as a first-line antimalarial
(Malisa et al., 2010). A study conducted in 2002 in Tanzania
confirmed the presence of pfdhfr/pfdhps mutations even when
SP was efficient (Mbugi et al., 2006). SP resistance was reported
across regions of Tanzania where the triple mutations (N51I,
C59R, and S108N) were constantly predominant across all
the regions, implying a high level of SP resistance (Schönfeld
et al., 2007; Bertin et al., 2011; Baraka et al., 2015), which
was corroborated by same result in Benin, a western African
country (Bertin et al., 2011). No relationship exists between
the number of mutations and the degree of parasitological
resistance (Eriksen et al., 2004). Additionally, Tanzania not only
reported SP failure, but its prophylaxis was of no significant
effect in northern Tanzania in 2006, as triple mutations previously
reported in other parts of Africa were also detected (Gesase
et al., 2009). The highest mutations of pfdhfr and pfdhps genes
were predominantly distributed across eastern and southern
Africa where SP use has been the highest (Enosse et al., 2008;
Griffin et al., 2010). In 2005, northwest Ethiopia displayed a
gradual reduction of individual pfdhps/pfdhfr mutations; triple,
quadruple, and quintuple mutations were observed after 5 years
of SP withdrawal as a frontline antimalarial (Hailemeskel et al.,
2013), but quintupled in western Kenya between 2008 and 2009
(Iriemenam et al., 2012). Moreover, by 2000, the East African
Network for Monitoring Antimalarial Treatment (EANMAT)
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FIGURE 2 | The distribution of the major pfdhps alleles across sub-Saharan Africa. Resistant alleles; the upper map shows the relative proportions of the three major
resistance alleles, SGK, AGK, and SGE. Wild-type alleles; the lower map shows the ratio of SAK and AAK alleles among wild-type pfdhps alleles (Pearce et al., 2009).
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reported SP failure across East Africa, with Rwanda and Burundi
exceeding the critical 25% value SP failure rates (Rapuoda et al.,
2003); this could be due to a low uptake of SP by pregnant women
due to weak health system and sub-optimal implementation
policy, among other factors (Martin et al., 2020). The pfdhps
A581G and pfdhfr I164L mutations, which confer SP resistance,
have been found to be unevenly distributed across East Africa,
suggesting a high level of SP resistance, as indicated by the
prevalence of the K540E mutation, found across East Africa
(Naidoo and Roper, 2011).

Zimbabwe reported high prevalence of pfcrt (K76T) to be 64%,
82%, and 92% in Chiredzi, Kariba, and Bindura, respectively.
On the pfdhfr locus, the presence of triple mutations at codons
N51I, C59R, and S108N was approximately 50% across the
three locations, therefore indicative of widespread prevalence
of molecular markers associated with CQ and PYR resistance
in Zimbabwe (Schleicher et al., 2018). KwaZulu Natal in
South Africa had reported SP resistance in 2000 and thus changed
its malaria policy to the use of ACTs for malaria treatment
(Knight et al., 2009).

In 2010, the quadruple mutation (A437G, N51I, C59R, and
S108N) haplotypes were widespread throughout sub-Saharan
Africa, particularly in Uganda, Mali, Kenya, and Malawi (Takechi
et al., 2001; Osman et al., 2007), but the quintuple and sextuple
mutants were found only in specific regions of Africa (Walker
et al., 2017). The quintuple mutants, which plateaued in East
and Southern Africa, were relatively rare in west Africa and
parts of central Africa. Estimates of the prevalence of the pfdhps-
A581G mutation suggest that the sextuple haplotype had become
established in Rwanda, Burundi, D R Congo, southwestern
Uganda, northwestern Tanzania, southeastern Kenyan, and
northeastern Tanzanian borders.

Genotyping of pfdhfr responsible for PYR resistance showed
no mutation in codons A16V, C59R, or I164L, while there
was 84% mutation at codons N51I and S108N (Osman et al.,
2007). Additionally, linkage exists between CQ mutation, pfcrt
K76T, SDX mutation, pfdhps K540E, and PYR mutation pfdhfr
(N51I and S108N), thus conferring parasite resistance against
both CQ and SP. The C59R mutation observed in Mali, Kenya,
and Malawi was, however, absent in Sudan in spite of 80%
prevalence of pfdhps K540E. Pfdhfr N51I and S108N occurred
in more than 80% (Osman et al., 2007). The A437G mutation
at pfdhps and the triple mutation (N51I, C59R, and S108N) at
pfdhfr associated with SP resistance is concurrent with those
found even outside sub-Saharan Africa (Checchi et al., 2002).
In six countries of Eastern and Southern Africa, more than
90% prevalence of pfdhps-K540E was implicated in SP resistance
(Iriemenam et al., 2012). However, countries like Cameroon,
Ghana, Zambia, Mozambique, Mali, and Zimbabwe had three
doses of SP in their policy for all pregnant women, which seemed
efficacious with resistant genotypes concurrently found in these
countries (Mayor et al., 2008; Maiga et al., 2011; Kayentao et al.,
2013). The quadruple mutation was uncommon compared with
triple mutation, which confers a major resistance to SP in Africa
(Peters et al., 2007). Conclusively, a systematic analysis conducted
in African countries between 1996 and 2006 reported delayed
clearance alluding to SP treatment failure (ter Kuile et al., 2015).

COMBATING CHLOROQUINE AND
SULFADOXINE–PYRIMETHAMINE
RESISTANCE

Several publications confirm the widespread resistance of CQ
and SP, with substantial occurrence in Asian and African
countries. The reasons for this hinged on various factors, which
include, but is not limited to, the overuse of these antimalarial
medications, underdosage of the medications in the treatment of
active malaria infection, and high susceptibility of the parasite
to adapt at the genetic metabolic levels rapidly (Hyde, 2007).
General preventive as well as some of the specific measures
have been considered as ways to combat further spread of
antimalarial resistance.

Vector Control
Vector control makes use of ITNs/long-lasting insecticidal
nets (LLINs) and IRS, which are the mainstay of malaria
control. These two strategies have proven useful in the
reduction of local malaria transmission by protecting susceptible
individuals against infective mosquito bites, thereby leading to
a reduction in the level of malaria intensity. When sleeping
under the net, the net serves as a means of preventing
mosquito contact or bite. Reducing the vector population
through this means can indirectly serve as a measure to
mitigate the spread of CQ- and SP-resistant Plasmodium.
In fact, since 2007, the WHO has recommended universal
coverage with ITN (Macintyre et al., 2011; World Health
Organisation (WHO), 2011). IRS has also been reportedly
effective in reducing the challenge of transmission. It serves
as a means to terminating these vectors, thereby reducing
the possible malaria morbidity and mortality (World Health
Organisation (WHO), 2011). When vector control measures
are well applied in combination, it is evident that the
outcome of malaria transmission (CQ/SP resistant in this case)
will be mitigated (World Health Organisation (WHO), 2010;
Thu et al., 2017).

The Introduction of Artemisinin-Based
Combination Therapies
An important strategy continues to be the use of effective
antimalarials. However, this is threatened by the extensive
resistance observed in the parasite toward the most
affordable classes of drugs, thus highlighting the need for
novel antimalarials (Winstanley et al., 2004) and ultimately
a vaccine. The widespread resistance of the known frontline
antimalarial drugs—CQ and SP—in April 2002 led to the
introduction of ACTs as the first-line treatment for malaria
by the WHO. Notably in the treatment of P. falciparum, it
is recommended that two or more drugs must be combined.
The combined drugs must have different modes of action.
Since artemisinin-based compounds (dihydroartemisinin,
artemether, and artesunate) are fast acting, they are usually
combined with other classes of antimalarial with long half-
life such as mefloquine, amodiaquine, lumefantrine, and
piperaquine (Bell and Winstanley, 2005). The ACTs, which
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come in various combinations, is used to replace CQ and SP
in order to prevent further increasing morbidity and mortality
resulting from the observed resistance in the initial use of
first-line medications (World Health Organisation (WHO),
2003; Dalrymple, 2009). The high efficacy and ability to
interrupt the development of resistance supported the use
of ACTs as the core of malaria treatment (Laxminarayan
et al., 2006). The artemisinin component of ACTs has the
ability to reduce parasitemia; thus, the progression from
uncomplicated malaria to a severe form of the disease can
be prevented by early treatment with ACTs, consequently
reducing the amount of severe malaria cases and the rate of
malaria mortality (Ndeffo Mbah et al., 2015). By June 2008,
most malaria endemic nations have adopted the ACTs as its
front-line antimalarial medication (World Health Organisation
(WHO), 2008). Part of the measures put in place to avoid
similar medication resistance as seen in CQ and SP is the
disallowance of artemisinin monotherapy medications. This
was part of the World Health Assembly resolution of 2007
(World Health Organisation (WHO), 2008).

Medication Adherence and Avoiding
Self-Medication
Among humans, there are a variety of beliefs that can
impact our behavior significantly. These beliefs are scarcely
changed and can therefore affect adherence to antimalarials
such as ACTs, thus highlighting the need for patients’ beliefs
to be considered when care is offered (Amponsah et al.,
2015). Numerous interventions have been developed and
employed in malaria endemic areas to promote adherence
to medications. Clear guidelines to better adherence can be
achieved through deeper understanding of the relative efficacy of
each intervention (Fuangchan et al., 2014). The understanding
of malaria treatment could be improved by community
education, such as training of dispensers and promoting public
awareness, thus improving adherence to antimalarials (Denis,
1998). To ensure malaria treatment approaches continue to be
effective and improve the possibility of a positive outcome,
medication adherence should be evaluated regularly, thereafter
used as tools to encourage appropriate action, if necessary
(Gerstl et al., 2015).

The CQ/SP resistance developed partly due to widespread
presumptuous use of these medications without prior objective
confirmation of the diagnosis. Due to the poverty and economic
setting of many malaria endemic countries especially in
sub-Saharan Africa, most people self-medicate and thereby
inappropriately use CQ/SP (Idowu et al., 2006). To this
end, the WHO essentially recommended and introduced
affordable point-of-care rapid diagnostic tests for definitive
malaria testing and diagnosing before the usage of an
antimalarial even in under-resourced settings. This is expected
to be accompanied by correct and complete usage of the
antimalarial especially in this era of ACTs (White et al., 2009;
Thu et al., 2017).

Combating the Counterfeit Medication
Market
Generally, counterfeit medication presents a great challenge
globally, thus contributing to the burden presented by the
development of antimalarial drug resistance. Studies done in
Eastern DR Congo showed that majority of the CQ has its
active ingredient to be significantly underdosed while the SP
was overdosed in terms of the active ingredients (Atemnkeng
et al., 2007). A similar study in Nigeria corroborated the
fact that the menace of counterfeit medication is huge, with
50% of CQ dispensed by street vendors underdosed of the
active ingredients (Idowu et al., 2006). In light of this, the
development of CQ and SP resistance is substantiated. However,
going forward, this can be combatted by action at the policy
level. Enacting the laws guiding counterfeit medications and
strengthening of the institutions responsible will go a long way
to reduce, if not totally remove, counterfeit medications in the
society. This can mitigate the CQ/SP resistance in the long run
(Yadav and Rawal, 2016). Another way to combat the problem
of counterfeit medication is the provision of novel, effective,
and affordable antimalarial drugs. This issue is addressed
by the Medicines for Malaria Venture, whose aim consists
of the discovery, development, and the facilitation of those
antimalarials (Medicines for Malaria Venture [MMV], 2020).
MMV is a non-profit Swiss foundation, officially introduced in
1999. It was one of the first public–private partnerships created
to address the drug innovation gap of malaria (Bathurst and
Hentschel, 2006). Developing medicines for children addresses
the population most at risk of dying from malaria, thus serving as
motivation for MMV to develop child-friendly formulations of
current antimalarials and to develop next-generation medicines
(Medicines for Malaria Venture [MMV], 2020). In 2009, Novartis
and MMV developed an artemether–lumefantrine formulation,
called Coartem

R©

Dispersible, adapted to cater to the needs of
children affected by P. falciparum malaria and was the first
successfully co-developed product launched by the MMV, in
which 400 million products were distributed (Premji, 2009;
Medicines for Malaria Venture [MMV], 2020). MMV continues
to develop and improve access to affordable medicines to lessen
the global burden of malaria.

Reintroduction of Chloroquine in the
Chloroquine-Sensitive Environment
Various studies have shown that with replacement of CQ/SP
as the first line of treatment and subsequent replacement with
ACTs, there was notable decrease in the prevalence of pfcrt K76T
present in such communities. This was first demonstrated in
Malawi in 2004, with the prevalence of pfcrt K76T reaching an
undetectable level (Plowe, 2014).

Similar studies have validated this point in China and Zambia,
with the outcome of both studies showing a resurgence of CQ
sensitivity (Mwanza et al., 2016; Lu et al., 2017b). Considering
the role of CQ/SP safety profile and affordability, this looks
promising, and reintroduction of CQ/SP may be the way to go
in the near future.
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CONCLUSION

In sub-Saharan Africa, where the burden of malaria infection
is great, one of the core challenges for malaria control is the
emergence and spread of antimalarial drug resistance. Although
other strategies are employed for malaria control such as ITNs
and IRS, which are the foundation of the malaria control
agenda, antimalarial drugs are essential to reduce transmission.
However, because of their accessibility and affordability, CQ
and SP—both first-line drugs in the past—were used excessively,
which resulted in the establishment of resistance, which in turn
hindered malaria control in sub-Saharan Africa. This prompted
the introduction of ACTs, which decreased the pressure on CQ
and SP in some regions of sub-Saharan Africa, thus encouraging
their reintroduction in those regions. Ongoing antimalarial drug
resistance should be closely monitored in sub-Saharan Africa

to prevent the establishment and spread of resistance and to
detect the return of sensitivity, which could result in the possible
reintroduction of specific antimalarials.
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