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Neural signal analysis with memristor arrays
towards high-efficiency brain–machine interfaces
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Brain-machine interfaces are promising tools to restore lost motor functions and probe brain

functional mechanisms. As the number of recording electrodes has been exponentially rising,

the signal processing capability of brain–machine interfaces is falling behind. One of the key

bottlenecks is that they adopt conventional von Neumann architecture with digital compu-

tation that is fundamentally different from the working principle of human brain. In this work,

we present a memristor-based neural signal analysis system, where the bio-plausible char-

acteristics of memristors are utilized to analyze signals in the analog domain with high

efficiency. As a proof-of-concept demonstration, memristor arrays are used to implement the

filtering and identification of epilepsy-related neural signals, achieving a high accuracy of

93.46%. Remarkably, our memristor-based system shows nearly 400× improvements in the

power efficiency compared to state-of-the-art complementary metal-oxide-semiconductor

systems. This work demonstrates the feasibility of using memristors for high-performance

neural signal analysis in next-generation brain–machine interfaces.
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Brain–machine interfaces (BMIs) construct new paths
between the brain and the target effectors, holding promise
for the restoration of speech or motor function and the

treatment of many brain disorders like epilepsy and Parkinson’s
diseases1–7. Typical BMIs record electrical signals from brain
activities, using neural probes with hundreds or more recording
sites8,9, and translate them to control commands for effectors.
The signal processing modules in most existing BMIs are based
on silicon-based complementary metal-oxide-semiconductor
(CMOS) technology and adopt the conventional von Neumann
architecture where memory and data computing units are phy-
sically separated. They usually first convert analog neural signals
to digital signals and then compress10,11 and process them in the
digital domain9,12 using various application-specific integrated
circuits (ASICs). Based on this approach, various interesting
demonstrations have been made5,6,10,11,13–15. However, the
design of such systems is still facing many challenges, such as
power budget, delay and scalability, especially in order to catch up
with the exponentially increasing number of recording sites in
state-of-the-art neural probes12,13,16–18. Moreover, this conven-
tional approach is fundamentally different from how brain pro-
cesses information that is in analog and continuous fashion. The
conversion and compression might not only cause substantial
power consumption and delay19,20 but also result in information
loss, which would decrease processing accuracy. Alternatively,
bioinspired and biomimetic design strategies have been recently
used for invasive neural probes towards structurally and func-
tionally stable interfaces21–24. These inspire us to leverage new
devices that are analogous to the brain to process large-volume
analog neural signals for future BMIs.

For this purpose, memristors could provide an appealing
platform because they rely on field-driven ion movements to
modulate their conductance, which emulate the biological beha-
viors of synapses and neurons in the brain25–32. First, as a non-
volatile memory, memristors have been demonstrated to be
highly efficient for in-memory computing25,33, which is similar to
the in situ information processing in the brain. Second, mem-
ristors could directly process analog signals34,35, and parallel
computing is also feasible in the form of cross-point arrays36–38.
Last, but equally important, memristors have been shown to be
fast and highly scalable down to a few nanometers39, which could
enable high-throughput processing of large-volume neural sig-
nals. Therefore, bio-plausible memristors could be a natural
bridge between the brain and external circuits for future BMIs.

In this work, we propose a memristor-based neural signal
analysis system for next-generation BMIs. As a proof-of-concept
demonstration, we use memristor arrays to implement both long-
tap finite impulse response (FIR) filter bank (as a signal pre-
processor) and perceptron neural network (as a decoder) in one
model system to demonstrate filtering and identifying epilepsy-
related brain activities. Owing to the excellent I–V linearity and
analog switching behaviors of our memristors, the system
achieves a high accuracy over 93.46% while showing more than
two orders of magnitude advantage in power efficiency compared
to state-of-the-art CMOS systems.

Results
Design of memristor-based neural signal analysis system.
Figure 1 and Supplementary Fig. 1 schematically illustrate the
memristor array-based neural signal analysis system and the
design of a complete BMI by integrating it with neural probes.
The memristor array has the central role in such a BMI as it
translates the neural signals into control commands for the
external effectors, such as a prosthesis or a mouse. The array of
memristors with analog switching behaviors, where the device

conductance can be continuously tuned, could carry out parallel
analog computing via physical laws. It thus provides a useful
hardware platform to run various signal analysis algorithms
while taking advantages of its high parallelism and efficiency in
analog computing. For instance, memristor arrays can imple-
ment not only signal preprocessing, such as time-domain filter-
ing and time-frequency spectrum analysis, but also decoding,
which can be considered as a classification or regression task. As
the preprocessor and decoder are typically the most critical and
computation–extensive components in BMIs, their high-
efficiency implementation would help enhance the performance
and scalability of BMIs with multiple recording sites.

As a proof-of-concept demonstration of the proposed system,
we construct memristor-based FIR filter bank as preprocessor and
memristor-based single-layer perceptron neural network as the
decoder to fulfill a typical BMI task, that is, identifying epilepsy-
related brain states from recorded neural signals (Fig. 2a and
Supplementary Figs. 2, 3).

FIR filter bank is an important tool for neural signal
processing, and has been widely used in various biomedical
applications, such as motor imagery-based BMIs40, epilepsy
detection20, and speech synthesis3. The design of FIR filters is one
of the bottlenecks in conventional neural signal processing ASICs
because of high power and delay20,41. In our system, the FIR filter
bank can be implemented by memristor array, which has the
advantage of parallel analog computing so that the results of
multiple FIR filters can be computed at one time, significantly
reducing the computation power and delay. There have been
proposals of designing FIR filters using a memristor crossbar
structure; however most of them remain on the simulation
level42,43, and the experimental demonstration so far has been
limited to a single 6-tap FIR filter using only six memristors44. In
this work, we experimentally implement a long-tap FIR filter
bank on a memristor array, which is more useful in practical
applications. As the filter bank coefficients are stored in the
memristor array, the output currents under input voltages
represent the filter results. The basic principles of FIR filter bank
implementation are described in the “Methods” section.

In the selection of neural signals for analysis, we choose local
field potential (LFP) because they are found to be very useful in
biomedical application, such as disease diagnosis15,45,46 and
BMIs41,47,48. Besides, the relatively low sample frequency makes
them suitable for real-time processing with low-power electronics
in BMIs5,47. For the system demonstration, we use the neural
signals from the widely used Bonn Epilepsy Dataset (see
“Methods” for more information), which are LFP signals
recorded in real-world setting, for identifying epilepsy-related
brain states (normal, interictal, and ictal) using our memristor-
based system. The normal state indicates the subject is normal
and has no epileptic neural activity. Both interictal and ictal states
could be observed from epilepsy patients. The former means the
patient is during the interval between epileptic seizures while the
latter shows an epileptic seizure is happening inside the brain. It
should be noted that, neural probes, which are commercially
available, are not experimentally integrated here to complete the
BMI as they are not the focus of this study. Besides, since
algorithms like FIR filter are generic for various signal processing,
we expect our memristor-based system to be able to seamlessly
work with many different types of neural probes.

Frequency-related information in neural signals could help
distinguish different brain states. There is evidence that the brain
dynamics are related to neural signals in several specific
frequency bands including delta (δ) band (0.5~4 Hz), theta (θ)
band (4~8 Hz), alpha (α) band (8~12 Hz), beta (β) band (12~30
Hz), and so on41,49,50. Prior works41,51 have shown that epilepsy-
related brain activities can be reflected in δ, θ, α, and β bands. So
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an FIR filter bank with four band-bass filters is designed and then
implemented using memristors to generate the waves in
corresponding frequency bands (Fig. 2a). Figure 2b shows how
a neural signal is filtered in the memristor array. The coefficients
of the designed filters are first mapped onto the memristor array
as the device conductance values. We set the filter order as 120.
As a result, 242 memristors are utilized to represent one filter
with 121 coefficients, and 968 memristors are involved for the
entire filter bank (see “Methods” and Supplementary Fig. 4 for
more details of the filter design). A clip of analog voltage signal
that contains the information of the brain state (i.e., normal,
interictal, or ictal) is then applied to the memristor array. The
sums of output currents are the filtered results from the filter
bank at each time step. In this manner, the memristor array filters
the input neural signals into the four frequency bands (δ, θ, α, and
β), whose waveforms reflect the corresponding brain state.

After that, several biomarkers, such as the waveform amplitude
and energy at each frequency band, are extracted as important
features (see “Methods”) to be fed into a single-layer perceptron
neural network to identify the epilepsy-related brain state49,50.
The implementation of this neural network can be realized in
another memristor array. Here, the weights of the neural network
are trained offline and then mapped onto the memristor array
(see “Methods” for more details of the neural network design).
The inference process of the neural network is illustrated in
Supplementary Fig. 3. The input voltages representing the
extracted biomarkers are applied to the memristor array to
obtain the output current vector, where the amplitudes of each
element are used to identify the corresponding brain state.

Device characterizations of analog memristors. To realize the
filtering and identification of analog neural signals with high
accuracy, memristors with good analog switching behaviors and
current-voltage (I–V) linearity are required. Here we use a 1k-cell
array of TiN/HfOx/TaOy/TiN memristors in one-transistor-one-

resistor (1T1R) cell structure to implement the neural signal
analysis system (Supplementary Fig. 5a–c). Our memristor device
shows excellent bidirectional analog switching behavior (Fig. 2c),
which enables the device conductance to be tuned continuously in
both SET and RESET processes. It allows us to map the filter
coefficients accurately and reconfigure the upper and lower cutoff
frequencies of the filter conveniently. To demonstrate the excel-
lent programmability of our memristor array, the letter “BMI” is
written by mapping 2006 devices to different conductance states
(Supplementary Fig. 5d).

In addition, good I–V linearity in different conductance states
is achieved (Fig. 2d). Importantly, the linear I–V characteristics
ensure that the memristors exhibit the same device conductance
under different read voltages; otherwise, there would be errors in
the processing results. It also allows us to directly use analog
voltages as inputs while avoiding the conversion of neural signals
to reduce the power consumption and computation delay. It
should be noted that this is distinct from the conventional
method of using the number of voltage pulses as digital inputs to
encode the information for computation, which has been done in
many previous works19,36,38.

Filtering epilepsy-related neural signals. Following the above-
described procedures, the FIR filter bank is first implemented in
the memristor array. Figure 3a shows the conductance map (in
the range of 2~20 μS) of the array for the implementation of the
filter bank. Figure 3b compares the measured and target differ-
ential conductance values, showing good consistency between
these two and hence excellent mapping results. Figure 3d, e and
Supplementary Fig. 6 display the filtered results of typical normal,
interictal and ictal neural signals in Fig. 3c that are randomly
selected from the dataset. The software and experimental results
match well with each other, and the difference between these two,
which are mainly owing to the non-ideal device characteristics,
are analyzed in Fig. 3f, g. The average error for the four filters is

Brain
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Biological neural network Synapse Memristor

Plasticity Biological plausibilitya

Neural probe Effectors

Commands
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Memristor array

Neural signals
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Fig. 1 Memristor-based neural signal analysis system for brain–machine interfaces (BMIs). a Motivations of using memristors for neural signal analysis.
Memristor is analogous to biological synapse as they both show synaptic plasticity (change of its current state) via ion movements, and it has the ability to
process analog signal directly as the neurons and synapses do. The memristor array further enables parallel processing of signals, which is one of the key
features of the brain. b Conceptual diagram of a future BMI that integrates memristor-based neural signal analysis system. Neural activities recorded by the
neural probes are analyzed through the memristor array to obtain commands for effectors in various BMI applications.
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−0.1 μV and the standard deviation is 1.3 μV. As we can see from
these figures, the average error and standard deviation are small
enough compared with the amplitude of input signals for the
filtered results of all the four filters. For example, the standard
deviation is <1.7% of the peak-to-valley value of the normal
signal, whereas the average error is just ~1.0%. Therefore, the
filtered results retain sufficient information of the input neural
signals, which then can be used to faithfully identify the brain
state as to be demonstrated later.

Identifying brain states from filtered signals. To validate the
idea that our filtered results has retained sufficient information

for identifying brain state, we further construct a single-layer
perceptron neural network with 21-input neurons and the output
neurons in another memristor array. To compare the perfor-
mance of software-calculated and memristor-based filter banks,
feature vectors are extracted from both software-calculated and
memristor array-filtered waveforms. Each feature vector of bio-
markers corresponding to a clip of the input neural signal (see
“Methods”) is fed as input voltage pulses for inference. All the
biomarkers extracted from the software-calculated results con-
stitute the dataset S, whereas all the biomarkers extracted from
the memristor array-filtered waveforms constitute the dataset M.
Each extracted biomarker dataset contains 1800 samples, which
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are labeled as “normal”, “interictal”, or “ictal” accordingly. Two
neural networks with the same structure are trained and tested on
both datasets.

Figure 4a shows the input feature vectors of 540 testing
samples. The memristor array-based neural network uses 126
devices to implement 63 synapses with differential weights, and
their conductance map after training on dataset M is shown in
Fig. 4b. Figure 4c displays the output values for the 540 testing

samples. The identification accuracies of the neural networks with
software-trained weights using dataset S (S.S.), software-trained
weights using dataset M (M.S.) and experimentally mapped
weights after training on dataset M (M.M.) are compared in
Fig. 4d. As we can see, the M.S. simulation has achieved nearly
the same accuracy as the S.S. simulation (95.78% ± 0.27% versus
96.41% ± 0.39%, both of which are averaged from 10 trials). This
result affirms that the memristor array-based filter bank retains
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sufficient information for identification and it performs as well as
the software implementation. In comparison, the M.M. experi-
ment result shows a small degradation in accuracy (93.46% ±
0.44% versus 96.41% ± 0.39%), which can be attributed to the
non-ideal device characteristics of the memristor array. It is
expected that this issue could be alleviated by using a larger
neural network52 or new training strategies53.

Performance evaluation and comparison. Similar to state-of-
the-art CMOS designs, the effect of noise is considered in our
memristor-based system. In the hardware implementation of our
FIR filter bank and perceptron neural network using our mem-
ristor arrays, both the filter coefficients and synaptic weights are
represented by the device conductance of memristors. Therefore,
the noise effects, such as read noise, conductance variations, and
fluctuations, have already been incorporated in the filtered and
classification results. For example, Supplementary Fig. 7 shows
the memristor conductance distribution of eight typical con-
ductance levels during mapping and read operations. In addition,
the neural signals used in this work are adopted from the widely
used Bonn Epilepsy Dataset, and they already captured back-
ground noises during real-world recording, including instrument
noise and neural signal inherent noise. In the presence of those
non-ideal factors, the achieved high accuracy in identifying
epilepsy-related brain states in this work strongly indicates that
our memristor-based system is robust to various noises in the
hardware implementation.

Besides the achieved high accuracy, memristor-based analog
computing system also provides an appealing platform to design

low-power and high-efficiency neural signal analysis system for
BMIs. To compare the performance of memristor-based system
with state-of-the-art CMOS-based ASICs, we estimate the power
efficiency of both systems as shown in Fig. 4e. The memristor
array-based system achieves a superior power efficiency of
1.4 μW/class, where most of the power is consumed by the filter
bank as the size of the perceptron network for identification is
relatively small. In comparison, a typical CMOS system is
estimated to have a power efficiency of 551.0 μW/class (see
“Methods” for details). As a result, our memristor-based system
shows a ~400× advantage in the power efficiency compared with
state-of-the-art CMOS systems.

Such advantage mainly comes from the fact that analog neural
signals can be directly processed on memristor arrays without the
need of neural signal conversion and compression that inevitably
consumes significant power and energy. At the same time, the in-
memory computing capability of memristors also minimizes the
energy and time needed for fetching the filter coefficients or
weights in conventional von Neumann architecture. These unique
merits make memristor arrays an appealing candidate for high-
throughput analog neural signals analysis in future fully implanted
BMIs.

Discussion
In summary, we have proposed a memristor-based neural signal
analysis system with high efficiency for future BMIs. Memristor
arrays are used to implement the filter bank and neural network
to demonstrate the filtering and identification of epilepsy-related
neural signals and brain states. The memristor-based system has
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achieved a high accuracy of ~93.46% while achieving a nearly
400× advantage in power efficiency compared to state-of-the-art
CMOS systems. Such computation advantages could be further
enhanced by future device optimization to address the non-ideal
characteristics. Our work experimentally demonstrates the
potential of memristor-based systems for low-power and high-
energy-efficiency in situ analysis towards next-generation BMIs
that could have millions of neural recording sites. Future work is
required to prototype a fully implanted BMI by monolithically
integrating multi-functional memristor-based signal analysis
modules with state-of-the-art neural probes.

Methods
Epilepsy-related signals. In the task of filtering and identifying epilepsy-related
signals, all the neural signals of volunteers or patients in normal, interictal, and ictal
periods are from University Hospital of Bonn46. There are 100 neural signal clips in
total for each class and all the clips from the above three classes are used. Each clip
of raw neural signals has 4096 samples and is divided into six segments, where each
segment contains 600 samples and the rest 496 samples are discarded. In this
demonstration, as Supplementary Fig. 8 illustrates, the signals represented by the
values with digitalized levels in the dataset are transformed to voltage pulses with
analog amplitudes to be applied on the memristor array.

Memristor array fabrication. One 1T1R cell consists of an NMOS transistor
whose drain is connected to a resistive switching memory to serve as the selector.
For the memristor array used in this work, the transistor array is fabricated in a
commercial foundry using 0.13 μm standard CMOS process, and the memristor
has a material stack of TiN/HfOx/TaOy/TiN. Details about the device fabrication
can be found in our previous works36,54.

Memristor array-based FIR filter bank. In general, a filter bank consisting of
multiple FIR filters can be mathematically expressed as55:

ym nð Þ ¼
XK

k¼0

x n� kð Þhm kð Þ; m ¼ 1; 2; :::;Mð Þ ð1Þ

where x represents the input neural signal. k and K are the filter coefficient index
and the filter order, respectively. n is the index of time step. m and M are the
sequence number and the total number of filters respectively. hm represents the
impulse response of the mth filter, whose pattern determines the property of the
mth filter.ym represents the filtered signal of the mth filter.

To implement the filter bank in memristor array, Eq. (1) can be re-written as
follows:

yn ¼ xnH ð2Þ
where xn and yn are the input and output signal row vectors in the nth time step,
respectively. The matrix H represents all the filter coefficients for the filter bank.
Elements in the mth column of H are the coefficients of the mth filter, and they can
be represented by the device conductance in a memristor array for hardware
implementation. To implement a filter bank whose filter coefficients may have both
positive and negative values, we use two memristors as a differential pair to
represent one coefficient. In this manner, the implementation of the filter bank in a
memristor array can be expressed as:

Im nð Þ ¼ PK

k¼0
V n� kð Þ Gm

þ kð Þ � Gm
� kð Þ� �� � ¼ PK

k¼0

V n� kð ÞGm
þ kð Þ þ �V n� kð Þ½ �Gm

� kð Þ� �
; ðm ¼ 1; 2; ¼ ;MÞ

ð3Þ

where V is the input voltage vector, and ðGm
þðkÞ � Gm

�ðkÞÞ represents the mapped
element at the cross-point of the kth row and mth column of the filter coefficients
matrix H. Im is the output current vector of the mth filter.

Memristor-based filter design. All the filters are first designed using MATLAB
(version: 2018b). The filter order is chosen by comparing different waveforms of the
filtered signals with the same parameter settings, i.e., the same lower and upper cutoff
frequencies, but with different orders from 40 to 200 (see Supplementary Fig. 4).

Memristor-based neural network. We use a 21 × 3 single-layer perceptron neural
network to identify the signal type from the filtered results. For each signal in the
dataset, to extract the 20 biomarkers/features from the output currents of the filter
banks, first, the output currents are amplified and offset to obtain the filtered
voltage waveforms. Then we calculate the maximum value, minimum value, mean
value, sum of absolute value and sum of energy for the voltage waveforms to obtain
the 20 biomarkers (five features for each of four waveforms). These computations
are currently done by software in this work for simplicity but in principle they
could also be implemented by memristor-based electronics56,57. Furthermore, we
normalize the extracted biomarkers to the range of 0.1–0.3 V by software using a

linear transformation (e.g., y= a × x+ b, x: input; y: output; a, b: amplification
factor and offset), and then use them as the input voltages for the memristor-based
neural network. The dataset contains 1800 samples, i.e., 600 samples for each signal
type. In all, 30% of the total dataset is used as the testing set and the remaining 70%
forms the training set. During the training process, we use the sigmoid activation
function and the backpropagation algorithm is used to train the weights in neural
network.

Power efficiency estimation. The power efficiency is related to the sampling fre-
quency of the neural signals and also the number of recording channels. Here, a one-
channel 0.1 s signal clip, which is sampled at 10 kHz is as the standard signal for
power estimation. Then for 1 s duration, there are 10 standard signal clips to be
processed. The power of a read operation for a memristor is calculated as (0.2V)2 ×
20 μs= 0.8 μW. When the filter bank that includes four 120-order (121-tap) filters is
implemented using differential pairs, (0.8 μW×121 × 2+ 0.50mW) × 50 ns × 4=
138.7 pJ/sample is calculated as the power for each sample point. Here, 0.50mW is
the estimated power of trans-impedance amplifier (TIA) to convert the output current
of memristors (in the typical range from −40 μA to 100 μA) into voltage. Then
the power efficiency for filtering is estimated as 138.7 pJ/sample × (1000 samples)/(1 s/
10)= 1.39 μW/class. For the signal-layer perceptron neural network with 21 ×3=
63 weights, the power efficiency is calculated as (0.8 μW×21 × 2+ 0.10mW)× 3 ×
50 ns/(1 s/10)= 0.20 nW/class, where 0.10mW is the estimated TIA power for each
output neuron (current in the typical range between −5 μA and 5 μA). A typical
advanced FIR filter design for neural signal preprocessing based on CMOS technology
(under 130 nm technology node) is described in ref. 20. This work includes a total
effective number of 64 16-tap FIR filters for neural signal filtering and these filters
consume 0.53mW when processing neural signals sampled at a frequency of 7.1 kHz.
If they are directly scaled up to a filter bank with four 121-tap filters working at
10 kHz, then the power efficiency is estimated as 0.53mW/(64 × 16) × (4 × 121)/
(7.1 kS/s) × 10 kS/s= 352.0 μW/ class. For a typical decoder designed with CMOS
technology, described in ref. 14, 273 μJ is consumed by a support vector machine
classifier with a (18 × 3 × 8)-inputs feature vector for every 2 s signal epoch. So, if it
is scaled to a classifier with 21-input dimension and works at the classification rate of
10Hz, the power efficiency is estimated as (273 μJ/(2 s))/(18 × 3 × 8 inputs) × 21
inputs/(2 class) × 3 class/(0.5 Hz)×10 Hz= 199.0 μW/class. From the above estima-
tions, the overall power efficiency is ~1.4 μW/class for the memristor-based system
and 551.0 μW/class for the CMOS-based system.

Data availability
The source data for Fig. 2c–d, 3, and 4 are provided in separate Source Data files. Other
data that support the findings of this study are available from the corresponding author
upon reasonable request. Source data are provided with this paper.

Code availability
The codes that support the findings of this study are available from the corresponding
author upon reasonable request.
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