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ABSTRACT L-Cysteine is essential for virtually all living organisms, from bacteria to higher eukaryotes. Besides having a role in
the synthesis of virtually all proteins and of taurine, cysteamine, glutathione, and other redox-regulating proteins, L-cysteine has
important functions under anaerobic/microaerophilic conditions. In anaerobic or microaerophilic protozoan parasites, such as
Entamoeba histolytica, L-cysteine has been implicated in growth, attachment, survival, and protection from oxidative stress.
However, a specific role of this amino acid or related metabolic intermediates is not well understood. In this study, using stable-
isotope-labeled L-cysteine and capillary electrophoresis-time of flight mass spectrometry, we investigated the metabolism of
L-cysteine in E. histolytica. [U-13C3, 15N]L-cysteine was rapidly metabolized into three unknown metabolites, besides L-cystine
and L-alanine. These metabolites were identified as thiazolidine-4-carboxylic acid (T4C), 2-methyl thiazolidine-4-carboxylic acid
(MT4C), and 2-ethyl-thiazolidine-4-carboxylic acid (ET4C), the condensation products of L-cysteine with aldehydes. We demon-
strated that these 2-(R)-thiazolidine-4-carboxylic acids serve for storage of L-cysteine. Liberation of L-cysteine occurred when
T4C was incubated with amebic lysates, suggesting enzymatic degradation of these L-cysteine derivatives. Furthermore, T4C and
MT4C significantly enhanced trophozoite growth and reduced intracellular reactive oxygen species (ROS) levels when it was
added to cultures, suggesting that 2-(R)-thiazolidine-4-carboxylic acids are involved in the defense against oxidative stress.

IMPORTANCE Amebiasis is a human parasitic disease caused by the protozoan parasite Entamoeba histolytica. In this parasite,
L-cysteine is the principal low-molecular-weight thiol and is assumed to play a significant role in supplying the amino acid dur-
ing trophozoite invasion, particularly when the parasites move from the anaerobic intestinal lumen to highly oxygenated tissues
in the intestine and the liver. It is well known that E. histolytica needs a comparatively high concentration of L-cysteine for its
axenic cultivation. However, the reason for and the metabolic fate of L-cysteine in this parasite are not well understood. Here,
using a metabolomic and stable-isotope-labeled approach, we investigated the metabolic fate of this amino acid in these para-
sites. We found that L-cysteine inside the cell rapidly reacts with aldehydes to form 2-(R)-thiazolidine-4-carboxylic acid. We
showed that these 2-(R)-thiazolidine-4-carboxylic derivatives serve as an L-cysteine source, promote growth, and protect cells
against oxidative stress by scavenging aldehydes and reducing the ROS level. Our findings represent the first demonstration of
2-(R)-thiazolidine-4-carboxylic acids and their roles in protozoan parasites.
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In all living organisms from bacteria to higher eukaryotes,
L-cysteine is implicated in a number of essential biochemical

processes, including stability, structure, regulation of catalytic ac-
tivity, and posttranslational modifications of various proteins (1).
L-Cysteine is required for the synthesis of a variety of biomol-
ecules, including methionine, glutathione, trypanothione, coen-
zyme A, hypotaurine, taurine, and cysteamine, as well as iron-
sulfur (Fe-S) clusters, which are involved in electron transfer,
redox regulation, nitrogen fixation, and sensing for regulatory
processes (2, 3). The fact that reduced sulfur in L-cysteine (thiol,

SH) is strongly nucleophilic makes it react easily with electrophilic
compounds. However, the highly reactive thiol group also makes
L-cysteine rather toxic to the cell (4, 5). Therefore, L-cysteine itself
is maintained at relatively low levels, sufficient for protein synthe-
sis and the production of essential metabolites but below the
threshold of toxicity (5).

Entamoeba histolytica is an enteric protozoan parasite that
causes colitis, dysentery, and extraintestinal abscesses in millions
of inhabitants of areas of endemicity (6). This parasite is generally
considered microaerophilic, because it consumes oxygen and tol-

RESEARCH ARTICLE crossmark

November/December 2014 Volume 5 Issue 6 e01995-14 ® mbio.asm.org 1

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1128/mBio.01995-14&domain=pdf&date_stamp=2014-11-4
mbio.asm.org


erates low levels of oxygen pressure. However, the parasite lacks
most of the components of antioxidant defense mechanisms, such
as catalase, peroxidase, glutathione, and the glutathione-recycling
enzymes glutathione peroxidase and glutathione reductase (7, 8).
L-Cysteine is the principal low-molecular-weight thiol in E. histo-
lytica trophozoites and is required for the survival, growth, attach-
ment, elongation, motility, gene regulation, and antioxidative
stress defense of this organism (9–12). There are a number of
peculiarities in the metabolism of sulfur-containing amino acids
in E. histolytica (Fig. 1). First, the organism lacks both forward and
reverse transsulfuration pathways and thus is unable to intercon-
vert L-methionine and L-cysteine (13). Second, it possesses methi-
onine �-lyase (MGL; EC 4.4.1.11), an enzyme that directly de-
grades L-methionine, L-homocysteine, and L-cysteine (14, 15).
Third, E. histolytica possesses a pathway for de novo
S-methylcysteine (SMC)/L-cysteine biosynthesis (16–18). Al-
though de novo L-cysteine biosynthesis occurs in a wide range of
bacteria and plants, L-cysteine production per se has not been
demonstrated in E. histolytica trophozoites cultivated in vitro. In-
stead, the pathway is assumed to be involved primarily in the
synthesis of SMC (18). Consistently with the notion that this path-
way does not yield L-cysteine, amebic trophozoites require high
concentrations of L-cysteine in culture for growth, which can be
replaced by D-cysteine, L-cystine, or L-ascorbic acid, indicating
that the extracellular cysteine/cystine, thiols, or reductants can
play an interchangeable role (19). In most eukaryotes, where glu-
tathione is the major thiol, L-cysteine is maintained at levels
manyfold lower than those of glutathione (20). In contrast, E. his-
tolytica, due to loss of glutathione metabolism, relies on L-cysteine
as a major redox buffer (9, 13, 21). Therefore, the significance of

L-cysteine and its metabolism in this organism remains a conun-
drum.

The premise that extracellular or incorporated L-cysteine is
important for cellular activities and homeostasis in E. histolytica
prompted us to study the metabolic fate of extracellular L-cysteine
in this parasite. Stable-isotope tracing is a powerful technique to
investigate the metabolism of different carbon and nitrogen
sources in microbial pathogens, such as Salmonella enterica sero-
var Typhimurium (22), Leishmania mexicana (23), Toxoplasma
gondii (24), and Plasmodium falciparum (25). Stable-isotope la-
beling has provided vast improvements in both metabolite iden-
tification and pathway characterization (26). Isotopic enrichment
in a wide range of intracellular and secreted metabolites can read-
ily be measured using either mass spectrometry (MS) or nuclear
magnetic resonance (NMR), providing quantitative information
on metabolic networks (27–29). In this study, we have exploited
this approach by using 13C3- and 15N1-labeled cysteine sources
and capillary electrophoresis-time of flight MS (CE-TOFMS) to
unveil the fate of L-cysteine metabolism in E. histolytica. Further-
more, we have demonstrated the physiological role of the identi-
fied L-cysteine derivatives.

RESULTS AND DISCUSSION
In vivo derivatization of stable-isotope-labeled L-cysteine by
E. histolytica trophozoites. To investigate L-cysteine metabolism
in E. histolytica, trophozoites were cultured in the presence of
8 mM stable-isotope (U-13C3, 15N1)-labeled L-cysteine in
L-cysteine-deprived BI-S-33 medium and the turnover of intracel-
lular metabolites was monitored by CE-TOFMS at 0.5, 3, 9, and
24 h (see Table S1 in the supplemental material). Upon the addi-

FIG 1 Scheme of transsulfuration, L-cysteine uptake, and sulfur-assimilatory de novo cysteine biosynthesis in E. histolytica. Abbreviations: CS, cysteine synthase
(O-acetyl-L-serine sulfhydrylase, EC 2.5.1.47); MAT, methionine adenosyltransferase (S-adenosyl-L-methionine synthetase, EC 2.5.1.6); MGL, methionine
�-lyase (L-methioninase, EC 4.4.1.11); MT, various methyltransferases (EC 2.1.1.X); NifS, cysteine desulfurase (EC 2.8.1.7); OAS, O-acetylserine; SAH, S-
adenosylhomocysteine; SAHH, adenosylhomocysteinase (S-adenosyl-L-homocysteine hydrolase, EC 3.3.1.1); SAM, S-adenosylmethionine; SAT, serine
O-acetyltransferase (EC 2.3.1.30); SMC, S-methylcysteine.
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tion of [U-13C3, 15N]L-cysteine to the culture, the levels of [13C3,
15N]L-cysteine increased, and [13C3, 15N]L-cysteine replaced un-
labeled L-cysteine after 3 to 9 h (Fig. 2A). L-Cysteine was metabo-
lized into several metabolites. First, L-cysteine was derivatized into
three structurally unknown metabolites (see below). Second,
L-cysteine was oxidized to L-cystine. The concentration of both

[13C3, 15N1]L-cystine and [13C6 15N2]L-cystine increased up to
24 h, whereas the unlabeled cystine remained constant. The slow
and incomplete replacement of unlabeled L-cystine (and also
L-cysteine) suggests the presence of an inaccessible pool of
L-cysteine and L-cystine in the cell (Fig. 2A). Third, [13C3, 15N1]L-
cysteine was metabolized into L-alanine in a reaction catalyzed by

FIG 2 L-Cysteine metabolism in E. histolytica. (A) Relative intracellular concentrations of various unlabeled and isotope-labeled L-cysteine-derived metabolites
in E. histolytica trophozoites. Trophozoites were cultured in the presence of 8 mM stable-isotope-labeled L-cysteine (U-13C3, 15N) in L-cysteine-deprived medium
for 0, 0.5, 3, 9, and 24 h. The bottom center plot is a magnified (at the y axis) plot of labeled L-alanine, shown at the bottom left. The x axis represents time in hours,
whereas the y axis represents the relative peak areas (RPA) of signal detected with mass spectrometric analysis per 1 � 106 cells. Metabolite data are represented
as means � standard deviations (SD) of results from 3 biological replicates. (B) Metabolic flow chart illustrating L-cysteine metabolism in E. histolytica
trophozoites. Red dots denote 13C atoms, whereas asterisks denote 15N atoms arising from [13C3, 15N1]L-cysteine.
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cysteine desulfurase activity, likely by NifS (30). A metabolic flow
chart in Fig. 2B depicts incorporation of labels from [U-13C3,
15N1]L-cysteine into the detected metabolites in E. histolytica tro-
phozoites.

Discovery of L-cysteine-derived T4Cs in E. histolytica tro-
phozoites. We detected three unknown labeled metabolites de-
rived from L-cysteine. These metabolites had never been demon-
strated in any protozoan parasites, including E. histolytica. Based
on the accurate mass measurements, the elemental composition
of the metabolites was calculated using the elemental composition
calculator (analyst QS software). The elements C, N, O, H, P, and
S were automatically considered. After chemical formulas were
proposed (see Table S2 in the supplemental material), we searched

through a number of databases for the possible compounds and
structures, including PubChem (http://pubchem.ncbi.nlm.nih
.gov/) and ChemSpider (http://www.chemspider.com/). Finally,
their identities were confirmed by comparison to commercially
available reference standards (Table S2). The three unknown me-
tabolites were unequivocally identified as thiazolidine-4-
carboxylic acid (T4C), 2-methyl thiazolidine-4-carboxylic acid
(MT4C), and 2-ethylthiazolidine-4-carboxylic acid (ET4C). The
changes in the profiles of these three labeled metabolites were
similar; levels of these metabolites increased for up to 3 h and then
slightly decreased, suggestive of further conversion or decompo-
sition (Fig. 2A). These metabolites are most likely the condensa-
tion products of L-cysteine with aldehydes (Fig. 3). T4C is made of

FIG 3 Proposed scheme of 2-(R)-thiazolidine-4-carboxylic acid biosynthesis in E. histolytica trophozoites. Solid lines represent the steps catalyzed by the
enzymes whose genes are present in the genomes, whereas dashed lines indicate those likely absent in the genome or not identified so far. Abbreviations: ADH,
alcohol dehydrogenase; ALDH, aldehyde dehydrogenases; CoA, coenzyme A; DAK, dihydroxyacetone kinase; DAP, dihydroxyacetone phosphatase; DHA,
dihydroxyacetone; DHAP, dihydroxyacetone phosphate; GDH, glycerol dehydrogenase; GK, glycerol kinase; G 3-P, glyceraldehyde 3-phosphate; G3PDH,
glycerol 3-phosphate dehydrogenase; GPP, glycerol 3-phosphate phosphatase; MGL, methionine �-lyase; PFOR, pyruvate: ferredoxin oxidoreductase; TD,
threonine dehydratase; TK, transketolase; TPI, triose phosphate isomerase.
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L-cysteine and formaldehyde (31). In Entamoeba, formaldehyde is
likely produced by the action of transketolase (Fig. 3). In the E. his-
tolytica genome database, we identified five possible transketolase
genes (EHI_011410, EHI_002160, EHI_177870, EHI_157770,
and EHI_082380). MT4C is the condensation product of
L-cysteine with acetaldehyde. Acetaldehyde is a strongly electro-
philic compound that is endogenously produced in ethanol me-
tabolism by alcohol dehydrogenase (ADH) (32). Its high reactivity
toward biogenic nucleophiles has toxicity as a consequence (33),
and thus acetaldehyde needs to be immediately removed from the
cell. In E. histolytica, acetaldehyde is produced from the fermen-
tation of glucose to ethanol, with pyruvate, acetyl coenzyme A,
and acetaldehyde as intermediates (34). E. histolytica possesses at
least three enzymes with ADH activity. E. histolytica ADH1
(EhADH1), which is NADP dependent, shows a marked prefer-
ence for branched-chain alcohols, whereas EhADH2 prefers eth-
anol as a substrate (35). It has been reported that EhADH2 may be
solely responsible for the conversion of acetyl coenzyme A to ac-
etaldehyde (36). ET4C is formed by condensation of propional-
dehyde with L-cysteine. Propionaldehyde in Entamoeba is gener-
ated through the catabolism of the amino acids L-methionine and
L-threonine (Fig. 3).

The formation of these 2-(R)-thiazolidine-4-carboxylic acids
in vivo may therefore provide a possible mechanism for the detox-
ification of metabolically produced aldehydes in the cell. It was
previously reported that at physiological pH, the spontaneous re-
action between formaldehyde and L-cysteine to form T4C is rapid
and chemically favored (31) and that L-cysteine is immediately
directed toward the formation of thiazolidines when these two
compounds are added to isolated rat liver homogenate (37), con-
sequently scavenging the toxicity of formaldehyde (38). In rats,
T4C was shown to protect the liver against the hepatotoxic effects
of ethanol, carbon tetrachloride (39), bromobenzene (40), ace-
toaminophene (41), tetracycline (42), and thiourea (43). The an-
tiaging effects of T4C were demonstrated in Drosophila melano-
gaster (44) and mice (45), and its antitumor effect was
demonstrated clinically (46). It was suggested that T4C is an effec-
tive nitrite-trapping agent in the human body and may block en-
dogenous formation of carcinogenic N-nitroso compounds (47).
Despite evidence from such studies, the metabolic fate of T4C is
not well established, except in one study where the metabolic car-
bon atom of T4C was used as a source for the synthesis of the RNA
bases guanine and uracil in Escherichia coli (48).

Oxidation and decomposition of T4C. It has previously been
shown that T4C is oxidized by E. coli (48), rat liver mitochondria
(43), and barley (49). Oxidation of T4C by purified rat liver mi-
tochondria yielded N-formyl-cysteine as a major end product
(43). T4C is first converted to 2,3-thiazoline-4-carboxylate
(Fig. 4A), 2,3-thiazolidine-4-carboxylate, and then N-acetyl (or
formyl or propinyl)-L-cysteine by ring opening and finally gives
rise to acetate (or formate or propionate) and L-cysteine by
L-proline dehydrogenase (EC 1.5.99.8) (Fig. 4A) (50). Whether an
additional enzyme is required to convert N-formyl-L-cysteine to
formate and L-cysteine is still not clear (50). However, it was sug-
gested that the hydrolysis of N-formyl-L-cysteine occurs nonen-
zymatically (50).

To examine whether these thiazolidine derivatives can liberate
L-cysteine in amebic trophozoites, we chose T4C as an example to
investigate the fate of these thiazolidine carboxylic acids. We mon-
itored T4C degradation in mixtures of different concentrations (1

to 100 mM) of T4C and amebic lysates. When T4C was incubated
with ameba lysates, their time- and dose-dependent increase in
the concentration of L-cysteine was observed (Fig. 4B), suggesting
that the ameba lysates contain substances such as enzyme(s) that
decompose T4C. Since the structure of T4C resembles that of
L-proline, with a replacement of a CH2 group in L-proline by a
sulfur atom in T4C (also called thioproline), it was suggested that
L-proline dehydrogenase is involved in T4C degradation (50).
However, a homologous protein appears to be absent in the E. his-
tolytica genome, although more than 55% of the genes in the
E. histolytica genome remain unannotated (51).

Metabolic fate of T4C, MT4C, and ET4C. In order to further
elucidate the metabolic fate of 2-(R)-thiazolidine-4-carboxylic ac-
ids in vivo, we cultured the cell with the medium containing
stable-isotope-labeled L-cysteine for 24 h, replaced the medium
with the normal BI-S-33 medium lacking L-cysteine, and contin-
ued culturing for up to 24 h. A rapid decrease in the concentra-
tions of both labeled and unlabeled MT4C, ET4C, and L-cysteine
was observed after a short (0.5-h) lag period (Fig. 4C). We also
found a drastic immediate decrease, without a lag period, in the
concentrations of labeled T4C and L-cystine (Fig. 4C). Together
with the fact that T4C is the most abundant 2-(R)-thiazolidine-4-
carboxylic acid, this finding suggests that T4C is most immedi-
ately accessible and decomposed under L-cysteine deprivation.
The fact that the decrease in the L-cystine concentration occurred
without a lag period, unlike with L-cysteine, suggests that L-cystine
was first reduced to L-cysteine. One of two atypical NADPH-
dependent oxidoreductases (EhNO1/2) previously characterized,
EhNO2, was shown to catalyze the NADPH-dependent reduction
of L-cystine to L-cysteine (11). The changes in the concentrations
of labeled and unlabeled N-acetyl-L-cysteine were similar to those
of L-cysteine, MT4C, and ET4C, reinforcing the premise that
MT4C is degraded via N-acetyl-L-cysteine and that these thiazoli-
dine derivatives serve as a source of L-cysteine under L-cysteine-
deficient conditions, as suggested in rat by Wlodek et al. (52).
Neither labeled nor unlabeled N-formyl-L-cysteine was detected.
This was most likely because their intracellular levels were too low
to be detected by CE-TOFMS.

We also found that L-cysteine-derived, labeled L-alanine rap-
idly decreased under L-cysteine-deprived conditions but that the
unlabeled L-alanine concentrations remained approximately 25-
to 35-fold higher than those of labeled L-alanine (Fig. 4C). These
data indicate that L-cysteine-to-L-alanine conversion by NifS, i.e.,
iron sulfur cluster formation, is immediately repressed under
L-cysteine-deprived conditions. Alternatively, L-alanine produced
from L-cysteine is rapidly secreted into the medium, as previously
reported (53). It was found that E. histolytica also produces
L-alanine as a major end product of energy metabolism (53). Al-
though L-alanine may potentially be metabolized into pyruvate by
alanine aminotransferase (EC 2.6.1.2), labeled pyruvate was un-
detectable. These data suggest that this putative alanine amino-
transferase may not be functional under the culture conditions
tested (data not shown). Since L-alanine is produced through the
catabolism of L-cysteine and also as a major end product of energy
metabolism in E. histolytica, it is conceivable that Entamoeba tro-
phozoites excrete L-alanine to expel excess nitrogen out of the cell,
as they lack a functional urea cycle (54).

Effect of T4C and MT4C on the growth of E. histolytica tro-
phozoites. Previous studies using rats suggested that T4C in a diet
may replace L-cystine and L-cysteine to promote growth and pro-
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tect the animals against oxidative stress (38, 52). In order to test
this premise in Entamoeba, we monitored the growth kinetics of
trophozoites in the presence and absence of L-cysteine, T4C, or
MT4C. As shown in Fig. 5, 2 mM MT4C supported trophozoite
growth to an extent almost comparable to that with L-cysteine,
and T4C also partially supported growth. In the absence of
L-cysteine, T4C, and MT4C, trophozoites showed only negligible
growth. The growth-supportive effect of MT4C appears to be
higher than that of T4C (Fig. 5), although the intracellular MT4C
concentrations were approximately 5-fold lower than those of
T4C.

Roles of T4C and MT4C in the antioxidative-stress defense.
2-(R)-Thiazolidine-4-carboxylic acids, including T4C are cyclic-
sulfur-containing amino acids that are analogous in molecular
structure to L-proline. It has been shown that T4C can act as an

intracellular sulfhydryl antioxidant and a scavenger of free radi-
cals and thereby protect cellular membranes and other oxidation-
prone structures in the cell from damage due to oxygen and
oxygen-derived free radicals (55). It was shown that T4C stimu-
lates oxygen uptake in rat liver mitochondria (43). As T4C plays
an important role in oxidative-defense mechanisms (55), it was of
interest to examine the effect of T4C and MT4C on the amount of
intracellular ROS. Our previous study showed that when E. histo-
lytica trophozoites were cultured under L-cysteine-limited condi-
tions for 72 h, the intracellular levels of reactive oxygen species
increased 4-fold (18). We cultivated trophozoites in L-cysteine-
deprived BI-S-33 medium for 72 h, and the medium was replaced
with L-cysteine-deprived BI-S-33 medium containing 2 mM T4C,
MT4C, or L-cysteine. After 3 h, the relative level of ROS was mea-
sured using the fluorescent indicator CM-H 2DCFDA [5-(and-6)-

FIG 4 Metabolic decomposition of 2-(R)-thiazolidine-4-carboxylic acid in E. histolytica trophozoites. (A) Schematic representation of enzymatic degradation
of 2-(R)-thiazolidine-4-carboxylic acids as previously proposed for Escherichia coli by Deutch (50). (B) Time course of T4C’s metabolism. The assay was
performed as described in Materials and Methods. The means and SD from three independent experiments performed in triplicate are shown. (C) Relative
intracellular concentrations of various unlabeled and isotope-labeled metabolites in E. histolytica trophozoites. Trophozoites were cultured in the presence of
8 mM stable-isotope-labeled L-cysteine (U-13C3, 15N) for 24 h. Then, stable-isotope-labeled L-cysteine-containing medium was replaced with L-cysteine-
deprived BI-S-33 medium, and the trophozoites were harvested at 0, 0.5, 3, 9, and 24 h of cultivation. The bottom center plot is a magnified (at the y axis) plot
of labeled L-alanine, shown at the bottom left. The x axis represents time in hours, whereas the y axis represents the relative peak areas per 1 � 106 cells. Metabolite
data are presented as means � SD from 3 biological replicates.
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chloromethyl-2=,7=-dichlorodihydrofluorescein diacetate, acetyl
ester]. We found that the intracellular levels of reactive oxygen
species in trophozoites cultured with 2 mM T4C, MT4C, or
L-cysteine were, respectively, approximately 50, 21, or 32%
lower than those in control cells (Fig. 6, bar Cys dep). These results
suggest that T4C, M4C, and L-cysteine (T4C in particular) are
important scavengers of reactive oxygen species in E. histolytica.
The level of suppression of ROS by supplemented thiazolidine-4-
carboxylic acids in the L-cysteine-deprived culture medium was
only partial (�50%). This may be because, besides the
thiazolidine-4-carboxylic acids described here, L-cysteine-derived
metabolites that are involved in the antioxidant defense mecha-
nism may exist in E. histolytica. Mackenzie and Harris were the
first to recognize the therapeutic potential of T4C in animals (43).
They noted that T4C is about five times more potent than
L-cysteine in preventing massive pleural effusions and death in
thiourea-treated rats. It was presumed that T4C, possessing a pro-
tected sulfur atom in its ring, opens and frees a sulfhydryl group
after entering a liver cell. L-Cysteine, on the other hand, has an
unprotected free sulfhydryl group, which is likely to react with
oxidants before entering a cell.

In summary, we found that in E. histolytica, L-cysteine is uti-
lized for the synthesis of 2-(R)-thiazolidine-4-carboxylic acid de-
rivatives via conjugation with aldehydes. This mechanism allows
regulation of the intracellular level of L-cysteine and also functions
as a mechanism for detoxifying aldehydes. Our results also suggest
that these thiazolidine derivatives serve as storage for L-cysteine,
from which L-cysteine can be liberated when required. Further-
more, we have demonstrated that these thiazolidine derivatives,
T4C in particular, can reduce the intracellular ROS levels and thus
help the parasite to cope with oxidative stress. Future research is
needed to determine if these thiazolidine derivatives are also pres-

ent in other anaerobic/microaerophilic protozoan parasites, such
as Giardia intestinalis and Trichomonas vaginalis, which also re-
quire high concentrations of extracellular L-cysteine for growth
and survival, in order to verify whether common metabolic and
biochemical mechanisms are shared by these parasitic protists in
general.

MATERIALS AND METHODS
Chemicals and reagents. All chemicals of analytical grade were purchased
from either Wako or Sigma-Aldrich unless otherwise mentioned. 2=,7=-
Dichlorodihydrofluorescein diacetate (2=,7=-DCF-DA) was purchased
from Invitrogen (U-13C3, 15N). L-Cysteine was purchased from Cam-
bridge Isotope Laboratories. Stock solutions of metabolite standards (1 to
100 mmol/liter) for CE-MS analysis were prepared in either Milli-Q wa-
ter, 0.1 mol/liter HCl, or 0.1 mol/liter NaOH. A mixed solution of the
standards was prepared by diluting stock solutions with Milli-Q water
immediately before CE-TOFMS analysis.

Microorganisms and cultivation. Trophozoites of the E. histolytica
clonal strain HM-1:IMSS cl 6 were maintained axenically in Diamond’s
BI-S-33 medium at 35.5°C, as described previously (56). Trophozoites
were harvested in the late-logarithmic-growth phase 2 to 3 days after the
inoculation of medium with 1/30 to 1/12 of the total culture volume.

Metabolic labeling and metabolite extraction. E. histolytica tropho-
zoites were cultivated in either standard BI-S-33 medium containing
8 mM L-cysteine or L-cysteine-deprived medium for 48 h. For the meta-
bolic labeling, trophozoites were cultured in the presence of 8 mM stable-
isotope-labeled L-cysteine (U-13C3, 15N) in L-cysteine-deprived medium.
The reason for using 8 mM stable-isotope-labeled cysteine was because in
normal BI-S-33 medium, the concentration of cysteine used to culture
E. histolytica trophozoites is 8 mM cysteine. To extract metabolites, ap-

FIG 5 Effect of T4C, MT4C, and L-cysteine on the growth of trophozoites
cultured under L-cysteine-depleted conditions. Trophozoites (104 cells/ml)
were cultivated in L-cysteine-deprived BI-S-33 media with and without 2 mM
T4C, MT4C, or L-cysteine or 1 mM each T4C and MT4C. The parasites were
counted every 24 h on a hemocytometer. Error bars represent the standard
errors of results from five independent experiments. Cys dep, absence of
L-cysteine, T4C, and MT4C.

FIG 6 Influence of T4C, MT4C, and L-cysteine on the intracellular ROS
levels. Trophozoites were cultivated in L-cysteine-deprived BI-S-33 medium
for 72 h, and after that, the medium was replaced with L-cysteine-deprived
BI-S-33 media containing 2 mM T4C, MT4C, or L-cysteine. After 3 h, approx-
imately 4.0 � 105 cells were then incubated with the dye 2=,7=-DCF-DA for
20 min. The intracellular ROS levels were quantified by determination of DCF
fluorescence. Results were normalized with cell numbers and are presented
relative to levels in untreated control cells. The means � SD from three inde-
pendent experiments performed in triplicate are shown. Statistical compari-
sons were made by Student’s t test (**, P � 0.01; ***, P � 0.001).
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proximately 1.5 � 106 cells were harvested after 0, 0.5, 3, 9, and 24 h of
cultivation in stable-isotope-labeled L-cysteine (U-13C3, 15N) medium.
The cells were immediately suspended in 1.6 ml of �75°C methanol to
quench metabolic activity. To ensure that experimental artifacts, such as
ion suppression, did not lead to misinterpretation of metabolite levels,
internal standards, namely, 2-(N-morpholino)ethanesulfonic acid, me-
thionine sulfone, and D-camphor-10-sulfonic acid, were added to each
sample (18, 57). The samples were then sonicated for 30 s and mixed with
1.6 ml of chloroform and 0.64 ml of deionized water. After being vortexed,
the mixture was centrifuged at 4,600 � g at 4°C for 5 min. The aqueous
layer (1.6 ml) was filtered using an Amicon Ultrafree-MC ultrafilter (Mil-
lipore Co., MA) and centrifuged at 9,100 � g at 4°C for approximately 2 h.
The filtrate was dried and preserved at �80°C until mass spectrometric
analysis (58). Prior to the analysis, the sample was dissolved in 20 �l of
de-ionized water containing reference compounds (200 �mol/liter each
of 3-aminopyrrolidine and trimesic acid).

Instrumentation and CE-TOFMS conditions. Capillary electro-
phoresis-time of flight mass spectrometry (CE-TOFMS) was performed
using an Agilent CE capillary electrophoresis system equipped with an
Agilent 6210 time of flight mass spectrometer, Agilent 1100 isocratic high-
performance liquid chromatography (HPLC) pump, Agilent G1603A
CE-MS adapter kit, and Agilent G1607A CE-electrospray ionization
(ESI)-MS sprayer kit (Agilent Technologies, Waldbronn, Germany). The
system was controlled by Agilent G2201AA ChemStation software for CE.
Data acquisition was performed by Analyst QS software for Agilent TOF
(Applied Biosystems, CA; MDS Sciex, Ontario, Canada).

CE-TOFMS conditions for cationic metabolite analysis. Cationic
metabolites were separated in a fused-silica capillary column (50-�m in-
ternal diameter, 100-cm total length) filled with 1 mol/liter formic acid as
the reference electrolyte (59). Sample solution (~3 nl) was injected at
5,000 Pa for 3 s, and a positive voltage of 30 kV was applied. The capillary
and sample trays were maintained at 20°C and below 5°C, respectively.
Sheath liquid composed of methanol-water (50%, vol/vol) that contained
0.1 �mol/liter hexakis (2,2-difluorothoxy) phosphazene was delivered at
10 �l/min. ESI-TOFMS was operated in the positive-ion mode. The cap-
illary voltage was set at 4 kV, and a flow rate of nitrogen gas (heater
temperature, 300°C) was set at 10 lb/in2 gauge. For TOFMS, the fragmen-
tor voltage, skimmer voltage, and octopole radio frequency voltage (Oct
RFV) were set at 75, 50, and 125 V, respectively. An automatic recalibra-
tion function was performed using two reference masses of reference stan-
dards, a protonated [13C]methanol dimer (m/z 66.063061) and a proton-
ated hexakis (2,2-difluorothoxy) phosphazene (m/z 622.028963), which
provided the lock mass for exact mass measurements. Exact mass data
were acquired at the rate of 1.5 Hz over a 50 to 1,000 m/z range.

CE-TOFMS conditions for anionic metabolite analysis. Anionic me-
tabolites were separated in a cationic-polymer-coated COSMO(�) capil-
lary column (50-�m internal diameter, 110-cm length) (Nacalai Tesque)
filled with 50 mmol/liter ammonium acetate solution (pH 8.5) as the
reference electrolyte (60, 61). Sample solution (~30 nl) was injected at
5,000 Pa for 30 s, and a negative voltage of �30 kV was applied. Ammo-
nium acetate (5 mmol/liter) in methanol-water (50%, vol/vol) that con-
tained 0.1 �mol/liter hexakis (2,2-difluorothoxy) phosphazene was deliv-
ered as sheath liquid at 10 �l/min. ESI-TOFMS was operated in the
negative-ion mode. The capillary voltage was set at 3.5 kV. For TOFMS,
the fragmentor voltage, skimmer voltage, and Oct RFV were set at 100, 50,
and 200 V, respectively (61). An automatic recalibration function was
performed using two reference masses of reference standards: a deproto-
nated [13C]acetate dimer (m/z 120.038339) and an acetate adduct of hexa-
kis (2,2-difluorothoxy) phosphazene (m/z 680.035541). The other condi-
tions were identical to those used for the cationic metabolome analysis.

CE-TOFMS data processing. Raw data were processed using the in-
house software Masterhands (62). The overall data processing flow con-
sisted of the following steps: noise filtering, baseline removal, migration
time correction, peak detection, and integration of the peak area from a
0.02-m/z-wide slice of the electropherograms. This process resembled the

strategies employed in widely used data processing software for LC-MS
and gas chromatography (GC)-MS data analysis, such as MassHunter
(Agilent Technologies) and XCMS (63). Subsequently, accurate m/z val-
ues for each peak were calculated by Gaussian curve fitting in the m/z
domain, and migration times were normalized using alignment algo-
rithms based on dynamic programming (64, 65). All target metabolites
were identified by matching their m/z values and normalized migration
times with those of standard compounds in the in-house library.

Growth assay of E. histolytica trophozoites. Approximately 6 � 104

exponentially growing trophozoites of E. histolytica clonal strain HM-1,
IMSS cl 6, were inoculated in 6 ml of L-cysteine-deprived BI-S-33 medium
containing 2 mM thiazolidine-4-carboxylic acid, 2 mM methyl-
thiazolidine acid, and 2 mM cysteine, and the parasites were counted
every 24 h on a hemocytometer.

Thiazolidine-4-carboxylate oxidation assays. T4C oxidation activity
was assayed by measuring the production of L-cysteine by ninhydrin re-
action and at an absorbance at 560 nm (66). L-Cysteine contents were
determined from an L-cysteine standard curve. The assay mixture con-
tained 50 mM Tris-HCl, pH 7.5, 1 to 100 mM T4C, and appropriate
amounts of the fractionated parasite lysate in 50 �l of the reaction mix-
ture. The reaction mixture was incubated for 10 to 30 min at 37°C. The
reaction was stopped with 10% trichloroacetic acid. After that, 50 �l of
glacial acetic acid and 50 �l of freshly prepared ninhydrin reagent were
added to each tube and the tubes were incubated at 95°C for 10 min.
Finally, all tubes were cooled down on ice and the reaction mixture was
diluted with 200 �l of ethanol and measured immediately at 560 nm with
a UV/visible-light spectrophotometer (UV-2550; Shimadzu, Tokyo, Ja-
pan). Briefly, different concentrations (1 to 100 mM) of T4C were incu-
bated with amebic lysates at 37°C for 10 to 30 min, and the reactions were
stopped with 10% trichloroacetic acid. Aliquots of the acid-soluble mate-
rial were mixed with the acidic ninhydrin reagent and heated. This se-
quentially resulted in the conversion of N-formylcysteine to L-cysteine
and the conjugation of L-cysteine with ninhydrin to form a pink product
with an absorbance maximum at 560 nm. T4C reacted with the acidic
ninhydrin to form an orange product with a maximum absorbance at
430 nm and a small absorbance at 560 nm. T4C also showed some hydro-
lysis to L-cysteine. Control mixtures lacking amebic lysates served as con-
trols for T4C oxidation.

Quantitation of reactive oxygen species. Fluorescence spectropho-
tometry was used to measure the production of intracellular reactive ox-
ygen species using 2=,7=-DCF-DA as a probe as previously described (67).
Briefly, E. histolytica trophozoites were harvested and washed in
phosphate-buffered saline (PBS), and approximately 4.0 � 105 cells were
then incubated in 1 ml of PBS containing 20 �M 2=,7=-DCF-DA for
20 min at 35.5°C in the dark. The intensity of fluorescence was immedi-
ately read at excitation and emission wavelengths of 492 and 517 nm,
respectively.
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