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Abstract: Murine polyomavirus (MPyV) infects mouse cells and is highly oncogenic in
immunocompromised hosts and in other rodents. Its genome is a small, circular DNA molecule of
just over 5000 base pairs and it encodes only seven polypeptides. While seemingly simply organized,
this virus has adopted an unusual genome structure and some unusual uses of cellular quality control
pathways that, together, allow an amazingly complex and varied pattern of gene regulation. In this
review we discuss how MPyV leverages these various pathways to control its life cycle.
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1. The Virus

Murine polyomavirus (MPyV) is highly oncogenic in rodents and has a small circular
double-stranded DNA (dsDNA) genome of about 5300 base pairs. The genome is divided into “early”
and “late” regions, which are expressed and regulated differently as infection proceeds (Figure 1) [1–4].
The early and late transcription units extend in opposite directions around the circular genome from
start sites near the bidirectional origin of DNA replication [2,5]. Primary RNA products from the
early transcription unit are alternatively spliced to yield four early mRNAs which encode the large T
antigen (100 kDa), the middle T antigen (56 kDa), the small T antigen (22 kDa) and the tiny T antigen
(10 kDa) [6]. Large T binds to sequences in or near the DNA replication origin region [7–10] and is
involved in the initiation of DNA replication, indirectly in the autoregulation of early-strand RNA
levels [11–13], and indirectly in the activation of high levels of expression from the late promoter [13,14].
The other early proteins are dispensable for lytic infection, but are important for cell transformation
and tumorigenesis [15]. Late primary transcripts accumulate after the onset of DNA replication and
are also spliced in alternative ways to give mRNAs which code for the three virion structural proteins
VP1, VP2 and VP3.

While seemingly simply organized, MPyV has adopted an unusual genome structure that provides
a platform for the participation of a number of cellular gene regulatory and quality control mechanisms.
First, the intergenic region is complex and crowded and serves multiple functions during infection.
Consisting of only several hundred nucleotides, this region contains the origin of bidirectional DNA
replication, the early promoter and the late promoter. Each of these is impacted by distinct molecular
machinery, competing for overlapping sequence elements. Activation of the replication origin requires
the recruitment of the cellular DNA replication machinery by large T antigen, which recognizes a
number of sites in this region. The early promoter is a typical RNA polymerase II promoter, including a
TATA box to specify early transcription start sites and an upstream enhancer region. The late promoter
is TATA-less and specifies transcripts with a multitude of 5’-ends spanning more than 100 nucleotides.
Second, the distal ends of the early and late regions are tightly connected (Figure 2) and, as we will
see below, this organization plays a major role in the regulation of the viral life cycle. The ends of
the coding regions for large T antigen and VP1 are very close to one another, separated from each
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other by only 23 base pairs. Also, the polyadenylation signals for early-strand and late-strand primary
transcripts actually overlap one another. This leads to overlapping 3′-ends of early and late mRNAs
and pre-mRNAs, with the amount of overlap being 45 base pairs or greater. As we shall discuss below,
transcript overlap appears to be essential for the viral life cycle, since viruses that are constructed to
eliminate this overlap fail to enter the late phase of infection [16]. Third, the splicing signals for late
mRNAs are arranged in a manner rarely seen in eukaryotic transcripts. In most pre-mRNA molecules,
the first splice site encountered is a donor, 5′-splice site. This allows the splicing of the first exon to the
second exon. In MPyV late transcripts, the cap-proximal splice site is actually an acceptor, 3′-splice site.
This almost unique arrangement turns out to be critical for the viral life cycle.
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Figure 2. A crowded arrangement at the ends of the early and late genes. The sequence shown is of 

the 3′-region of the early and late transcription units, with the early coding strand on top and the stop 

codons for large T antigen and the virion structural protein VP1 circled. Note the overlap of the 

polyadenylation signals, including the canonical AATAAA elements (yellow box). Cleavage and 

polyadenylation occur downstream of these elements, leading to early and late mRNAs that have the 

potential to overlap for at least 45 base pairs (bp) at their 3′-ends. Transcript overlap is essential for 

the viral life cycle. 

Figure 1. The murine polyomavirus (MPyV) genome. The genome shown is of strain NG59RA, which
is 5327 base pairs in length. Early genes are in blue and late genes are in red. Transcripts are lines,
with thicker regions denoting open reading frames and dotted lines introns. The replication origin
and transcriptional control region is shown at the top of the genome. Late-strand transcripts can give
rise to two miRNAs (small red line) that map to the early region and can influence viral and host
gene expression.
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Figure 2. A crowded arrangement at the ends of the early and late genes. The sequence shown is
of the 3′-region of the early and late transcription units, with the early coding strand on top and the
stop codons for large T antigen and the virion structural protein VP1 circled. Note the overlap of
the polyadenylation signals, including the canonical AATAAA elements (yellow box). Cleavage and
polyadenylation occur downstream of these elements, leading to early and late mRNAs that have the
potential to overlap for at least 45 base pairs (bp) at their 3′-ends. Transcript overlap is essential for the
viral life cycle.
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2. The Viral Early–Late Switch

Temporal regulation of MPyV gene expression during lytic infection of permissive mouse cells
proceeds in a well-defined and tightly regulated manner [1,17,18]. Immediately after infection, RNA
from the early transcription unit begins to accumulate; however, RNA from the late transcription unit
fails to accumulate to a significant level. At 12 h after infection, the early–late RNA ratio is about 4
to 1 [1,18–20] and in the presence of DNA replication inhibitors, the ratio is 10 to 1 or even higher.
At 12–15 h post-infection, viral DNA replication commences and late-strand RNA begins to accumulate
rapidly and almost exponentially, while early-strand RNA and proteins accumulate much more slowly.
In absolute terms, the amount of early-strand RNA in the cell is similar at 12 h and 24 h post infection.
Thus, there is a dramatic change in the relative abundances of early-strand and late-strand RNAs; by
24 h post-infection, the early to late RNA ratio is as low as 1 to 50 [1,18–20]. This early–late “switch”
depends absolutely on viral DNA replication. If replication is inhibited, early mRNAs continue
to accumulate but late mRNAs fail to do so [11,12,19–22]. While it was thought in the field for a
number of years that the early–late switch is the result of T antigen repression of the early promoter,
coupled with a transactivation of the late promoter, this now seems to be incorrect. Rather, the switch
appears to result from changes in transcription elongation and/or RNA stability [13,19,23–25]. Late
RNA accumulation is regulated post-transcriptionally by what appears to be a novel RNA titration
event (late gene expression from a non-replicating viral genome can be activated in trans by sufficient
levels of late transcription from a replicating genome in the same cell) [13], while early RNA levels are
regulated at least in part by antisense RNA and RNA editing (Figure 3) [13], as well as by virus-encoded
miRNA [25] (see Figure 1).
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Figure 3. The early–late switch is associated with poly(A) signal readthrough and double-stranded
RNA (dsRNA) formation. See text for details of the regulation. At early times and before viral DNA
replication (left), transcription occurs from both the early and late promoters. Early-strand RNAs are
spliced to produce mRNAs for the early proteins. Late-strand transcripts are efficiently terminated
and polyadenylated, but are unstable and produce only small amounts of late mRNAs and proteins.
After the onset of DNA replication (right), transcription termination and polyadenylation become less
efficient, allowing multigenomic transcripts to be produced. Giant transcripts are efficiently spliced
to generate stable late mRNAs, but sequences antisense to early-strand transcripts can downregulate
early genes.

Even before the onset of viral DNA replication, however, the late-strand is actually being
transcribed, but with little stable RNA accumulation. This latter phenomenon is associated with
several important genomic features. At early times after infection, polyadenylation of late-strand
transcripts is efficient. This generates RNAs that can be alternatively spliced to generate mRNAs for the
virion structural proteins VP1 and VP3. VP2 mRNA from these transcripts is unspliced. Importantly,
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however, by a mechanism that remains unclear, these RNAs appear to be inefficiently exported from
the nucleus to the cytoplasm and are degraded in the nucleus [26].

3. Late-Strand RNAs

How is late-strand gene expression enhanced at late times in infection? While at early times
late-strand polyadenylation is efficient, this changes dramatically at late times. After DNA replication
initiation, late-strand polyadenylation becomes inefficient, allowing RNA polymerase II to continue
around and around the circular genome, generating giant multigenomic transcripts. Thus, the MPyV
life cycle can be viewed as an interesting model of regulation of alternative polyadenylation,
a phenomenon that has been studied in a variety of other systems [27,28]. Most late-strand primary
transcripts are heterogeneous in size, and range from about 2.5 Kb to over 60 Kb in length [29–34]. Most
are not polyadenylated [34]. Late-strand pre-mRNA molecules are processed into mature mRNAs
using a highly unusual pathway that involves ordered splice site selection from precursors containing
tandemly repeated introns and exons [35]. The great majority of late RNA sequences never leave the
nucleus as they are removed during mRNA processing, and are subsequently degraded [30,36]. Some
of these giant transcripts may also serve as precursors for the processing of viral miRNAs, one of
which also downregulates the pro-apoptotic factor Smad2 [25,37].

The MPyV late region encodes 57-nucleotide non-coding exon near at the 5′-end of the
transcription unit. At their 5′-ends, late messages contain multiple tandem repeats of this late leader
sequence, which appears only once in the viral genome. Pre-mRNA molecules are processed by a
pathway that includes the splicing of late leader exons to each other (Figure 4). Each class of late viral
message (encoding virion structural proteins VP1, VP2 or VP3) consists of molecules with between
1 and 12 tandem leader units at the 5′-end [38], with most containing more than one. VP2 mRNA
is the least abundant late message (about 5%) and contains no leader-to-body splice. Even in the
absence of leader-to-body splicing, this message is nevertheless exported to the cytoplasm, although
inefficiently [39]. Late-strand pre-mRNA processing is highly unusual, because it involves alternative
selection between identical splice sites. Thus, in long pre-mRNAs, only the terminal coding body
3′-splice site is chosen, even though an upstream one exists in the precursors [35,38].
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Figure 4. Late pre-mRNA splicing. Giant transcripts serve as precursors to late mRNAs. Processing of
VP1 mRNA is shown. In multigenomic transcripts, leader (L) exons splice to one another, removing
genome-length introns. Then, a leader-body splice can occur, coincident with polyadenylation.
This results in mRNAs with tandem non-coding late leader exons at their 5′-ends.
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While the splicing process is connected to mRNA accumulation, we hypothesize that tandem
leaders may serve the additional purpose of facilitating translation initiation owing to the fact that
leaders contain two regions with significant complementarity to the 3′-end of mouse 18S rRNA
(Figure 5). Such regions could be coincidental and there may exist numerous other regions in cellular
or viral RNAs. However, as most late MPyV mRNAs contain multiple tandem leaders in their
5′-untranslated regions (UTRs), this feature of multiple complementary sequences, preceding late
AUG codons, could serve as a powerful way to recruit ribosomes and enhance the expression of virion
structural proteins late in infection.
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Figure 5. The late leader exon has regions of complementarity to 18S rRNA. While the biological
consequence of this still remains unclear, there is striking complementarity to ribosomal RNA at
two positions within the leader. We speculate that in late mRNAs containing tandem leaders in their
5′-untranslated regions (UTRs), these elements may serve to enhance the translation of late proteins.

4. Activation of Late RNA Accumulation

Late-strand gene expression may not be regulated primarily at the level of transcription initiation.
Non-replicating genomes express only very low levels of late-strand transcripts. However, late genes
from these non-replicating genomes are turned on if a replicating polyoma genome is introduced into
the same cell [13]. Further, the presence of wild type genomes in mouse cells can lead to the activation
of late genes in trans from a non-replicating genome in the same cells [13].

5. The Role of dsRNA Formation and A-To-I Editing in MPyV Gene Regulation

Due to the readthrough of early and late transcripts at late times, as well as the genomic overlap
of the early and late polyadenylation signals, there is the possibility that if complementary sequences
accumulate near one another in the nucleus, they might anneal to form double-stranded RNAs
(dsRNAs). Also, since viruses that do not allow early-strand and late-strand overlap do not undergo
productive infection and cannot enter a normal late phase [16], it is likely that dsRNA plays an
important role. Nuclear dsRNAs can be promiscuously edited by dsRNA-specific adenosine deaminase
(ADAR) enzymes, which deaminate adenosines to inosines [40]. Consistent with sense–antisense
overlap of the MPyV early and late transcripts, viral RNAs also exhibit extensive and promiscuous
editing [16,20,41,42]. During productive infection, there is a time-dependent increase in editing, with
especially efficient editing observed around the overlapping polyadenylation sites [20]. No significant
editing was detected before DNA replication or in the presence of a replication inhibitor [16,20].
Editing in the polyadenylation region has led to speculation that this editing serves as a trigger for the
early–late switch. While editing is readily and abundantly observed, however, at this time we cannot
conclude whether it is a cause or a consequence of viral gene regulation. The possibility exists that
editing is a consequence of dsRNA formation while duplex RNA formation may in fact be the primary
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event that drives the early–late switch. This is because mouse cells lacking ADAR activity have been
reported to maintain the ability to support productive MPyV infection [43].

6. Early-Strand RNAs

How is early-strand gene expression lowered at late times in infection? There appear to be
multiple mechanisms for this. While the switch from early to late phase of infection has been reported
by others to be regulated primarily at the level of transcription [44], this has been challenged by
results which are, in fact, consistent with a change in the processing of late-strand transcripts [14,19].
Inefficient late-strand polyadenylation and transcription termination appear to regulate early-strand
gene expression in an indirect manner. The long, multigenomic late-strand transcripts in the nucleus
can form RNA–RNA duplexes with early-strand transcripts which are efficient substrates for RNA
editing by ADARs. This leads to the deamination of up to 50% of the adenosines on each strand
to inosines (which act biochemically and genetically like guanosines). These promiscuously edited
RNAs are retained in the nucleus by a quality control system involving binding to the p54nrb/NONO
protein [45] and localization to nuclear bodies called paraspeckles [46,47], preventing them from being
exported to the cytoplasm and being translated into mutant proteins [45]. As late primary transcripts
accumulate to high levels in the nucleus, the opportunity for sense–antisense hybrids to form may
increase, leading to ever greater inhibition by editing. While a similar phenomenon may also occur
on the late strand (early-strand polyadenylation site readthrough, followed by dsRNA formation
and A-to-I editing), the consequences in this case are minor because the editing would occur in
genome-length introns of late pre-mRNAs rather than in late coding regions. In this manner, a cellular
quality control system that prevents the nucleocytoplasmic export of dsRNAs and promiscuously
edited RNAs plays an important role in reducing the availability of MPyV early-strand mRNAs for
translation at late times in infection when the early gene products are no longer needed.

Yet another way in which early expression changes after the onset of viral DNA replication is
at the level of transcription initiation. Through a mechanism that still remains unclear, as infection
proceeds, the 5′ transcriptional start sites from the early promoter shift progressively further and
further upstream from the canonical start site downstream of the early TATA element, which is used
almost exclusively in the absence of DNA replication [20,22,48] (Figure 6). Thus, at late times, many
early-strand mRNAs have 5′-UTRs that are hundreds of nucleotides longer than mRNAs at early times.
This shift is dependent on DNA replication but not directly on the presence of large T antigen, because
large T antigen is expressed in the presence of replication inhibitors, yet in this case the shift does not
occur [20]. What are the consequences of shifting early-strand 5′-ends? They may alter RNA stability
and therefore lead to reduced levels of mRNA. We hypothesize, however, that they serve as yet another
mechanism to limit early gene expression at late times, by leading to inefficient ribosome scanning
and translation initiation. We note that many of the early-strand mRNAs at late times contain AUG
codons that are frameshifted relative to the normal AUG codon and therefore would be poor messages
for T antigen expression. This replication-dependent switch has also been observed for several other
viruses, suggesting a more common mechanism by which small DNA viruses might limit early gene
expression late in infection. Altered early-strand start sites at late times have been reported both for
simian virus 40 (SV40) [49] and for the John Cunningham (JC) virus [50].
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RNAs at early times (EE) and early-strand RNAs at late times (LE). Positions of large T antigen 

binding are shown, along with the palindromic core replication origin, the enhancer region and the 

late transcription start site region. Red stars denote AUG codons that could direct translation 

initiation. Those in LE but not EE transcripts are frameshifted relative to the early coding region.  

7. Conclusions 

In conclusion, the mouse polyoma virus employs a variety of mechanisms to regulate the 

synthesis, processing, stability and translation of its RNAs in order to optimize the timing and 

efficiency of its life cycle. Taken together, the various modes of regulation adopted have given MPyV 

a powerful set of strategies to ensure efficient progression through its lytic life cycle. Some of these 

(such as shifting transcription start sites and promoter regulation) are shared by other viruses and 

systems, while others (such as the role of leader-to-leader splicing, polyadenylation site overlap and 

nuclear retention of dsRNAs and edited RNAs) are interesting and perhaps peculiar to this virus. 

Interestingly, while SV40 does not normally downregulate its early gene products using antisense 

RNA, it has been reported that in SV40-transformed human mesothelial cells, an integrated viral 
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Figure 6. Early-strand transcription start sites shift after the onset of viral DNA replication. (A) An
expanded view of the intergenic region is shown, along with genome browser tracks showing the
alignment of early-strand RNAs at several times after infection, as reported by us recently [20]. These
data were confirmed using the 5′-rapid amplification of cDNA ends (RACE) analysis [20]. Note the
dramatic shift from 5′-ends mapping to a specific site at early times (EE) to many upstream sites at
later times (LE); (B) The intergenic region is depicted, along with a general cartoon of early-strand
RNAs at early times (EE) and early-strand RNAs at late times (LE). Positions of large T antigen
binding are shown, along with the palindromic core replication origin, the enhancer region and the late
transcription start site region. Red stars denote AUG codons that could direct translation initiation.
Those in LE but not EE transcripts are frameshifted relative to the early coding region.

7. Conclusions

In conclusion, the mouse polyoma virus employs a variety of mechanisms to regulate the synthesis,
processing, stability and translation of its RNAs in order to optimize the timing and efficiency of its
life cycle. Taken together, the various modes of regulation adopted have given MPyV a powerful set of
strategies to ensure efficient progression through its lytic life cycle. Some of these (such as shifting
transcription start sites and promoter regulation) are shared by other viruses and systems, while others
(such as the role of leader-to-leader splicing, polyadenylation site overlap and nuclear retention of
dsRNAs and edited RNAs) are interesting and perhaps peculiar to this virus. Interestingly, while SV40
does not normally downregulate its early gene products using antisense RNA, it has been reported that
in SV40-transformed human mesothelial cells, an integrated viral genome promotes polyadenylation
site readthrough from the early region, thus generating antisense RNA that downregulates late
gene expression [51]. Further, a recent study on the Merkel cell polyomavirus (MCPyV) life cycle
presented transcriptomic data consistent with multigenomic transcripts, similar to those we see in
MPyV infection [52].
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