
© 2012 Landes Bioscience.

Do not distribute.
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Cerebral malaria is the most severe pathology caused by the
malaria parasite, Plasmodium falciparum. The pathogenic
mechanisms leading to cerebral malaria are still poorly defined
as studies have been hampered by limited accessibility to
human tissues. Nevertheless, histopathology of post-mortem
human tissues and mouse models of cerebral malaria have
indicated involvement of the blood-brain barrier in cerebral
malaria. In contrast to viruses and bacteria, malaria parasites
do not infiltrate and infect the brain parenchyma. Instead,
rupture of the blood-brain barrier occurs and may lead to
hemorrhages resulting in neurological alterations. Here, we
review the most recent findings from human studies and
mouse models on the interactions of malaria parasites and the
blood-brain barrier, shedding light on the pathogenesis of
cerebral malaria, which may provide directions for possible
interventions.

Malaria remains one of the most prevalent infectious diseases in
the world. The World Health Organization (WHO) reports that
50% of the world’s population living in 109 countries are still at
risk of malaria.1 More than 300 million clinical cases of malaria
and one million deaths occur annually. Children under the age of
5 and pregnant women are most vulnerable to the disease. Hence,
malaria continues to be a major global health problem, posing an
enormous burden on mankind socially and economically.2

The Malaria Parasite

Plasmodium, the infectious agent responsible for malaria, is
transmitted by Anopheles spp mosquitoes. There are five species
of Plasmodium spp infecting humans, with P. falciparum and
P. vivax being the two most widespread.1 The infection begins
when an infected female Anopheles mosquito injects 5 to 50
sporozoites into the skin, which migrate to the liver.3 Inside
parenchymal hepatocyte, each sporozoite transforms to an
exoerythrocytic parasite that multiplies giving rise to thousands
of liver merozoites during the asymptomatic pre-erythrocytic
phase. After maturation, liver merozoites are released into the
blood stream where they infect red blood cells (RBC) and initiate

the erythrocytic stage of the infection. The invading merozoite
forms a vacuole, develops into a uninucleated ring form, then
matures and divides into a multinucleated schizont. When the
schizont ruptures, 4 to 16 merozoites are released into the
bloodstream and infect new RBCs. During the blood stage, a
subpopulation of merozoites will develop into gametocytes that
will be taken up during a blood meal by mosquitoes, in which the
sexual stage of the life cycle is completed.

The blood phase of the infection is responsible for the
pathology of this disease. Symptoms of malaria usually develop
10–15 d after being bitten and include high fever, muscle aches
and chills. In the majority of cases, infections are cleared by the
use of appropriate treatments but in some patients, severe patho-
logies can develop and lead to death. Severe malaria includes a
wide array of pathologies, ranging from metabolic alterations,
renal failure, liver and lung dysfunctions, and anemia to cerebral
malaria.4

Human Cerebral Malaria

Human cerebral malaria (HCM) is the most severe complication
of P. falciparum infection and has attracted the attention of both
clinicians and scientists since the discovery of the malaria
parasite.4-6 HCM can occur in less than two weeks after a
mosquito bite and may develop after 2 to 7 d of fever.4 The
commonly accepted clinical definition of HCM is the neuro-
logical syndrome with patients in unrousable coma.4,7 Seizures,
retinopathy and brainstem alterations due to elevated intracranial
pressure and brain swelling are also clinical features frequently
observed during HCM.8,9 To meet the HCM definition, the
P. falciparum infection has to be confirmed and other causes of
encephalitis (of viral or bacterial origins) to excluded. However,
in field settings with limited resources, only easily diagnosed or
obvious infectious diseases with brain involvement are investi-
gated.10-12 Many viral, bacterial and parasitic infections can alter
Plasmodium infections or pathologies and the reverse is also
true.12

Neurological symptoms are also frequently associated with
severe metabolic acidosis, anemia and hypoglycemia.13,14 Thus
exclusion of all these factors is important for the definition of
“true HCM” and for making comparisons between different
studies. It is well known that differences between pediatric and
adult HCM exist.15 Geographical differences in clinical patterns
and prevalence of the syndrome are recognized and are likely due
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to differences in parasite and host genetics, immune status of the
host, or epidemiological conditions.4,15 In many patients with
HCM, death occurs rapidly before treatment can be adminis-
tered16 and patients with HCM usually have a poor prognosis.17

Patients who survive HCM may develop long-term neurological
sequelae17,18 and cognition and behavioral deficits.19

There is no consensus on the pathogenesis of HCM. Indeed,
this topic has been one of the most dogmatic and divisive in
malaria research. This is due to the fact that limited studies can
be performed in humans, while the common mouse model of
cerebral malaria does not reproduce all aspects of HCM. The first
attempt to uncover the pathogenesis of this syndrome has relied
heavily on histopathology of brain tissues from patients who died
of HCM. Since 1900, a series of studies with a limited number of
patients have reported brain capillary occlusions, swelling of the
endothelium, and sequestration mainly of infected red blood cells
(IRBC).20–25 In the past 20 years, studies with larger numbers
of samples from patients with a more rigorous HCM definition
have supported the original findings in most cases.25–28 All these
findings have led to the prevailing dogma that cerebral sequestra-
tion of IRBC is the etiologic mechanism leading to HCM.

The mechanisms by which sequestration leads to neurological
complications and death are not yet clearly defined. It has been
postulated that IRBC sequestration causes cerebral occlusion of
brain capillaries, reduction of microvascular flow, decrease of
nutrient supply to the brain, and damage to the vessel wall,
leading to hemorrhages and neuronal alterations.29 However, the
most rigorous histology study performed so far on clinically con-
firmed HCM, showed no evidence of cerebral sequestration of
P. falciparum in a proportion of the post-mortem brain tissue
collected from Malawian children.28 Still, it cannot be excluded
that IRBC were sequestered before the patients were treated, and
antimalarial treatment cleared the sequestered parasites but could
not halt the cascade of events leading to HCM.

Leukocytes and platelets were found in the brain tissue of
some of these Malawian children.27,30 Leukocytes have also been
observed in the brains of adult patients from India31 but not from
Thailand.26,32,33 These different observations suggest that cerebral
sequestration of IRBC may not always be uniquely responsible
for HCM and that different or alternative pathological pathways
leading to HCM may exist. They also demonstrate the limitations
of making inferences based only on post-mortem histological
studies, which cannot give any insight into the kinetics of the
pathogenic processes occurring locally in the brain in order to
identify the players involved. Other factors likely to be involved in
HCM pathogenesis are proinflammatory and anti-inflammatory
cytokines. However, their roles in HCM are still not clearly
established. In some studies, HCM was associated with proin-
flammatory cytokines with HCM patients having higher levels
of circulating TNF-a and/or IFN-c,34,35 while in other studies,
this was not observed.36 One possible explanation for this
discrepancy is the fact that in most reports, cytokine measure-
ments were only performed at one time point at the time of
diagnosis just before treatment. It is likely that some patients
having high cytokine levels but not diagnosed as having HCM
would have developed the syndrome if not treated. Another

confounding factor is differences in HCM definition, in
particular, the level of rigor in excluding co-infection (common
in field studies) with pathogens that also modify the peripheral
and local cytokine profiles. Nevertheless, the association of poly-
morphisms of pro-inflammatory cytokines or their receptors37

lends support to a role for these mediators.

Mouse Cerebral Malaria

A large body of research on cerebral malaria (CM) has been
performed using mouse models of CM even though there have
been strong controversies over the relevance of these models over
the years.38-43 Although it is evident that mouse models do not
replicate all aspects of the human disease, they have provided basic
knowledge that can be applied to humans. Much of the debate on
the value of mouse models is due to misconception and
incomplete understanding concerning these models by clinicians
or scientists working in HCM. However, on the other hand, a
lack of rigorous characterization of these models and over-
interpretation of data by researchers working on experimental
cerebral malaria (ECM) further fueled the controversy. However,
careful and balanced analyses of the data coupled with thorough
understanding of parasite and mouse biology have allowed the
validation of relevant hypotheses and the generation of new
concepts applicable to HCM.

Of the four species of rodent malaria parasites, only a few
P. berghei strains are able to induce ECM in mice with evident
neurological involvement. The ANKA strain (PbA) has been the
well-studied since its genome has been sequenced and analyzed
extensively.44 In addition, this is the strain of choice for genetic
studies since transfection methods were first established for this
strain.45 ECM in PbA-infected susceptible mouse is characterized
by the following neurological symptoms: paralysis, ataxia, devia-
tion of the head and convulsion and/or coma.

In most susceptible mouse strains, 60 to 100 percent of the
mice die of ECM during days 6 to 14 post-infection. The
remaining mice die later at the end of week 2 or during the
third week of infection due to hyperparasitemia and anemia.46

ECM outcome can vary depending on the PbA parasite clone
used,47 the parasite form used for inoculation (sporozoite vs.
IRBC),48,49 the dose of IRBC inoculated47 and the mode of
propagation of the parasites, i.e., passage between different
mouse strains.47 PbA parasites, like their human Plasmodium
counterparts, display phenotypic variations50,51 and this influence
the development of ECM.47

Histopathological analyses of the brains of mice that developed
ECM showed an accumulation of leukocytes and, to a lesser
extent, of IRBC and normal RBC.52-54 Unlike in viral or bacterial
infections, leukocytes do not infiltrate the parenchyma and are
confined intravascularly. Normal RBC and IRBC are also located
intravascularly unless hemorrhages have occurred.

Although accumulation of IRBC in the brains of PbA-infected
mice is not as striking as in the brains of P. falciparum-infected
patients who died of HCM, its occurrence has conclusively been
demonstrated by quantitative PCR53,54 and dynamic biolumines-
cence imaging of transgenic PbA parasites expressing luciferase.55–57
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PbA IRBC sequestration in mice is essential for ECM to occur
since drug treatment just before neurological signs are expected
prevents ECM.57–59 Sequestration is higher in susceptible
C57BL/6J at the time of ECM signs than in resistant BALB/
cJ mice (Claser and Renia, unpublished results) and is regulated
by CD8+ T cells and IFN-c.55,56 Very recent data have also
shown that mature PbA IRBC cytoadhere to endothelial cells
(Gruner, Ong and Renia, unpublished results), and mediate
parasite sequestration. However, it has to be noted that only a
fraction of PbA IRBC cytoadhere, explaining why mature blood
forms of the parasite can be seen in the circulation unlike their
P. falciparum counterparts.

Sequestered leukocytes are composed of monocytes and
neutrophils (together representing 50 to 80% of the sequestered
cells), CD4+ and CD8+ T cells, NK cells, platelets and few
dendritic cells.50,60–63 Depletion of monocytes, neutrophils and
platelets by antibody treatment a day or two before disease onset
does not prevent the occurrence of ECM, suggesting that
they have no effector functions during ECM.46,60,63 However,
they might have a role early in the infection through the
production of cytokines63–66 or through their interaction with
brain endothelial cells (see below). The role of NK cells is still
unclear and debated. In one study, depletion of NK cells using
anti-NK1.1 antibodies had no effect,67 while in another study
anti-asialo-GM1 antibodies prevented ECM by abrogating the
migration of CD8+ T cells to the brain.68 More work is needed
using mice with specific deletion of NK cells69 to resolve this
discrepancy since antibodies used for depletion can also deplete
activated antigen-specific CD8+ T cells.70

Depletion studies with specific antibodies and the use of mice
deficient of immune cell subsets have shown that CD8+ T cells
are the principal effector cells.48,60,67,71 Only 50,000 to 100,000
sequestered CD8+ T cells are found in a whole mouse brain at the
time of ECM.60 In addition, it is not known how many of these
sequestered CD8+ T cells are parasite-specific, since PbA infection
also induces non-specific activation of unrelated CD8+ T cells.72

Depending on the parasite/mouse combination, CD4+ T cells
can sometimes also behave as effector cells.46,63 However, in most
combinations tested so far, CD4+ T cells play a role in the induction
of ECM60,67,73,76 possibly by providing help for CD8+ T cells to fully
mature.74 Leukocytes are sequestered intravascularly and are in
direct contact with endothelial cells. Thus, it has been postulated
that CD8+ T cells might kill activated endothelial cells which have
ingested and cross-presented cytoadherent parasites or parasite-
derived material, thus disrupting the blood-brain barrier (BBB) and
leading to neuronal dysfunction and death.74,75

The Blood-Brain Barrier and Malaria

The blood-brain barrier at homeostasis. The brain contains a
network of blood vessels which are necessary for providing
nutrients, and oxygen, and for removing carbon dioxide and waste
(i.e., urea, creatinine, etc.). This network of capillaries together
with the glia form a protective barrier called the blood-brain
barrier (BBB). This barrier prevents large molecules and patho-
gens in the blood from entering the brain tissues and from

altering the brain’s functions.76,77 The brain is very sensitive
to blood chemistry variations and its homeostasis is tightly
regulated.78 The BBB is regarded as a part of the neurovascular
unit, a concept that stresses a cross-talk between the different
brain components for optimal functions of the brain. Mainten-
ance of homeostasis is principally due to the brain endothelial
cells, which are on the luminal side of the blood-brain barrier
and correspond to the actual barrier site. Brain endothelial cells
differ from those found in other tissues in many ways. They are
attached by tight junctions of high electrical resistance prevent-
ing intercellular passage of molecules, and do not contain small
openings called slit pores that allow the diffusion of molecules.
Thus to reach the brain parenchyma, essential nutrients need to
be actively transported by carrier systems to pass through the
capillary wall. Brain endothelial cells also have important func-
tions in mediating and regulating the immune response in the
nervous system.79 The inner part of the BBB is composed of
pericytes, glial cells and astrocytes that essentially shield the
capillaries from the neurons. The pericytes by themselves do not
have a barrier function but contribute to the barrier function
and phenotype of the endothelial cells. Astrocytes and glial cells
contribute to homeostasis for neurological functioning by con-
tributing to and regulating brain endothelial cell phenotype. In
particular, endothelial cells are in contact with foot processes of
astrocytes. These cellular structures provide an additional barrier
protecting neurons from toxic products in the blood. Astrocytes
can also form a barrier called the glia limitance at sites where the
endothelial barrier is absent, such as the postrema.

The blood-brain barrier in HCM. A role for the BBB in HCM
was postulated 40 years ago80 and since then, many studies have
been performed to uncover the extent of BBB alterations and
their relationship to HCM pathogenic processes.81-83 Post-mortem
observations on the accumulation of cytoadherent late-stage
IRBC and of normal RBC in brain capillaries of infected
humans have led to the prominent hypothesis that sequestra-
tion leads to capillary obstruction, reduced perfusion of the
brain parenchyma and reduced delivery of necessary nutrients
to neurons.29 In addition, plugging of microvessels may also alter
the function of BBB by creating local hypertension which
increases pressure on tight junctions. If hypertension persists, tight
junctions might break and this leads to the rupture of the
BBB, causing hemorrhages. In addition, adhesion of IRBC to
endothelial cells generates intracellular signaling in these cells,
leading to activation and damage of the BBB. Although this
hypothesis is attractive, it marginalizes the effects of systemic
and local production of cytokines and parasite toxins such as
malaria pigment, as well as the possible involvement of platelets
and leukocytes that can also be found in the brain.27,30,31

In an effort to determine if the BBB was altered in
P. falciparum patients, measurements of molecules such albumin
or immunoglobulins in the cerebrospinal fluid (CSF) and mole-
cules excluded from the brain during homeostasis have been
performed. In one study, radioactive-labeled albumin levels were
not increased in the CSF after intravenous injection in Thai
adult patients during and after coma.84 In another study, albumin
levels in the CSF of Vietnamese adult patients with HCM were
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not different from control subjects.85 In Malawian children, the
levels of albumin in the CSF were not different between children
who died vs. those who survived, although they differ from UK
adult controls.89 When IgG was investigated, higher levels were
detected in the CSF of a significant proportion in Thai patients
with HCM,87 but not in patients from Vietnam.85 Discrepancies
between these studies are probably due to measurements of
samples obtained at a single time point. All together, these data
suggest that although some BBB alterations occur during infec-
tion, major modifications leading to increased concentrations of
plasma proteins in CSF as seen in bacterial or viral infections
do not occur during HCM. However, focal ruptures of the BBB
take place in the brain during HCM,27 and may result from
endothelial cell activation leading to the alteration of endothelial
tight junctions, increased intercellular permeability, detachment
from the basal matrix and/or death of endothelial cells. There
is ample evidence that endothelial cells are activated during
P. falciparum infection and during HCM as they show charac-
teristic morphological modifications,26 upregulate numerous
surface antigens such as adhesion molecules32,88 and produce a
large variety of mediators.89,90

Activated endothelial cells in capillaries containing IRBC have
also been shown to display a reduction but not a complete
disappearance of cell-to-cell junction as shown by junction protein
staining.86,91 In addition, perivascular macrophages in the vicinity
of modified endothelial cells were also positive for macrophage
activation markers92 suggesting the passage of blood proteins into
the perivascular space. This phenomenon seems to be restricted
locally since it does not result in detectable leakage into the
CNS. Nevertheless, the accumulation of localized increased per-
meability may lead to the activation of the microglia and/or
astrocytes, which in turn may produce various mediators affect-
ing vascular and neuronal cells. However, just an increase in
permeability because of loosened tight junctions does not explain
the hemorrhages observed in HCM histology studies. Hemor-
rhages result from focal rupture of the BBB and allow a large
influx of plasma and plasma proteins to the interstitial brain
tissue at these sites. This may explain the brain swelling,
associated with coma, death or neurological sequela, which is
frequently observed in patients with HCM.93,94 However, it has
to be noted that brain swelling has been observed in the absence
of hemorrhages8 and that coma is not caused by cerebral edema
in Vietnamese patients who died of HCM.95,96

Numerous studies have been conducted to identify the mecha-
nism involved in endothelial cell modifications. Proinflammatory
plasma cytokines such as TNF-c, Lymphotoxin, IFN-c and IL-1β,
which are increased during HCM34,35 can activate endothelial cells
and modify vascular endothelium permeability.96–99 There has been
a lot of speculation regarding the role of nitric oxide (NO) in
HCM.100–104 The detection of inducible nitric oxide synthase
in post-mortem brain tissues from African children105 and Thai
adults106 has suggested a pathogenic role for NO. However,
although NO might participate in neuronal dysfunctions, it may
have a protective role at the BBB level. It has been shown in vitro
that NO can decrease permeability of the tight junctions induced
by TNF-a or IFN-c treatment.107

Parasite cytoadherence can also directly activate endothelial
cells as shown in vitro using brain endothelial cell lines.108–114 This
also leads to the production of chemokines and pro-inflammatory
cytokines (IL-6, IL-8 and TNF-a), creating an activation loop.110

Local productions of inflammatory cytokines and chemokines
by endothelial cells and also microglial cells have been detected
intravascularly in the brain of patients with HCM.110,114

P. falciparum IRBC express at their surface a variable parasite-
derived antigen, P. falciparum erythrocyte membrane protein 1
(PfEMP1), encoded by the var multigene gene family.115-117

PfEMP-1 proteins have been shown to interact with a variety of
surface receptors such as ICAM-1, thrombospondin, VCAM-1,
PECAM-1, avβ3 integrin, g1CR, endoglin, P-selectin, CD36
and fractalkine.118-121 Expression of some of these molecules is
increased after cytokine stimulation.79 When engaged, adhesion
molecules like ICAM-1 can induce intracellular signaling which
leads to the modification of cytoskeletal rearrangements.122

However, co-engagement of CD31/PECAM can counteract
ICAM-1 induced signaling.123 During P. falciparum infection,
clones expressing different PfEMP-1 variants with different
adhesion receptor specificities can co-exist. A recent and elegant
study has shown that upon interaction of IRBC with endothelial
cells, materials can be transferred from the IRBC to the endo-
thelial cell plasma membrane, which then endocytosed these
materials. This is associated with opening of the intercellular tight
junctions.75 A more drastic effect of cytoadherence is induction
of endothelial cell apoptosis.124 This phenomenon has been
described in vitro, is parasite strain-specific,125 depends on host
genetic factors,126 and is mediated by a unique set of parasite
proteins127 Different mechanisms leading to apoptosis have
been described, involving the induction of oxidative stress and
caspase-3.102,128

Platelet adhesion to brain endothelial cells can also lead to
modifications of the BBB. They can facilitate IRBC adhesion
by forming bridges between endothelial cells and IRBC, and
they have been shown in vitro to potentiate endothelial cell
apoptosis through TGF-β.129 Expression of TGF-β has been
detected in the brains of patients who died of HCM.130 Leuko-
cytes attracted by chemokines released at the site of IRBC
adhesion can further induce modifications in endothelial cells
by engaging ICAM-1 molecules and secreting proinflammatory
cytokines and mediators locally.

An additional effect of sequestration of IRBC, platelets
and leukocytes is a local reduction of blood flow.131,132 This
creates a dysfunctional environment where toxins produced by
metabolically-active parasites are concentrated and supply of
oxygen and nutrients such as glucose and amino acids is
decreased. A recent in vitro study has demonstrated that metabolic
acidosis can increase endothelial intercellular permeability and
disorganization of tight junctions.113

The blood-brain barrier and ECM. Pioneer studies from
Maegraith and collaborators first demonstrated that movement
of both proteins and water did occur across the BBB during
P. berghei infections using disulfine dye.133 This phenomenon was
further confirmed in later studies using Evans Blue, radio-labeled
albumin, radio-labeled antibody or horseradish peroxidase, and
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was associated with brain edema in mice with ECM.134-136 Using
retinal wholemounts, which allow the study of functional pro-
perties of microvasculature in a three-dimensional context, focal
sites of BBB breakdown were observed in ECM-susceptible mice
early in the infection.137,138 At later times of ECM, more extensive
rupture of the BBB is seen and is associated with modifications
of endothelial cell morphology such as swelling and signs of
cell death, explaining the increase of protein and water transfer
into the brain parenchyma.134 This transfer led to an activation
of astrocytes and microglia as shown in the retinal whole
mount system.139 In more recent studies, it was shown that
during ECM, brain edema resulting from leakage and accumula-
tion of fluid into the parenchymal extracellular space was
observed140,141 and was associated with enlarged perivascular
spaces.142

Modifications of the BBB during ECM can be caused by
various mechanisms. The early alterations of BBB may be caused
by the activation of endothelial cells due to proinflammatory
cytokines96,143 produced in the first week of PbA infection.64

TNF-a, lymphotoxin or IFN-c affect endothelial cells by
decreasing tight junction proteins while inducing an increase in
the expression of adhesion molecules144 that mediate binding of
leukocytes. Monocytes have been shown to adhere to endothelial
cells in the retina as early as 2 d before disease onset, inducing
morphology modifications of endothelial cells and provoking
reduction of local blood flow.137 Activated platelets also adhere
to the brain microvasculature following TNF-a stimulation.145,146

They can also fuse with endothelial cells to increase leukocyte
adhesion.145 Of interest, an active role for NO has been discarded
since ECM is characterized by low NO bioavailability like in
HCM. And moreover, treatments with exogenous NO-donors
prevent BBB rupture and protect against ECM.147,148

Although these early and focal modifications are important,
they are not responsible for late ECM deaths. CD8+ T cells which
migrate at the time of neurological signs are responsible for the
ensuing lethality. It is not yet known if and how CD8+ T cells
induce the rupture of the BBB, but it has been proposed that
CD8+ T cells kill endothelial cells after they phagocytosed and
processed parasite-derived antigens.74 This hypothesis is supported
by the fact that mice deficient for perforin or granzyme B, two
CD8 cytotoxic effector molecules, are resistant to ECM.58,71,149

However, a recent study in a mouse model of acute hemorrhagic
leukoencephalomyelitis showed that CD8+ T cells altered BBB
tight junction proteins through a perforin-dependent mechanism

without inducing endothelial apoptosis.150 It remains to be
determined if such a mechanism exists in ECM.

Relevance of the ECM findings to HCM. The mouse model
of malaria does not reproduce all the features of P. falciparum
infection predominantly due to differences in parasite biology.
However, similarities need to be recognized since they help to
generate hypotheses that can be tested in humans. In summary,
several pathologic changes occur mainly intravascularly in both
ECM and HCM. The BBB is altered during infection and
changes in permeability and/or rupture appear to be restricted
locally, with BBB rupture leading to hemorrhages. The exact
causes of BBB alterations are still unknown and may involve
cytoadherent parasites, cytokines, platelets and/or leukocytes. The
role of CD8+ T cells, which have been clearly demonstrated in
the mouse model, is still strongly debated in HCM. The main
refutation for a role of these cells is based on their rarity in post-
mortem histology samples that represent a limited snapshot of
the brain in both space and time. However, taking into account
the low frequency of brain-sequestered mouse CD8+ T cells in
ECM, human studies performed thus far may not have been
sufficiently sensitive. Quantitative and carefully controlled
immunohistological studies are needed, or alternatively, new
molecular approaches such as quantification of CD8 mRNA in
the brain63 should be performed.

Conclusion

The BBB is an important protective barrier for the human host
during malaria infections. Although the intra-erythrocytic para-
sites do not penetrate the brain parenchyma outside of local
ruptures, there is a constant and dynamic interplay between
IRBC, parasite-derived materials, host leukocytes and the BBB
that can lead to neurological alterations and death. However, till
now, it has not been firmly established if alterations of the BBB
during HCM are key pathogenic factors. As such, there is a need
to describe and understand the interactions of IRBC with the
brain endothelium and their downstream effects on the microglia,
astrocytes, and neurons and how they influence the morbidity and
mortality during HCM. Comprehension of these pathways may
pave the way for the development of new adjuvant therapies.
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