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A B S T R A C T

Ischemic stroke is a major global public health concern that lacks effective treatment options. A significant 
challenge lies in delivering therapeutic agents to the brain due to the restrictive nature of the blood-brain barrier 
(BBB). The BBB’s selectivity hampers the delivery of therapeutically relevant quantities of agents to the brain, 
resulting in a lack of FDA-approved pharmacotherapies for stroke. In this article, we review therapeutic agents 
that have been evaluated in clinical trials or are currently undergoing clinical trials. Subsequently, we survey 
strategies for synthesizing and engineering nanoparticles (NPs) for drug delivery to the ischemic brain. We then 
provide insights into the potential clinical translation of nanomedicine, offering a perspective on its trans-
formative role in advancing stroke treatment strategies. In summary, existing literature suggests that drug de-
livery represents a major barrier for clinical translation of stroke pharmacotherapies. While nanotechnology has 
shown significant promise in addressing this challenge, further advancements aimed at improving delivery ef-
ficiency and simplifying formulations are necessary for successful clinical translation.

1. Introduction

Stroke is a significant global public health issue accounting for one in 
every 20 deaths [1]. Stroke can be classified as ischemic, resulting from 
an artery blockage, or hemorrhagic, stemming from a ruptured vessel. 
Ischemic stroke represents the more prevalent form, constituting around 
87 % of stroke cases [2]. As the population ages, the burden of ischemic 
stroke is predicted to rise [3]. Despite its prevalence, there are no 
FDA-approved pharmacotherapies for this disease.

At present, the only approved therapeutic approaches for the clinical 
management of stroke include intravenous tissue-type plasminogen 
activator (tPA) administration and mechanical thrombectomy, both 
designed for reperfusion [4–6]. These approaches are inherently limited 
in that, in addition to increasing the risk of inducing cerebral hemor-
rhage and secondary damage to ischemic tissue, the therapeutic window 

for intravenous thrombolysis is narrow [7]. Considering this time 
constraint and the reality that there still are no optimized reperfusion or 
neuroprotective strategies, the current therapies extend their benefits to 
only a fraction of stroke patients due to eligibility constraints.

From a pathophysiological perspective, ischemic stroke manifests as 
an acute deprivation of oxygen and nutrients, culminating in local 
acidosis, activation of the Na+/H+ exchange pathway, and a rapid 
surge in reactive oxygen species (ROS) [8,9]. The distorted activation of 
ion exchangers such as the Na+/H+ exchange pathway contributes to 
cellular swelling, cerebral edema, and the release of excitatory neuro-
transmitters, particularly glutamate. This cascade triggers excitotox-
icity, initiating irreversible neuronal cell death [10] (summary of these 
processes seen in Fig. 1A). The dramatically increased ROS production 
ultimately overwhelms endogenous antioxidant mechanisms, inducing 
substantial toxicity to the cells within the neurovascular unit (NVU) 
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[11]. In the subacute phase, inflammation initiates and is the principal 
driver of cell death within the ischemic brain [9]. This intricate 
sequence of events leads to the irreversible damage of the ischemic core, 
juxtaposed with the potentially salvageable hypoperfused tissue sur-
rounding this core, known as the penumbra. An overview of the 
time-dependent factors of the described ischemic injury pathology can 
be seen in Fig. 1B. From a clinical perspective, the penumbra represents 
the pivotal target for managing ischemic stroke.

Due to its unique pathophysiological mechanisms, efficacious man-
agement of ischemic stroke may necessitate the formulation of multi-
modal therapeutic strategies aimed at precisely targeting the penumbra 
across distinct stages of the disease, with the imperative of timely 
intervention. Unfortunately, the efficient delivery of therapeutic agents 
to the brain poses a formidable challenge in ischemic stroke treatment, 
primarily due to the highly selective nature of the blood-brain barrier 
(BBB). Notwithstanding the potential for partial BBB compromise 
following ischemic insult, this barrier effectively prevents the delivery of 
a pharmacological dosage of most therapeutics to the brain. In this 
article, we undertake an in-depth review of the therapeutic agents that 
have been or are currently being evaluated in clinical trials, following 
the advancements in the development of nanotechnology approaches for 
drug delivery to the ischemic brain.

2. BBB as the major hurdle for stroke drug delivery

2.1. BBB and its normal physiological functions

The BBB, a selective barrier that protects the microenvironment of 
the central nervous system (CNS) from the peripheral circulatory sys-
tem, is composed of endothelial cells (ECs), pericytes, and astrocytes. 
ECs line the lumen of the BBB and are situated on the apical surface of 
blood vessels. Unlike in other organs, ECs in the brain lack transport 
mechanisms and don’t allow the passage of large molecules. The 
membrane of ECs contains various ATP-binding cassette (ABC) trans-
porters, including P-glycoprotein (P-gp), multidrug resistance- 
associated proteins (MRPs), and breast cancer resistance proteins 
(BCRRs), that transport selected substances that leak through ECs back 

into the bloodstream. Tight junctions (TJs) between ECs are formed by 
proteins like claudins, occludin, and junctional adhesion molecules 
(JAMs). These are connected to actin by scaffolding proteins known as 
zonula occludens (ZO) − 1/2/3. Astrocytes, covering more than 90 % of 
the capillary walls and situated on the BBB’s basal luminal membrane, 
provide additional support to endothelial capillaries. Astrocytes influ-
ence the BBB by regulating EC proliferation, differentiation, and the 
synthesis of TJs. Pericytes, positioned between ECs and astrocytes and 
mostly within the basement membrane, also play an important role. 
Pericytes contain specialized proteins like alpha-smooth muscle actin 
(α-SMA), tropomyosin, and myosin, endowing them with contractile 
ability to control BBB permeability [12]. An overview of the key com-
ponents that define the BBB is also illustrated in Fig. 1A.

Due to its distinct physical and cellular makeup, the BBB effectively 
limits the passage of most substances from the blood to the brain 
through both paracellular and transcellular transport mechanisms. The 
BBB’s selectivity permits only lipid-soluble small molecules under 400 
Da, which are not substrates to the ABC transporters, to cross. While this 
specialized barrier staunchly prevents the infiltration of pathogens and 
harmful compounds from the peripheral circulatory system into the 
CNS, it equally hinders the entry of most therapeutic agents into the 
brain. Consequently, addressing diseases in the brain becomes excep-
tionally challenging. The selectively permeable nature of the BBB stands 
as the primary hurdle in delivering drugs to the CNS.

2.2. BBB compromised by an ischemic insult

Following an ischemic insult, the BBB experiences a partial disrup-
tion. In murine stroke models, investigations demonstrate that this post- 
stroke BBB breakdown is a reflection of intricate physiological alter-
ations occurring at both the cellular and molecular levels [13,14]. 
Following an ischemic insult, the impacted regions of the brain are 
subjected to oxygen-glucose deprivation (OGD), triggering abnormal 
molecular responses across various cell types. Notably, major significant 
molecular responses include: 1) Activation of the ROCK/MLC pathway, 
resulting in the phosphorylation of myosin light chain (MLC) and actin 
polymerization within endothelial cells (ECs) [15]; 2) Expression and 

Fig. 1. An overview of the pathophysiological processes and its time course after ischemic stroke. (A) After cerebral ischemia, the resulting hypoxia triggers the 
activation of microglia, astrocytes, pericytes, and peripheral infiltrating cells near the ischemic site. This cascade leads to the generation of ROS, inflammatory 
factors, and chemokines, and, consequently, structural transformations within endothelial cells (ECs) and tight junctions (TJs). The intricate interplay between these 
components simultaneously contributes to the disruption and repair of the BBB. (B) The 2 weeks following ischemic insult, termed the acute phase, excitotoxicity, and 
oxidative stress significantly contribute to brain damage. Transitioning into the subsequent subacute phase, which can extend up to 6 months, inflammation plays a 
dualistic role, manifesting as both detrimental and beneficial, depending on the context. Created with BioRender.com.
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activation of primary and secondary active transporters, including those 
found naturally in brain cells like aquaporin-4 (AQP4) [16], as well as 
those that emerge de novo in the brain post-stroke, such as the 
SUR1-TRPM4 channel [17], leading to cerebral edema [17]; 3) Cytosolic 
translocation of Caveolin-1 (Cav-1), subsequently resulting in the 
redistribution and endocytosis of Claudin-5 [18]; 4) Activation of the 
hypoxia-inducible factor (HIF) pathway, triggering the expression and 
activation of vascular endothelial growth factor (VEGF) and leading to 
the reduction of TJ proteins [19]; 5) Astrocytic expression of PDGF-β 
and other factors resulting in capillary contraction, hindrance of blood 
flow, and vesicular transcytosis [20]; 6) Generation of matrix metal-
loproteinases (MMPs) and adhesion molecules such as ICAM-1 and 
VCAM, contributing to the degradation of TJs and recruitment of pe-
ripheral leukocytes [21]; and 7) Release of cytokines, MMPs, and DNA, 
giving rise to the formation of neutrophil extracellular traps (NETs) and 
subsequent damage to the BBB [22,23] (Fig. 2).

The timeline of BBB disruption can be largely described through a 
biphasic pattern. One study suggested that the most pronounced BBB 
damage occurs at 8 h and 120 h following cerebral ischemia [24], while 
another study indicated that the BBB opened significantly 1.5–2 min 
after ischemia-reperfusion (IR), closed for 1–4 h, and then reopened 
after 22 h [25]. This variance between these studies likely stems from a 
difference in the animal models used and methodologies employed to 
assess BBB permeability. In human patients, it was observed that BBB 
compromise manifests within the initial 90 h after symptom onset. BBB 
permeability, quantified as the ratio of infarct permeability to contra-
lateral permeability, was calculated to reach its peak around 6–48 h 
[26]. The average time from ischemia onset to the detection of BBB 
disruption in human patients is approximately 12.9 h [27,28]. The 
initiation and duration of BBB leakage due to secondary injury can span 

from 3 days post-stroke and may remain detectable for up to 6 months in 
rodents and 12 months in patients [29]. The compromised BBB is 
beneficial, in that it enables the infiltration of peripheral immune cells to 
facilitate debris clearance and wound healing, and can be seen as an 
opportunity to deliver therapeutics to the brain [30]. However, signifi-
cantly increased BBB permeability can also be harmful, leading to 
neuronal dysfunction, heightened intracranial pressure, and 
immune-mediated damage to neurons.

3. Pharmacotherapy for ischemic stroke

Here we focus on reviewing pharmacotherapeutic agents that are 
designed to promote post-stroke neurological recovery. These agents are 
developed to mainly target detrimental factors that contribute to sec-
ondary injury, including cerebral edema, excitotoxicity, oxidative stress, 
and inflammation [31]. Up to the present time, over 114 clinical trials, 
involving 49 pharmacotherapeutic agents, have been conducted. Among 
them, 21 agents have undergone assessment in phase 2/3 clinical trials 
(Table 1). Unfortunately, the collective outcomes have proven to be less 
than satisfactory, with only a handful of agents exhibiting promising 
clinical potential.

AIS, acute ischemic stroke; ALIAS, Albumin in Acute Ischemic Stroke 
Trial; AXIS 2, AX200 for the Treatment of Ischemic Stroke; G-CSF, 
Granulocyte colony-stimulating factor; PIMSS, Perth IV Minocycline 
Stroke Study; CERE-LYSE-1, Combined Treatment With Alteplase (Rt- 
PA) and Cerebrolysin in Acute Ischemic Hemispheric Stroke; Urico- 
Ictus, Efficacy Study of Combined Treatment With Uric Acid and rtPA 
in Acute Ischemic Stroke; FAST-MAG, Field Administration of Stroke 
Therapy-Magnesium Trial; MASTERS, Study to Examine the Effects of 
MultiStem in Ischemic Stroke; MEXIDOL, ethylmethylhydroxypyridine 

Fig. 2. Cellular and molecular mechanisms of BBB disruption after an ischemic stroke. Stroke onset initiates a heterogeneous cascade of cellular and molecular 
signaling pathways which result in alterations of cell structures, cell death, vasogenic and cytotoxic edema, inflammation, tight junction redistribution, and 
degradation, characterizing BBB disruption. Created with BioRender.com.
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Table 1 
Phase 2/3 clinical trial explored pharmacotherapies for ischemic stroke.

Registration number Phase Therapeutic Description/Mechanism Results Year

ALIAS (NCT00235495) 3 Albumin An endogenous plasma protein with important physiochemical 
properties, has commonly been regarded as an alternative 
hemodiluting agent to dextran

No clinical benefit of 25 % albumin given within 5 h after AIS 2013 [32]

AXIS 2 (NCT00927836) 2b G-CSF A potent neuronal growth factor with multimodal antiapoptotic, 
arteriogenic, and neurogenic properties

G-CSF did not provide any significant benefit with respect to either clinical 
outcome or imaging biomarkers

2013 [33]

PIMSS 
(ACTRN12612000237886)

2 Minocycline A semisynthetic tetracycline 
Neuroprotection

Intravenous minocycline was safe but not efficacious 2013 [34]

CERE-LYSE-1 
(NCT00840671)

3 Cerebrolysin A low-molecular-weight neuropeptide and free amino acid of 
porcine origin; 
Neuroprotective and neurotrophic properties

The combination of Cerebrolysin with tPA is safe for treatment of acute ischemic 
stroke but did not improve outcome at day 90

2013 [35]

URICO-ICTUS 
(NCT00860366)

2b/3 Uric acid A small molecule that has antioxidant and neuroprotectant 
activities

The addition of uric acid to thrombolytic therapy did not increase the proportion of 
patients who achieved excellent outcome after stroke compared with placebo, but 
it did not lead to any safety concerns

2014 [36]

NCT02002390 2 Fingolimod A sphingosine analog that acts on sphingosine-1-phosphate 
receptors; Immunology modulator

Combination therapy of fingolimod and alteplase was well tolerated, attenuated 
reperfusion injury, and improved clinical outcomes in patients with acute ischemic 
stroke

2015 [37]

ISRCTN71371114 2 Erythropoietin Anti-ischemic and anti-apoptotic properties, promotion of 
neovascularization, mobilization of endothelial progenitor cells, 
and enhancement of angiogenesis

Erythropoietin therapy significantly improved long-term neurological outcomes in 
patients after AIS

2015 [38]

GAMES-RP (NCT01794182) 2 Glyburide (RP-1127) A SUR1-TRPM4 channel antagonist that reduces cerebral edema Intravenous glyburide was well tolerated in patients with large hemispheric stroke 
at risk for cerebral edema. There was no difference in the composite primary 
outcome

2016 [39]

FAST-MAG (NCT00059332) 3 Magnesium Vasodilatory and neuroprotective & glioprotective effects Magnesium is not biologically neuroprotective in acute stroke 2017 [40]
MASTERS (NCT01436487) 2 Multipotent adult 

progenitor cells
A bone marrow-derived, allogeneic, cell therapy product modulates 
the immune system

Administration of multipotent adult progenitor cells was safe in patients with AIS. 
No significant improvement was observed at 90 days in neurological outcomes

2017 [41]

EPICA (NCT02793687) 3 MEXIDOL A succinate salt that has antioxidant and antihypoxant and 
suppresses excitotoxicity

Use of Mexidol in the acute and early recovery phases of AIS is recommended 2018 [42]

ACTION II (NCT02730455) 2 Natalizumab An α-4 integrin-targeting immunomodulation antibody that inhibits 
transmigration of leukocytes across the vascular endothelium

Natalizumab administered ≤24 h after AIS did not improve patient outcomes 2020 [43]

RESTORE BRAIN 
(NCT02877615)

2 S44819 A GABA α5 antagonist improves neurological recovery There was no evidence that S44819 improved clinical outcome in patients after AIS 2020 [44]

ESCAPE-NA1 (NC 
T02930018)

3 Nerinetide Neuroprotection 
A PSD95-NR2B inhibitory peptide decreases excitotoxicity

Nerinetide did not improve the proportion of patients achieving good clinical 
outcomes after endovascular thrombectomy. Among patients who were not treated 
with alteplase, they observed a treatment effect

2020 [45]

NCT02430350 3 Compound 
Edaravone Injection

A novel neuroprotective agent with synergistic effects of antioxidant 
and anti-inflammatory

When edaravone dexborneol versus edaravone was administered within 48 h after 
AIS, 90-day good functional outcomes favored the edaravone dexborneol group, 
especially in female patients

2021 [46]

CHARM (NCT02864953) 3 Glyburide (BIIB093) Anti-edema 
A SUR1-TRPM4 channel antagonist reduces cerebral edema

CHARM will include 680 participants across 22 countries Recently 
Completed

MASTERS-2 (NCT03545607) 3 MultiStem Neuroprotection/immunomodulation 
Adult-derived multipotent adult progenitor cells to provide 
neuroprotection, immunomodulation, and (less likely) cell 
replacement effects

300 participants; Single intravenous infusion 18–36 h after AIS Ongoing

PMZ-1620 (NCT04047563) 3 Sovateltide (PMZ- 
1620)

Neurological recovery 
An endothelin-B receptor agonist augments the activity of neuronal 
progenitor cells

110 participants; Efficacy of sovateltide (PMZ-1620) in patients of AIS Ongoing

NCT03639922 3 Imatinib Reduces intracerebral hemorrhage and edema 1260 participants; Imatinib in acute ischemic stroke Ongoing
NCT04904341 3 Cerebrolysin A low-molecular-weight neuropeptide and free amino acid of 

porcine origin; 
Neuroprotective and neurotrophic properties

50 participants; Efficacy of cerebrolysin treatment as an add-on therapy to 
mechanical thrombectomy in AIS

Ongoing
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succinate; ACTION II, Safety and Efficacy of Intravenous Natalizumab in 
Acute Ischemic Stroke; RESTORE BRAIN, Efficacy and Safety Trial With 
S 44819 After Recent Ischemic Cerebral Event; ESCAPE-NA1, Safety and 
Efficacy of Nerinetide (NA-1) in Subjects Undergoing Endovascular 
Thrombectomy for Stroke; CHARM, Phase 3 Study to Evaluate the Ef-
ficacy and Safety of Intravenous BIIB093 (Glyburide) for Severe Cerebral 
Edema Following Large Hemispheric Infarction; MASTERS-2, Multi-
Stem® Administration for Stroke Treatment and Enhanced Recovery 
Study; PMZ-1620, Efficacy of Sovateltide (PMZ-1620) in Patients of 
Acute Ischemic Stroke.

3.1. Glibenclamide

Cerebral edema commonly develops in patients with moderate to 
severe stroke, denoted by an NIH Stroke Scale (NIHSS) score exceeding 
4, accounting for around half of the U.S. stroke cases [47,48]. The 
progression of cerebral edema in stroke patients unfolds through three 
stages [49,50]. In the initial stage, cytotoxic edema emerges shortly after 
stroke onset. This process involves cellular swelling caused by an influx 
of osmolytes, primarily Na+ and Cl–, guiding the movement of water 
from interstitial spaces into cells. This phenomenon takes place across 
all brain cell types. Following cytotoxic edema, the second stage sees the 
formation of ionic edema. This extracellular edema occurs while the BBB 
remains intact [51]. The transendothelial Na + gradient from cytotoxic 
edema drives the extravasation of osmolytes and water, propelled by 
potential energy. Hours after the ischemic insult, the final stage involves 
partial disruption of the BBB. Transendothelial channels allow protein 
and water passage from the vascular to the interstitial compartment, 
culminating in vasogenic edema.

At the molecular level, primary and secondary active transporters 
drive cytotoxic and ionic edema, including those found in brain cells, 
such as aquaporin-4 (AQP4), and those emerging de novo after stroke, 
like the SUR1-TRPM4 channel [17]. The SUR1-TRPM4 channel, typi-
cally not expressed or expressed minimally in a normal brain, becomes 
active when intracellular ATP is depleted following ischemic stroke. 
Under cerebral ischemia and hypoxia conditions, the SUR1-TRPM4 
channel’s expression surges across all cells in the NVU, including 
capillary endothelial cells, neurons, astrocytes, and oligodendrocytes 
[52–55]. Abnormal SUR1 expression leads to sustained sodium influx, 
subsequent water influx, oncotic cell swelling, and cell death, resulting 
in space-occupying edema and even hemorrhagic transformation [51,
53,56]. The SUR1-TRPM4 channel’s activity can be effectively blocked 
by glyburide (INN: glibenclamide), a sulfonylurea diabetes medication 
that binds to SUR1 with subnanomolar affinity [57,58]. Animal studies 
showed that glyburide administration reduces edema, lesion volume, 
and mortality, and enhances neurological outcomes [53,59–63]. These 
pre-clinical studies led to clinical trials, where the glyburide formulation 
was designated as RP-1127. Initially assessed in the GAMES-PILOT study 
with 10 stroke patients [64,65], it was further evaluated in the 
GAMES-RP phase II clinical trial with 86 patients (18–80 years old) 
experiencing acute large-area AIS (within <10 h, average 9 h) [39]. At 
the 90-day follow-up, the glibenclamide group displayed no distinct 
primary endpoint differences compared to the placebo group. Subse-
quent analysis revealed reduced brain midline shift and a trend toward 
improved survival, implying reduced mass effect and water uptake [39,
66]. These promising findings led to FDA approval for the recently 
completed phase III clinical trial, CHARM (NCT02864953) [67].

3.2. NA1

One of the primary mechanisms of neuronal injury following stroke 
is NMDAR-dependent excitotoxicity, which is induced by the binding of 
PSD-95 with NMDARs and nNOS at excitatory synapses [68,69]. It was 
shown that protection of neurons against NMDAR-mediated excitotox-
icity could be achieved through disruption of the interaction of NMDARs 
with PSD-95 using the last nine amino acids of the carboxyl tail of 

GluN2B (NR2B9c) [68]. Since NR2B9c cannot penetrate the cell mem-
brane, therapeutic use of NR2B9c requires fusion with TAT, a cell 
penetration peptide. The resulting Tat-NR2B9c peptide was evaluated in 
rodent and nonhuman primate models and demonstrated a significant 
reduction in infarct volume and improvements in neurological outcomes 
[68,70]. The promising pre-clinical studies led to serial clinical trials, in 
which Tat-NR2B9c was rebranded as NA1 45, 71. Results of the phase II 
clinical trial ENACT found that treatment with NA1 effectively reduced 
the number and volume of iatrogenic embolization strokes in patients 
with endovascular aneurysm repair [71]. These findings led to a 
multi-center, double-blind, randomized phase III clinical trial, 
ESCAPE-NA1, which was reportedly completed in 2020 [45]. Although 
the overall results of the study were neutral, NA1 treatment was found to 
be associated with improved 90-day clinical outcomes (59.3 % vs 49.8 
%, RR 1.18, 95 % CI 1.10 to 1.38).

Further analysis showed that tPA degrades NA1, making NA1 in tPA- 
treated patients ineffective. To overcome this limitation, a new gener-
ation of plasmin-resistant NA1 formed by substituting cleavage-prone 
amino acids from their l-to their d-enantiomeric form was developed 
[72]. Currently, the new plasmin-resistant NA1 is being tested in human 
patients.

3.3. Uric acid (UA)

In response to the need for neuroprotective strategies alongside 
mechanical thrombectomy, the National Institutes of Health (NIH) 
recently launched the Stroke Preclinical Assessment Network (SPAN). 
This initiative was designed to evaluate selected pharmacotherapies for 
the treatment of ischemic stroke. In a recently concluded phase 1 pilot 
study, uric acid (UA) emerged as a particularly promising neuro-
protective candidate based on its performance in rodent models [73]. 
UA, a product of purine metabolism, is typically quickly degraded by 
hepatic uricase to allantoin in most mammals. However, due to the 
nonfunctional uricase gene in humans [74], UA levels tend to be higher 
in humans than in most mammals.

UA acts as a robust endogenous antioxidant and scavenger of free 
radicals. Notably, its levels can surge during periods of high oxidative 
stress, such as in the case of ischemic stroke. Earlier experiments con-
ducted on rats found that in ischemic conditions, adenosine triphosphate 
(ATP) degradation led to the generation of adenine and xanthine. This, 
in turn, triggered an upswing in xanthine oxidase production, resulting 
in increased UA generation and elevated oxidant formation [75].

In preclinical studies, UA has demonstrated a capacity to enhance 
stroke outcomes in various stroke models derived from hyperglycemic, 
female, and male mice [76,77]. It was also found that treatment with UA 
is synergistic with rtPA infusion [78]. There is evidence that UA has a 
limited ability to cross the BBB, as intravenous administration of UA led 
to increased plasma levels within 10 min, whereas brain tissue UA levels 
remained unaffected [79,80].

In the clinical domain, a study by Chamorro and colleagues reported 
a 12 % increase in the odds of a favorable clinical outcome for each 
milligram per deciliter of serum uric acid added [81], while another 
study suggested that low UA concentrations are modestly associated 
with positive short-term outcomes [82]. A pilot clinical study found that 
intravenous UA administration alongside rtPA infusion within 3 h of 
symptom onset was safe and that the treatment reduced the level of 
activated MMP-9 [83]. The Phase 2 URICO-ICTUS trial, involving 421 
AIS patients treated with rtPA within 4.5 h of symptom onset, confirmed 
the safety of a single 90-min infusion of 1 g UA administration. Although 
there was an overall nonsignificant 6 % rise in the rate of favorable 
outcomes at follow-up, significant effects of UA therapy were found in 
various subgroups including women, hyperglycemic patients, and those 
treated with mechanical thrombectomy [84].

B. Peng et al.                                                                                                                                                                                                                                     Bioactive Materials 43 (2025) 145–161 

149 



3.4. Minocycline

With its high lipophilicity, minocycline can penetrate the BBB. The 
compound’s neuroprotective effects primarily stem from its capacity to 
inhibit microglial activation. This capacity, in turn, reduces T cell 
migration, cellular apoptosis, free radical generation, and inflammatory 
responses [85,86]. Moreover, minocycline exhibits a significant ability 
to restrain the production of MMP-9 [87], a pivotal factor implicated in 
the transformation of intracranial hemorrhage associated with throm-
bolytic therapy. Consequently, minocycline holds the potential for 
diminishing tissue damage and hemorrhage transformation. Supported 
by a Dose-Finding Study [88], minocycline is safe and compatible with 
tPA infusion. While the effectiveness of minocycline in treating acute 
ischemic stroke (AIS) was demonstrated in two distinct clinical trials 
[89,90], uncertainties persist regarding its capacity to significantly 
curtail mortality and disability post-AIS [34].

3.5. Other therapeutic agents

Numerous other therapeutic agents hold potential promise for the 
treatment of ischemic stroke. These include fasudil, a Rho-associated 
kinase (ROCK) inhibitor, tocilizumab (Actemra), an immunosuppres-
sive agent, fingolimod (Gilenya, FTY720), an S1P analogue, and NEP1- 
40, a Nogo receptor (NgR) antagonist peptide. Among them, fasudil, 
tocilizumab, and fingolimod were characterized in the recently 
completed SPAN phase 1 pilot study.

Fasudil is a non-specific inhibitor of Rho kinases (ROCK), which are 
well-characterized therapeutic targets for ischemic stroke [91]. In ro-
dent studies, Fasudil demonstrated compatibility with tPA as well as the 
potential to prevent MMP-9-related hemorrhagic transformation and 
reduce cerebral infarct size while improving neurological outcomes 
[92–95]. Fasudil was tested in a placebo-controlled double-blind trial 
for its safety and efficacy. Fasudil was administered within 48 h of 
ischemic stroke onset and results revealed fasudil is safe for human use 
and that treatment with fasudil significantly improves clinical outcomes 
[96].

Veliparib is an inhibitor of poly (ADP-ribose) polymerase (PARP), 
which plays a pivotal role in the repair of DNA damage by catalyzing the 
transfer of an ADP ribose unit from NAD + to specific target proteins, 
including histones and transcription factors [97]. When PARP becomes 
overly active, it disrupts mitochondrial homeostasis by depleting NAD 
+ reserves. This depletion leads to an escalation in the levels of reactive 
oxygen and nitrogen species, as well as a surge in intracellular Ca2+
concentrations. Several studies have demonstrated that PARP inhibitors 
can prevent the activation of microglia and enhance neuronal survival 
[98,99]. However, the exploration of veliparib’s application for treat-
ment of ischemic stroke remains limited.

Tocilizumab is a humanized monoclonal anti-interleukin-6 receptor 
antibody and used as an immunosuppressive medication for treatment 
of rheumatoid arthritis and systemic juvenile idiopathic arthritis. As 
cerebral ischemia causes time-dependent recruitment and activation of 
inflammatory cells, inhibition of the inflammatory response has the 
potential to reduce ischemic size and improve neurological outcomes. 
Experimental studies in murine stroke models showed that treatment 
with tocilizumab lowered the immune system’s response to stroke and 
that the neuroprotective dose of tocilizumab was different between 
males and females [100,101].

Fingolimod functions as an agonist for sphingosine 1-phosphate 
(S1P) receptors and has demonstrated neuroprotective effects in 
various animal stroke models [102,103]. Mechanistically, fingolimod 
acts by impeding the migration of lymphocytes during the reperfusion 
phase. This action leads to the attenuation of inflammation within ce-
rebral blood vessels and neural tissue, fostering improved blood circu-
lation and evident neuroprotective outcomes. Fingolimod has been 
evaluated in two small-scale trials, where it significantly reduced infarct 
size and ameliorated neurological deficits in stroke patients [37,104]. 

Furthermore, fingolimod was characterized in a randomized and blin-
ded clinical study involving 23 stroke patients who received either tissue 
plasminogen activator (tPA) or a combination of tPA and fingolimod 
within a time frame of 4.5–6 h after stroke onset. Results showed that the 
combination therapy group displayed not only superior clinical en-
hancements compared to the tPA-alone group but also notable im-
provements in anterograde reperfusion and retrograde collateral blood 
flow [105].

NEP1-40 is a Nogo receptor (NgR) antagonist peptide, which can 
inhibit the effect of Nogo-A and enhance short-term neurosynaptic 
plasticity and neurological function after cerebral ischemia [106]. 
Nogo-A has the effect of resisting synapse reconstruction after CNS 
injury. NgR1 is the receptor of Nogo-A. Inhibiting NgR1 can promote 
axon regeneration. Similar to NR2B9c, NEP1-40 is also a peptide drug. 
Therefore, they possess similar issues with ensuring efficient delivery.

4. Nanotechnology as a potential solution to address the 
challenges of effective drug delivery

As surmised, the therapeutic window for many effective pharmaco-
therapies is within the first 12 h of stroke onset yet, this presents a 
challenge as the mean time from the onset of ischemia to observation of 
BBB disruption is around 12.9 h [27,28,107]. In this period and beyond, 
the injured BBB is still highly selective and can be accompanied by 
reperfusion injury, tissue no-reflow, poor collateral circulation, hemor-
rhage transformation, impaired cerebrovascular auto-regulation func-
tion, and large hypoperfusion volume, all factors that impact clinical 
prognosis and treatment design [108]. As such, the BBB remains a major 
barrier to the development of pharmacotherapies that effectively treat 
stroke and might account for why some pharmacotherapeutic agents 
showed limited efficacy in the clinic. For example, it was well charac-
terized that glyburide has a limited ability to penetrate the brain [109,
110]. Using PET/CT and labeling glyburide with a radiotracer, we 
demonstrated there was no significant difference in glyburide uptake 
between the ischemic and the contralateral hemispheres in rats bearing 
large stroke, suggesting that the penetrability of glyburide is not 
enhanced in the ischemic brain [109]. To overcome the drug delivery 
hurdle, emerging nanotechnology approaches hold great promise 
[111–114] as nanoparticles (NPs) can potentially be engineered through 
various mechanisms to enhance drug accumulation in the ischemic brain 
tissue [115–118]. Employing NPs has additional advantages in that they 
provide physical protection to cargo agents that otherwise are insoluble, 
unstable, toxic, or substrates to ATP-binding cassette (ABC) transporters 
on the BBB.

4.1. Applications of NPs for drug delivery to the ischemic brain

NPs can be classified based on their main compositions. Though not 
all types are extensively covered in this review, Fig. 3 exemplifies the 
structures of many NPs types and subtypes that are studied for ischemic 
stroke treatment. Please note this list is not exhaustive. To date, various 
types of NPs, including polymeric NPs, lipid NPs, small-molecule self- 
assembled NPs, protein NPs, metal NPs, and extracellular vesicles, have 
been explored for drug delivery to the ischemic brain.

4.1.1. Polymeric NPs
Polymeric NPs, mainly including solid NPs, micellular NPs, and 

dendrimer NPs, refer to those NPs consisting of polymeric materials, 
which are formed by covalent attachment of a set of small molecule 
monomers. This class of NPs often has excellent biocompatibility and 
sustained-release characteristics, making them suitable for various drug 
delivery applications [106,113,119–121]. In a recent study using poly 
(lactic-co-glycolic acid) (PLGA) as the starting material, one of the 
most often used polymers in the biomedical field, we synthesized and 
engineered solid polymeric NPs for autocatalytic brain targeting 
through surface conjugation of chlorotoxin and internal encapsulation 

B. Peng et al.                                                                                                                                                                                                                                     Bioactive Materials 43 (2025) 145–161 

150 



of lexiscan. We showed that the resulting NPs were capable of efficiently 
penetrating the ischemic brain and delivering peptide NEP1-40 for 
effective treatment of ischemic stroke [106] (Fig. 4). Through a similar 
approach, Lu and colleagues synthesized micellular NPs using a 
ROS-scavenging polymer and showed that the NPs could be utilized for 
efficient delivery of rapamycin to the ischemic brain for stroke treatment 
[122].

Unlike solid NPs, which maintain their structures during delivery, 
micellular NPs have a relatively unstable structure and could be engi-
neered to respond to external stimuli by changing size. We recently 
synthesized polycaprolactone (PCL)-derived micellular NPs, which 
respond to thrombin, a protease preferentially accumulated in the 
ischemic microenvironment, by expanding or shrinking in size. The 
approach to engineering size-changing NPs will be discussed in section 
4.2.2. We found that the micellular NPs were able to efficiently pene-
trate the ischemic brain and deliver the glyburide payload to achieve 
effective treatment of ischemic stroke [123].

Other types of polymeric NPs, including dendrimers, polymeric 
nanogels, and melanin NPs, have also been explored for drug delivery to 
the ischemic brain. In one study, Li et al. employed dendrimers for drug 
delivery to the ischemic brain [124]. Compared to polymeric solid NPs 

and micellular NPs, dendrimers have a unique advantage in their small 
size and uniform dispersion [125]. The authors engineered dendrimers 
for brain targeting through surface conjugation of an EC-targeting 
peptide COG1410. They showed that the resulting NPs penetrated the 
brain with high efficiency, and when salvianolic acid A, an antioxidant, 
was conjugated, the NPs effectively promoted stroke recovery [124]. In 
another study, Liu and colleagues explored NPs consisting of melanin, a 
biological polymer known to have scavenging activities, as an antioxi-
dant therapeutic for stroke treatment and found that the intraventricular 
administration of these NPs significantly reduced infarct volume [126].

4.1.2. Lipid NPs (LNPs)
LNPs are nanoformulations mainly consisting of lipid materials. Li-

posomes, an early generation LNP, possess a unique vesicular structure 
formed by a lipid bilayer in the shape of a hollow sphere. The double- 
layer structure enables liposomes to be loaded with either hydrophilic 
or hydrophobic drugs. Unlike liposomes, the latest LNP formulations 
possess a liposome-like structure but do not necessarily have a contin-
uous bilayer.

LNPs, particularly liposomes, are the earliest nanomedicine delivery 
platform to have successfully advanced to clinical applications. LNPs 

Fig. 3. Schematic representation of the types of NPs that can potentially be engineered for the treatment of ischemic stroke. Created with BioRender.com.

Fig. 4. Targeted drug delivery to ischemic stroke via chlorotoxin-anchored, lexiscan-loaded nanoparticles improved drug delivery capabilities. (A) Schematic di-
agram of a NEP1-40-loaded PLGA-CTX/LEX NP. (B) Representative image of NEP1-40-loaded PLGA-CTX/LEX NPs as captured by scanning electron microscope. Scale 
bar: 500 nm. (C) Representative image of NPs in the brains of live animals. (D) Representative image of NPs in the excised brains. (E) Semi-quantification of NPs in 
the excised brains. (F) Representative images of brain slices prepared from mice receiving 2 treatments of unlabeled PLGA-CTX/LEX NPs prior to the final 
administration of IR780-loaded PLGA-CTX/LEX NPs. Reproduced from Ref. [106].
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have been explored for drug delivery in cases of stroke. Several studies 
reported that liposomes could be employed for the encapsulation of 
hemoglobin to deliver oxygen to ischemic brain tissue, leading to 
accelerated stroke recovery [127–129]. In another study, Zhao and 
colleagues reported the use of liposomes to deliver basic fibroblast 
growth factor (bFGF) to the brain and demonstrated that intranasal 
administration of bFGF-loaded liposomes efficiently bypassed the BBB, 
effectively reduced infarct volume, and promoted functional recovery 
[130] (Fig. 5).

4.1.3. Small molecule-assembled nanoparticles
Recently, we and others identified a group of small molecules, which 

bear ring structures and are capable of self-assembly into spherical and 
rod-shaped NPs [131–135]. Many of these molecules are unique in that 
they possess pharmacological activities and are derived from natural 
herbal materials known to be effective for stroke treatment [133]. As 
such, NPs consisting of these small molecules could be potentially 
employed not only for drug delivery to the ischemic brain but also as a 
therapeutic agent for stroke treatment. In a recent study [133], we 
studied betulinic acid (BA) and found it formed rod-shaped NPs of 
different sizes and shapes, including lengths of ~156 nm and diameter 
of ~45 nm (156(l) x 45(d)), 315(l) x 60(d), and 730(l) x 35(d) that were 
designated as R150, R300, and R700, respectively (Fig. 6A). We char-
acterized all of these NPs for drug delivery to the ischemic brain and 
found that, after intravenous administration, R300 demonstrated the 
greatest efficiency (Fig. 6B and C). We showed that the excellent brain 
penetration capabilities of R300 can be attributed not only to their 
unique size and shape, but also their interaction with cannabinoid re-
ceptor 1 (CB1), which is highly expressed in ischemic brain tissue after 

stroke, and pre-treatment with SR141716A, a CB1 receptor blocker, 
reduced their brain penetrating efficiency (Fig. 6D–G). We further 
characterized the use of BA NPs as a drug carrier for the delivery of 
glyburide and found that glyburide-loaded BA NPs limit the risk of hy-
poglycemia induced by glyburide while achieving anti-edema and 
antioxidant combinatory therapeutic benefits greater than either gly-
buride or BA NPs alone. In another recent study, we converted the BA 
chemistry to BAM and conjugated AMD3100 on the surface (A-BAM 
NPs) for targeted delivery of NA1 to acidic ischemic tissue [135]. Recall, 
that in the recently completed ESCAPE clinical trial, NA1 failed to 
demonstrate therapeutic benefits when tPA was co-administered [45]. 
We found that intravenous administration of NA1-loaded A-BAM NPs 
can not only effectively improve the treatment of stroke, but also enable 
NA1 therapy to be compatible with tPA infusion.

4.1.4. Inorganic nanoparticles
Inorganic NPs refer to those NPs derived from inorganic materials, 

such as metals, semiconductors, and carbon. Compared to organic NPs, 
most inorganic NPs have a higher degree of stability and better- 
controlled tunability in size and shape. Some of inorganic NPs possess 
unique biological, chemical, electrical, and magnetic properties, making 
them attractive for specific biological applications. Among various 
inorganic NPs, NPs consisting of ceria have been extensively explored 
for treatment of ischemic stroke. Mechanistically, cerium ion at the 
surface of NPs can shift between the reduced (Ce3+) and the oxidized 
(Ce4+) forms through binding with oxygen, allowing ceria NPs to have 
both superoxide dismutase-mimetic and catalase-mimetic activities. 
Ceria NPs can protect cells from two major ROS, superoxide anion and 
hydrogen peroxide [136]. Kim and colleagues showed that intravenous 

Fig. 5. Scheme of intranasal administration of bFGF-nanoliposomes (bFGF-NL) for targeted therapy of IR damage in a rodent stroke model resulting in reduced 
infarct volume. Reproduced from Ref. [130].
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administration of PEGylated ceria NPs reduced infarct volume in a rat 
stroke model [137]. Bao and colleagues further engineered PEGylated 
ceria NPs through surface conjugation of Angiopep-2 and demonstrated 
that the resulting NPs penetrated the ischemic brain with a high effi-
ciency. After intravenous administration, the NPs effectively improved 
stroke recovery and their efficacy was further improved through loading 
with edaravone [138]. To overcome the major challenges associated 
with ceria NPs for clinical translation, including short blood circulation 
time, aggregation, and uncontrollable catalytic reaction, the authors 
developed an strategy for in situ synthesis of bioactive zeolitic imida-
zolate framework-8–capped ceria nanoparticles (CeO2@ZIF-8 NPs) 
[139] (Fig. 7). They showed that the resulting nanosystem exhibited 
enhanced catalytic and antioxidative activities, increased the blood 
circulation time, and improved BBB penetration and accumulation in 
the brain. As a result, treatment with CeO2@ZIF-8 NPs notably 
decreased neuronal damage and suppressed inflammation and immune 

response.
Other than CeO2 NPs, manganous tetroxide NPs (Mn3O4 NPs) have 

also been explored for stroke treatment. Compared to CeO2 NPs, Mn3O4 
NPs were shown to have greater antioxidase activities (SOD, catalase) 
[140,141]. Shi and colleagues developed an engineered nanosponge, 
Mn3O4@nanoerythrocyte-T7, and demonstrated that the nanosponge 
could remodel the ischemic microenvironment through self-adapted 
oxygen regulating and free radical scavenging, effectively improving 
post-stroke recovery [142]. More, recently, Wang et al. employed 
upconversion nanoparticles (UCNPs) to drive a nanophotosynthesis 
biosystem for local generation of oxygen and demonstrated this com-
bination efficiently enhanced angiogenesis, reduced infarction, and 
facilitated brain tissue repair in a stroke mouse model [143].

4.1.5. Others
There are several other types of NPs, such as protein NPs, 

Fig. 6. BA NPs for drug delivery to the ischemic brain. (A) Representative SEM images of BA NPs. BA forms rod-shaped NPs in different sizes and shapes, designated 
as R150, R300, and R700, respectively. Scale bar: 500 nm. (B,C) Representative images (B) and semi-quantification (C) of BA NPs in the brains isolated from MCAO 
mice received the indicated treatment. (D) Flow cytometry analysis of the uptake of BA NPs in cells that were engineered to overexpress the indicated surface 
molecules. (E) Schematic diagram of in vitro BBB transcytosis assay. (F) In vitro analysis of the inhibitory effect of SR141716A on NP transcytosis. (G) Representative 
images (upper panel) and semi-quantification (bottom panel) of IR780-loaded BA NPs in the brains isolated from MCAO mice with and without pre-treatment of 
SR141716A. Reproduced from Ref. [133].

Fig. 7. Schematic illustration for in situ synthetic approach of CeO2@ZIF-8 nanotherapeutics and its neuroprotective application mechanisms against reperfusion- 
induced injury in AIS. Reproduced from Ref. [139].
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nanoconjugates, and biomimetic NPs, which have been also evaluated 
for drug delivery to the ischemic brain for stroke treatment.

We recently designed and synthesized thrombin-activatable protein 
nanoparticles (APNPs) for the targeted delivery of NR2B9C, a neuro-
protective peptide, to the ischemic brain (Fig. 8) [144]. The NPs were 
formed through the self-assembly of three recombinant polypeptides 
based on pairwise coiled-coil dimerization and further engineered for 
enhanced blood circulation and improved brain penetration through 
PEGylation and surface display of a transferrin receptor (TfR)-targeting 
peptide. Upon reaching the ischemic microenvironment, APNPs were 
cleaved by thrombin to release payload NR2B9C, which, in turn, effec-
tively improve stroke recovery [144].

A variety of nanoconjugates have been developed and tested in 
murine stroke models. Adenosine is a nucleoside known to have 
potentially significant beneficial activity for many neurological disor-
ders. Unfortunately, this compound is unsuitable for clinical translation 
because it is limited by its short plasma half-life and poor ability to 
penetrate the BBB. Gaudin and colleagues demonstrated that an aden-
osine bioconjugation with lipid squalene formed NPs, demonstrating 
prolonged circulation and neuroprotection in a mouse stroke model 
[145]. In another study, Zhang and colleagues reported an approach to 
selectively target inflammatory neutrophils using NPs composed of 
DOX-BSA conjugate [146]. They showed that treatment with these NPs 
inhibited neutrophil transmigration and decreased post-stroke brain 
damage [146].

More recently, various biomimetic vesicles have been developed for 
drug delivery to the ischemic brain. Among them, extracellular vesicles 
(EVs), which are cell-secreted nanoscale vesicles with subcellular 
structures, are particularly attractive as they often have great stability 

and long blood circulation time. Exosomes often carry microRNA and 
other cargo from the parent cells, making themselves alone a neuro-
restorative therapeutic. Applications of exosomes for the treatment of 
stroke have been reviewed in a recently published article [147]. How-
ever, clinical translation of exosomes has been limited by their low yield 
and purity as well as concerns about genetic materials within the vesi-
cles. To overcome these limitations, other types of biomimetic vesicles, 
such as cell membrane-derived nanovesicles [148] and the fusion of cell 
membrane with liposomes [149], have been developed and shown great 
promise for drug delivery to stroke.

4.2. Engineering NPs for targeted drug delivery to the ischemic brain

Nanotechnology has the major advantage of manipulating the en-
gineering of NPs for enhanced drug delivery to the ischemic brain. 
Various approaches, including surface functionalization, stimuli- 
responsiveness, and biomimicry, have been explored.

4.2.1. Surface functionalization for passive or active targeting
PEGylation through surface coating with polyethylene glycol (PEG) 

is a commonly used approach to passively improve the delivery of NPs to 
the ischemic brain [127–129,144,145]. In addition to reducing protein 
adsorption, PEGylation alters the composition of the protein corona to 
prevent non-specific cellular uptake [150]. As a result, PEGylation helps 
NPs to evade the mononuclear phagocyte system (MPS), resulting in 
prolonged blood circulation and increased potential to penetrate the 
compromised BBB.

However, passive targeting through PEGylation has limited effi-
ciency, as the brain penetrability of PEGylated NPs solely depends on the 

Fig. 8. Design of APNPs. (A) Function and sequences of modular peptides used in the study. (B) Schematic of polypeptides containing functional modular motifs. (C) 
Formation and activation of APNPs. Reproduced from Ref. [144].
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degree of BBB disruption. Improving drug delivery to the ischemic brain 
could be potentially achieved through active targeting strategies via 
surface conjugation of ligands, which can interact with receptors or 
“receptor like” molecules highly expressed in the BBB, such as trans-
ferrin receptors (TfR) [151], or molecules enriched in the ischemic 
microenvironment, such as MMP-2 106 and fibrin fibrils [152]. To 
identify molecular targets which are preferentially accumulated in the 
ischemic brain tissue, we recently profiled proteins in both the ischemic 
brain and normal brain using an antibody array, through which we 
identified 19 proteins that had significantly different levels of expression 
in the ischemic hemisphere, compared to those in the contralateral 
control. Further characterization identified CXCR4 as the most promi-
nent target, which is highly expressed in the ischemic brain shortly after 
the onset of stroke and can be targeted by a well-characterized antag-
onist, AMD3100. We showed that surface conjugation of AMD3100 
enhanced the accumulation of NPs in the brain by over 30-fold (Fig. 9a, 
b) [123]. In another study, we reported the development of multifunc-
tional AMD3100-conjugated, shrinkable poly (2,2′-thiodiethylene 3, 
3′-thiodipropionate) (PTT) NPs (ASPTT NPs) which are synthesized 
using a ROS-reactive PTT polymer and conjugated with AMD3100 
[153]. This work showed that ASPTT NPs are capable of efficient 
encapsulation and delivery of glyburide to achieve anti-edema and 
antioxidant combination therapy, resulting in effective stroke treatment. 
Additional active targeting strategies were summarized in Table 2.

4.2.2. Stimuli-responsiveness
Despite great progress over many decades, accumulating evidence 

shows that active targeting is significantly complicated by the complex 
physiological system and limited efficiency for clinical translation 
[161]. Further improved targeted drug delivery requires engineering 
NPs to be “intelligent” and responsive to disease microenvironments by 
changing their physical or chemical structures [162,163]. To explore 
intelligent responsiveness as a novel approach to enhancing the delivery 
of NPs to the ischemic brain, we synthesized PCL-PEG based micellular 
NPs, which contain a thrombin-cleavable peptide that either expanded 

or shrank in size in response to thrombin cleavage (Fig. 10). We found 
that both the size expandable and shrinkable NPs penetrated the brain 
with greater efficiency than unresponsive NPs. Compared to the 
expandable nanoparticles, the size shrinkable nanoparticles were more 
efficient [123].

In addition to biological cues, intelligent NPs can also be designed to 
respond to physical or chemical stimuli in the ischemic brain. For 
instance, it is known that the blood vessels in the brain narrow due to 
thrombus formation leading to accelerated blood flow and higher fluid 
shear stress. This unique physical characteristic may provide an op-
portunity for targeted drug delivery. In a study by Korin and colleagues, 
a shear stress-targeting strategy was tested by synthesizing microscale 
aggregates of NPs, which break up into nanoscale components when 
exposed to abnormally high fluid shear stress. They found that after 
intravenous administration these shear-activated nanotherapeutics 
preferentially released payload tPA in the clotted area, inducing rapid 
clot dissolution and restoration of normal flow dynamics [164]. Similar 
thrombolytic approaches could be also employed for the treatment of 
ischemic stroke [165].

4.2.3. Biomimicry through surface coating with cell membranes
Biomimicry, which is often achieved through surface coating with 

cell membranes, allows for hijacking the biological interactions cells 
have with the host. This technique has recently emerged as a promising 
approach to engineering NPs for drug delivery to the brain. To date, 
various cell-based therapies have been explored for the treatment of 
ischemic stroke. Among them, neural stem cells (NSCs) are particularly 
attractive because they express various chemokine factors, such as 
CXCR4, and thus can efficiently migrate to the injured area [166]. To 
take advantage of the unique tropism of NSCs, we synthesized PLGA NPs 
and engineered them for targeted delivery to the ischemic brain through 
surface coating with the membrane of NSCs. We found that the 
membrane-coated NPs efficiently accumulated in the ischemic brain 
tissue after intravenous administration and the efficiency could be 
further improved using CXCR4-overexpressing membrane. We 

Fig. 9. Identification and selection of ligands for targeted delivery of nanoparticles to stroke. (a) Heat diagram of proteins that are differentially enriched in the 
ischemic brain and in the control normal brain (*P < 0.05). (b) Candidate ligands that bind to the selected proteins. (c) Representative images and (d) semi- 
quantification of nanoparticles in the brains of MCAO mice received treatments with the indicated ligand-conjugated nanoparticles. (e) Representative images of 
brain slices with TTC staining (left) and fluorescence imaging (right). (f) Western Blot confirmed that the level of CXCR4 was significantly elevated in the ischemic 
brain. Negative control: 293T cell lysate. Positive control: U87 flank tumor lysate. Control: normal brain tissue. Reproduced from Ref. [123].
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demonstrated that the resulting CXCR4-overexpressing NSC 
membrane-coated NPs enabled targeted delivery of glyburide to the 
brain for effective stroke treatment (Fig. 11) [167]. Similarly, Li and 
colleagues synthesized platelet membrane-coated magnetic nano-
particles and found that the resulting NPs inherited the natural prop-
erties of the platelet membrane and efficiently accumulated in ischemic 
stroke lesions after intravenous administration [168]. Lv and colleagues 
developed dextran NPs for drug delivery to the ischemic brain. These 
NPs possesses a surface coating of membrane isolated from red blood 
cell (RBC) which were shown to help prolong blood circulation life 
[169].

5. Perspectives and conclusion

Designing effective treatments through employing NP technology as 
drug delivery vehicles equally requires consideration of the physi-
ochemical characteristics in additions to the payload. Improving tar-
geted delivery to the ischemic brain could be potentially achieved by 
tuning these physical characteristics of NPs such as size, shape, and 
charge. NPs with a diameter smaller than 6 nm are subjected to rapid 
elimination by the kidneys while those larger than 50 nm are vulnerable 
to clearance by the reticuloendothelial system (RES) [170,171]. 
Compared to large-size NPs, NPs of smaller size have greater tissue 
penetration ability [172]. We recently showed that compared to 
non-responsive NPs, which maintained a diameter of ~120 nm, 

Table 2 
Summary of ligands on nanoparticles for ischemic stroke.

Nanocarriers Ligands Targets Cargo Animal model Application Ref.

AMD3100-conjugated, size- 
shrinkable NPs (ASNPs)

AMD3100 CXCR4 Glibenclamide Mice 
MCAO

High efficiency in penetrating the ischemic 
brain and low toxicity

[123]

Liposome (T7&SHp-P-LPs/ 
ZL006)

T7 peptide and 
SHp

TfR and homed to 
ischemic brain tissue

ZL006 Rats 
MCAO

Penetrating the BBB and targeting the 
ischemic area

[154]

T7-conjugated PEGylated 
liposomes (T7-P-LPs)

HAIYPRH (T7) 
peptide

TfR ZL006 Rats 
MCAO

Mediate the transport of nanocarriers across 
the BBB

[155]

Combining magnetic Fe3O4 
NPs and RGD-modified 
dendrimers

RGD tripeptide GPIIb/IIIa receptor 
expressed at the surface of 
the activated platelets

Nattokinase Rats 
FeCl3-induced 
thrombosis

Targeted delivery to enhance the efficacy of 
site-specific thrombolytic treatment

[156]

Angiopep-2-PGP-STA-PEG- 
PAMAM NPs

Angiopep-2; 
PGP

Low density 
LRP1; 
CXCR2

STA Rats, mice; 
MCAO

Dual-targeting delivery system; Improve 
their therapeutic effect against AIS

[157]

Anti-HSP72 vectorized 
liposomes

Anti-HSP72 HSP72 Citicoline Rats 
MCAO

Targeted delivery to the peri-infarct region [158]

tPA-loaded, cRGD-coated, 
PEGylated liposomes

Cyclic RGD Activated platelets tPA  Facilitate selective delivery and effective 
release of tPA at the site of thrombus

[159]

PLGA-CTX/LEX NPs CTX MMP-2 NEP1-40 Mice 
MCAO

The NPs efficiently and specifically 
accumulated in the brain’s ischemic 
microenvironment

[106]

Fas ligand - conjugated PLNs 
loaded with NBP

Fas ligand 
antibody

Recruiting microglia dl-NBP Mice 
MCAO

The NPs specifically accumulated on 
microglia cells in ischemic region

[160]

Perfluorocarbon NPs Anti-fibrin 
antibody and 
urokinase

Fibrin fibrils Anti-fibrin 
antibody and 
urokinase

Dogs 
Femoral artery 
thrombosis

The fibrin-targeted urokinase NPs could 
evolve into an alternative to r-tPA for use in 
acute ischemic stroke victims

[152]

NPs, nanoparticles; MCAO, middle cerebral artery occlusion; TfR, Transferrin receptor; PEG, polyethylene glycol; RGD, arginine–glycine–aspartic; SHp, stroke homing 
peptide; LRP1, lipoprotein receptor-related protein 1; AIS, acute ischemic stroke; STA, scutellarin; PGP, N-acetylated proline-glycine-proline CTX, chlorotoxin; LEX, 
lexiscan; PLNs, PEGylated lipid nanoparticles; dl-NBP, 3-n-Butylphthalide.

Fig. 10. Schematic diagrams of the intelligent responsiveness of (a, c) shrinkable and (b, d) expandable micellar nanoparticles in response to proteases enriched in 
the ischemic microenvironment. Reproduced from Ref. [123].
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thrombin-responsive NPs, which were ~200 nm in the circulatory sys-
tem but shrank into 80 nm upon reaching thrombin-enriched ischemic 
brain tissue, demonstrated significantly greater stroke targeting effi-
ciency [123]. The marked enhanced efficiency could be partially 
attributed to the greater ability of small NPs to penetrate the brain. Like 
size, the shape of the NPs also plays an important role in drug delivery. 
Compared to nanospheres, rod-shaped NPs were shown to have greater 
interactions with brain ECs and demonstrate a higher efficiency in brain 
penetration [173]. Among various sizes of rod-shaped NPs, we found 
that NPs of 315(l) x 60(d) have greater brain penetrability than both 
short (156(l) x 45(d)) or longer 730(l) x 35(d) NPs, suggesting that both 
the size and shape must be considered when designing optimal NPs for 
drug delivery to the brain (Fig. 7) [133]. In addition, the surface charge 
could also be a key parameter that determines the biodistribution of 
NPs. For example, Campos-Martorell and colleagues studied the impact 
of charge of liposomal NPs in an ischemic stroke rat model and found 
that neutral and negatively charged, but not positively charged NPs 
were able to penetrate the brain 90 min after intravenous administration 
[174].

Targeted delivery of NPs may also be achieved through external cues, 
such as magnetic force. It was reported that delivery of l-arginine to the 
ischemic brain was successfully improved through co-encapsulation 
with magnetic NPs and guidance by an external magnetic field. A 
similar approach could be employed to enhance the delivery of tPA for 
improved thrombolytic efficiency [175,176].

Currently, the standard care for ischemic stroke involves intravenous 
thrombolytic therapy and intravascular therapy, which, unfortunately, 
do not benefit most patients due to their narrow therapeutic windows. 
There are no FDA-approved pharmacotherapies that target improving 
post-stroke recovery. While further improved understanding of the 
biology of stroke is warranted, the lack of approved pharmacotherapies 
may not be solely due to the lack of therapeutic targets. In fact, 
numerous agents targeting a range of therapeutic targets have been 

tested in various clinical trials, including over 20 drugs tested in phase 
2/3 clinical trials (Table 1). Alas, most of them failed to significantly 
improve clinical outcomes. The failure could potentially be attributed to 
the fact that most therapeutic agents cannot efficiently penetrate the 
brain. Owed to the great versatility in of NP engineering for brain tar-
geting, adaptation to environmental stimuli, and BBB penetration, 
emerging nanotechnology has demonstrated great promise to overcome 
the drug delivery barrier (Table 2). However, the employment of NPs 
has major limitations in that it not only increases the complexity of 
therapeutic agents but also often leads to non-specific accumulation in 
organs associated with the reticuloendothelial system, mainly including 
the liver and the lung. As a result, the difficulty in GMP manufacture and 
quality control and concerns regarding off-target effects could prevent 
the clinical translation of NP-based stroke therapeutics. Development of 
the next generation of NPs with simple structures but potential for 
“intelligent” multifunctionality is greatly needed.
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