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Abstract

The stress-activated protein kinase Gcn2 regulates protein synthesis by phosphorylation of translation initiation factor eIF2a,
from yeast to mammals. The Gcn2 kinase domain (KD) is inherently inactive and requires allosteric stimulation by adjoining
regulatory domains. Gcn2 contains a pseudokinase domain (YKD) required for high-level eIF2a phosphorylation in amino
acid starved yeast cells; however, the role of the YKD in KD activation was unknown. We isolated substitutions of
evolutionarily conserved YKD amino acids that impair Gcn2 activation without reducing binding of the activating ligand,
uncharged tRNA, to the histidyl-tRNA synthetase-related domain of Gcn2. Several such Gcn2 substitutions cluster in
predicted helices E and I (aE and aI) of the YKD. We also identified Gcd2 substitutions, evoking constitutive activation of
Gcn2, mapping in aI of the YKD. Interestingly, aI Gcd2 substitutions enhance YKD-KD interactions in vitro, whereas Gcn2

substitutions in aE and aI suppress both this effect and the constitutive activation of Gcn2 conferred by YKD Gcd2

substitutions. These findings indicate that the YKD interacts directly with the KD for activation of kinase function and
identify likely sites of direct YKD-KD contact. We propose that tRNA binding to the HisRS domain evokes a conformational
change that increases access of the YKD to sites of allosteric activation in the adjoining KD.
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Introduction

Eukaryotic cells harbor stress-activated protein kinases that

down-regulate protein synthesis and simultaneously up-regulate

transcriptional activators at the translational level. This dual

response allows cells to reduce bulk protein synthesis while re-

programming transcription to favor expression of gene products

with functions in stress management. The key target of these

kinases is Ser-51 of the a-subunit of translation initiation factor 2

(eIF2a). The eIF2 bound to GTP transfers methionyl-initiator

tRNA to the 40S ribosomal subunit to produce the 43S

preinitiation complex at the beginning of the translation initiation

pathway. On subsequent recognition of the AUG codon in mRNA

by initiator tRNA, the GTP is hydrolyzed and eIF2-GDP is

released from the 40S subunit for recycling to eIF2-GTP by the

guanine nucleotide exchange factor eIF2B. Ser-51 phosphoryla-

tion converts eIF2 into an inhibitor of eIF2B, reducing the

concentration of eIF2-GTP and delaying new rounds of transla-

tion initiation. The reduced eIF2-GTP level stimulates translation

of GCN4 mRNA in yeast and ATF4 mRNA in mammals, both

encoding transcriptional activators of stress genes, by allowing 43S

complexes to circumvent small open reading frames present in

their mRNA leaders that would normally block initiation at

the protein coding sequences for Gcn4/Atf4 [1,2] (reviewed in

[3]).

The four mammalian eIF2a kinases, PKR, HRI, PERK, and

Gcn2, have conserved kinase domains (KDs) but unique

regulatory regions that mediate activation by distinct stress signals.

PKR is activated by dsRNA generated during virus infection, and

represents a key component of the antiviral defense mechanism,

whereas Gcn2 is activated by uncharged tRNA that accumulates

in amino acid-starved cells and most likely other stress conditions.

The ensuing induction of Gcn4 in yeast evokes transcriptional

activation of nearly all amino acid biosynthetic enzymes subject to

the general amino acid control with attendant up-regulation of

amino acid biosynthesis (reviewed in [3]). Translational control by

mammalian Gcn2 is important for lipid homeostasis under

starvation conditions [4], in behavioral aversion to amino acid-

deficient diets [5], and in learning and memory [6]. It has also

been implicated in tumor cell survival, both innate and T-cell

mediated immune responses, and DNA repair upon UV

irradiation (reviewed in [7]).

Because eIF2a kinases act by inhibiting translation, their

functions must be tightly regulated to allow high-level kinase

activity only under appropriate stress conditions. We showed

previously that the Gcn2 KD is intrinsically inert and depends on

stimulatory interactions with adjacent domains in the protein to

achieve an active conformation [8]. This latency of Gcn2 depends

on a rigid hinge connecting the N- and C-lobes, which promotes a

partially closed active site cleft and occluded ATP-binding pocket,
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and a non-productive orientation of helix aC in the N-lobe that

impedes proper disposition of a critical Lys reside that positions

the ATP phosphates for catalysis [9,10]. Binding of uncharged

tRNA to a region C-terminal to the KD, related in sequence to the

enzyme histidyl-tRNA synthetase (HisRS), which aminoacylates

tRNAHis, is required to activate Gcn2 in amino acid-starved cells

[11,12,13,14]. An N-terminal segment in the HisRS domain that

interacts with a portion of the KD containing the hinge is required

for kinase activation [15], suggesting that tRNA binding alters the

HisRS-KD interface to evoke an active conformation of the KD.

As in other kinases, autophosphorylation of the activation loop

of the KD is additionally required to activate Gcn2 [15,16], as is

dimerization of the KD [17] in a back-to-back orientation

described for the active KD dimer of PKR [18]. The KD, HisRS

region, and extreme C-terminal domain of Gcn2 (CTD) are

capable of self-interaction as isolated domains; however, only the

CTD is essential for dimerization and attendant activation of full-

length Gcn2 [19,20]. Since the HisRS-related domain and

attendant tRNA-binding by Gcn2 are dispensable for dimeriza-

tion, Gcn2 likely dimerizes constitutively through CTD self-

interaction [19]. It is possible that the mode of KD dimerization

switches from the antiparallel orientation seen in the crystal

structure of the Gcn2 KD in an inactive conformation [9] to the

parallel, PKR-like mode of dimerization deduced from genetic

experiments [17] to represent the active conformation for Gcn2

[18].

In addition to dimerization, the CTD mediates ribosome

association of Gcn2 [21], which is critical for activation of Gcn2 by

uncharged tRNA in vivo [22]. The CTD also appears to interact

with the KD in a manner that impedes kinase activation [14,15],

suggesting that dissociation of the CTD from the KD is a key step

in the kinase activation pathway. The CTD further mediates an

interaction with translation elongation factor eEF1A that appears

to inhibit Gcn2 function in nonstarved cells and can be overcome

by uncharged tRNA [23].

Activation of Gcn2 by uncharged tRNA additionally requires

the functions of trans-acting factors Gcn1 and Gcn20, which form

a complex that must interact with both the N-terminal ‘‘RWD’’

domain of Gcn2 and translating ribosomes to stimulate Gcn2

kinase function in yeast cells [24,25,26,27,28]. These findings, plus

the fact that overexpression of translation elongation factor 3

impedes Gcn2 activation in vivo [29], support a model in which

Gcn2 is activated by uncharged tRNA that binds first to the

decoding center of a translating ribosome and is then transferred

to the HisRS domain in Gcn2, and that Gcn1/Gcn20 stimulate

one or both of these binding reactions involving uncharged tRNA

[28].

Gcn2 contains a region N-terminal to the KD (aa291-538) that

displays strong sequence similarity to authentic kinases, but lacks

critical residues required for binding ATP and catalysis, and this

‘‘pseudokinase’’ domain (YKD) in mouse Gcn2 was found

incapable of binding ATP or Mg+2 in vitro [30]. Studies of YKDs

in other systems have indicated functions in regulating authentic

KDs, as allosteric modulators of active KD conformation or as

scaffolding molecules that promote assembly of higher-order

kinase signaling complexes. Gcn2 and the Janus tyrosine kinase

(JAK) family provide the only known instances where a YKD and

KD reside in the same polypeptide. The YKD in the JAKs appears

to maintain latency of the KD in the absence of cytokines;

however, the molecular mechanism of YKD regulatory function is

not well understood (reviewed in [30,31]).

Elimination of the YKD from yeast Gcn2 abolishes activation of

Gcn2 in amino acid starved cells and impairs the kinase activity of

Gcn2 in vitro [13,32] without affecting ribosome-binding [21],

dimerization by full-length Gcn2 [19] or Gcn2 interaction with

positive effectors Gcn1/Gcn20 [26]. Thus, the YKD seems to be

required primarily for activation of the latent KD in Gcn2 by

uncharged tRNA. The isolated yeast Gcn2 YKD can interact

directly in vitro with the Gcn2 KD and CTD, and the YKD was

shown to be required for high-level association of full-length Gcn2

with the isolated Gcn2 KD fused to LexA in vivo, presumably via

YKD?LexA-KD interactions [19]. Hence, we hypothesized that

the YKD allosterically activates Gcn2 via direct interaction with

the KD.

To test this hypothesis rigorously, we have produced a structural

model of the Gcn2 YKD based on its homology to authentic

kinases, and made substitutions of residues predicted to be both

surface-exposed and conserved among the YKDs of Gcn2 from

different fungi. In this way, we identified (Gcn2) substitutions that

impair Gcn2 activation under amino acid starvation conditions

that, interestingly, appear to cluster on one face of the predicted

tertiary structure of the YKD. We also conducted random

mutagenesis of the YKD and identified (Gcd2) substitutions that

confer constitutive activation of Gcn2 function and derepression of

Gcn4 target genes involved in amino acid biosynthesis in vivo.

Biochemical analysis of exemplar Gcn2 and Gcd2 substitutions

provide strong evidence that the YKD directly interacts with the

KD within the Gcn2 dimer to evoke allosteric activation of eIF2a
kinase function in amino acid-starved cells, and the Gcn2/Gcd2

substitutions identify likely points of KD-YKD association in the

YKD. Our results have important implications for the mechanism

of Gcn2 activation by uncharged tRNA, and for the molecular

functions of pseudokinases.

Results

Identification of Gcn2 substitutions in the YKD
To identify evolutionarily conserved residues and amino acids

that are potentially critical for the regulatory function of the Gcn2

YKD, we constructed multiple sequence alignments of this domain

using Gcn2 sequences from diverse fungi as well as the sequences

of authentic KDs from Gcn2 and 11 other kinases (Fig. S1A–G).

In accordance with previous alignments [30,31], our analysis

indicated that fungal Gcn2 YKDs lack critical features of authentic

Author Summary

The survival of all living organisms depends on their
capacity to adapt their gene expression program to
variations in the environment. When subjected to various
stresses, eukaryotic cells down-regulate general protein
synthesis by phosphorylation of eukaryotic translation
initiation factor 2 alpha (eIF2a). The yeast Saccharomyces
cerevisiae has a single eIF2a kinase, Gcn2, activated by
uncharged tRNAs accumulating in amino acid starved cells,
which bind to a regulatory domain homologous to
histidyl-tRNA synthetase. Gcn2 also contains a degenerate,
pseudokinase domain (YKD) of largely unknown function,
juxtaposed to the authentic, functional kinase domain
(KD). Our study demonstrates that direct interaction
between the YKD and KD is essential for activation of
Gcn2, and identifies likely KD-contact sites in the YKD that
can be altered to either impair or constitutively activate
kinase function. Our results provide the first functional
insights into the regulatory role of the enigmatic YKD of
Gcn2.
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Figure 2. Predicted three-dimensional structure and sequence conservation of surface residues of the Gcn2 YKD. The degree of
sequence conservation of Gcn2 YKD residues, shown in Fig. 1, was projected onto the three-dimensional structure of the authentic Gcn2 KD
monomer using the CONSURF program. Yellow indicates amino acids for which the data are insufficient to calculate a reliable conservation grade.
Except for residues in b3, the most highly conserved residues (magenta and red) are largely clustered on one surface (view II), whereas most of the
variable residues (shades of blue) are on the opposite face (I). The most conserved regions (b3, aC, aE, aI, the activation loop and the hinge) are
circled in red for emphasis.
doi:10.1371/journal.pgen.1004326.g002

Regulatory Role of Gcn2 Pseudokinase Domain

PLOS Genetics | www.plosgenetics.org 4 May 2014 | Volume 10 | Issue 5 | e1004326



Regulatory Role of Gcn2 Pseudokinase Domain

PLOS Genetics | www.plosgenetics.org 5 May 2014 | Volume 10 | Issue 5 | e1004326



KDs, including the glycine-rich P-loop between the b1 and b2

strands, the ‘‘VAIK’’ motif (containing the critical Lys residue in

b3 that positions ATP), and the ‘‘HRD’’ motif (containing the

catalytic Asp) (Fig. S1A–G). They also lack the ‘‘DFG’’ motif in the

activation loop, whose Asp residue promotes Mg+2 and ATP

binding. As noted above, the mouse Gcn2 YKD was found to be

incapable of binding ATP or Mg+2, supporting the conclusion that

the Gcn2 YKD lacks kinase activity [30]. However, as shown in

Fig. 1, there are numerous YKD segments highly conserved

among fungal Gcn2 homologs, which likely include residues with

important regulatory functions.

We focused our mutagenesis experiments on conserved residues

that, in most cases, are predicted to reside on the surface of the

YKD and, hence, might contribute to its putative regulatory

interactions with the KD in Gcn2. Because the structure of the

YKD is unknown, we used our sequence alignment containing

Gcn2 YKDs and authentic KDs (Fig. S1A–G) and projected

sequence conservation for each YKD residue that could be aligned

with a corresponding residue in authentic KDs onto the crystal

structure of the authentic KD of S. cerevisiae Gcn2 [9]. The results

(Fig. 2) predict that most highly conserved, surface-exposed

residues occur in b3 and helix aC in the N-terminal lobe (N-

lobe), in the hinge connecting the N- and C-terminal lobes, and in

the activation loop and helices E and I in the C-terminal lobe.

Except for b3 and aC, these conserved segments appear to

comprise a largely contiguous surface on the ‘‘back-side’’ of the

predicted C-lobe facing away from the ‘‘active site’’ cleft (Fig. 2,

view II).

To probe the regulatory functions of conserved YKD residues

predicted to be surface-exposed in the structural model (Fig. 2), we

used site-directed mutagenesis of GCN2 on a single-copy (sc)

plasmid to alter 43 such residues, generally making alanine

substitutions or introducing a charged residue in place of a bulky

hydrophobic residue or one of opposite charge. The resulting

mutant GCN2 alleles were tested for complementation of the 3-

aminotriazole (3-AT) sensitivity of a (gcn2D) strain lacking

chromosomal GCN2. 3-AT is an inhibitor of histidine biosynthesis

that activates Gcn2, with attendant induction of GCN4 translation,

and the induced Gcn4 stimulates transcription of histidine (and

other amino acid) biosynthetic enzymes in a manner required for

growth in the presence of 3-AT. Thus, mutations that reduce

Gcn2 activation confer 3-AT sensitivity (3-ATS), as illustrated in

Fig. 3A (row 2) for the double substitution in the HisRS-like

domain (Y1119L/R1120L) encoded by the gcn2-m2 allele, which

impairs tRNA binding [12,14]. By contrast, the GCN2c-M788V

allele, conferring constitutive activation of Gcn2 [33], supports

strong growth on 3-AT comparable to that of wild-type (WT)

GCN2 (Fig. 3A, row 3).

Most mutations we examined did not detectably affect Gcn2

function, conferring no reduction in growth on 3-AT medium (Fig.

S2A–B and data not shown; summarized in Fig. S2C). However,

we identified several substitutions that conferred 3-ATS pheno-

types comparable to that of m2, indicating strong Gcn2

phenotypes (Fig. 3A and data not shown; summarized as red

substitutions in Fig. 1 and listed in Fig. S2C). These Gcn2

mutations include substitutions of a residue at the beginning of

helix aC (E307P), substitutions of 5 residues in predicted aE

(R371A, L377K, L378K, E379K and H385A), a double

substitution at the C-terminal end of the predicted activation loop

(P448L/E449L), and 3 substitutions in the predicted C-terminal

helix aI (L521K, F526K, and R528A). (Henceforth, for simplicity,

we will refer to secondary structure elements of the YKD without

stipulating in every instance that they are hypothetical predictions

of the model in Fig. 2.)

Consistent with their strong 3-ATS phenotypes, the Gcn2 YKD

substitutions impaired eIF2a phosphorylation by Gcn2 in vivo.

Western analysis of whole cell extracts (WCEs) from WT cells

revealed that 3-AT evokes the expected increase in eIF2a
phosphorylated on Ser-51 (eIF2a-P) relative to total eIF2a,

whereas m2 cells have no detectable eIF2a-P; and M788V cells

display high-level eIF2a-P with or without 3-AT treatment

(Fig. 3B, lanes 1–6 & 17–22; and data not shown). Importantly,

except for R371A and H385A, all of the Gcn2 YKD substitutions

greatly reduce or abolish eIF2a-P both in non-starvation

conditions and in 3AT-treated cells, without producing a

noticeable reduction in Gcn2 abundance (Fig. 3B, lanes 7–16 &

23–30). Consistent with its leaky 3-ATS growth phenotype, the

R371A mutation confers only a moderate reduction in eIF2a-P in

3AT-treated cells (lanes 1–2 vs. 9–10). The H385A allele

was eliminated from consideration because it produced no

detectable Gcn2 (data not shown; Fig. S2C). Thus, as summarized

in Fig. 3C, conserved surface residues in predicted helices C, E,

and I, and in the activation loop of the YKD are required for WT

activation of Gcn2 in vivo. These residues might mediate an

important regulatory interaction between the YKD and the

KD that overcomes the latency of KD function in response

to amino acid starvation. (Two of the Gcn2 substitutions in

helix aE, L377K and L378K, alter residues predicted to be

buried in the YKD and thus might disrupt aE rather than

eliminating a specific contact involving the YKD; hence, E379K

was chosen as the exemplar aE substitution for subsequent

analyses below.)

Identification of Gcd2 substitutions in the YKD
We reasoned that if the positive regulatory function of the YKD

is modulated by amino acid availability, it should be possible to

obtain GCN2c mutations mapping in the YKD that constitutively

activate Gcn2 function. To test this prediction, we randomly

mutagenized the YKD coding sequences in GCN2, introduced a

library of mutant plasmids into the gcn2D strain and selected for

clones growing on medium containing tryptophan analog 5-

fluorotryptophan (5-FT) and histidine analog triazolealanine

(TRA). Resistance to both 5-FT and TRA (5FTR/TRAR) results

from Gcn4-mediated derepression of tryptophan and histidine

biosynthetic enzymes in nonstarvation conditions, diminishing

the toxic effects of 5-FT/TRA on protein synthesis, and is a

sensitive indicator of constitutive activation of Gcn2 [33].

Figure 3. Substitutions of predicted surface-exposed residues of the Gcn2 YKD conferring Gcn2 phenotypes in vivo. (A)
Transformants of gcn2D strain H1149 containing derivatives of low-copy plasmid p722 with WT GCN2, gcn2-m2, GCN2c-M788V, or the indicated
mutations in the YKD were replica-plated to synthetic complete medium lacking uracil (SC-Ura) and SC-Ura plus 30 mM 3-AT and incubated for 3 d at
30uC. (B) Cultures of strains from panel A were grown in liquid SC medium lacking uracil and histidine to saturation, diluted into fresh medium at A600

of ,0.2, and grown 6 h at 30uC. 3-AT was added at 10 mM to one culture for 1 h before harvesting (even-numbered lanes). WCEs were resolved by
SDS-PAGE and subjected to Western analysis using the indicated specific antibodies and enhanced chemiluminescence to detect immune complexes.
(C) Localization of the Gcn2 substitutions on the predicted 3-D structure of the Gcn2 YKD domain. Residues in the authentic Gcn2 KD that align in
Fig. S1A–G with Gcn2 substitutions in the YKD from (A) were colored red and labeled on the crystal structure of the Gcn2 KD monomer.
doi:10.1371/journal.pgen.1004326.g003
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Accordingly, GCN2c mutations, such as M788V, confer growth on

5-FT/TRA medium, whereas GCN2+ cells (and Gcn2 strains like

gcn2-m2) are sensitive to the analogs (5-FTS/TRAS) (Fig. 4A, rows

1–3).

By screening the mutagenized plasmid library, we identified

three mutations conferring growth on 5-FT/TRA medium that

alter residues located within, or just C-terminal to, helix aI (Fig. 1,

green substitutions). T518A, mapping in the N-terminus of aI,

confers a mild 5-FTR/TRAR phenotype, whereas L527I and

N530K, mapping within or just C-terminal to aI, confer stronger

analog-resistance phenotypes, which for L527I and the double

substitution T518A/L527I are equivalent to that of GCN2c-M788V

(Fig. 4A). We also identified a mutation just N-terminal to

predicted aH, D497Y, with a mild 5-FTR/TRAR phenotype

similar to that of T518A. Importantly, these mutations elevate

eIF2a-P under nonstarvation conditions to an extent commensu-

rate with their 5-FTR/TRAR phenotypes, as the mutations

conferring the strongest 5-FTR/TRAR phenotypes, L527I and

T518A/L527I, also evoke the largest eIF2a-P/eIF2a ratios in cells

grown without 3-AT (Fig. 4B).

These YKD mutations also derepress expression of a Gcn4-

dependent HIS4-lacZ reporter in nonstarvation conditions, thus

confirming their Gcd2 phenotypes. As expected, WT cells express

this reporter at low levels in non-starvation conditions, whereas

GCN2c-M788V cells display ,5-fold higher levels of reporter

expression. The YKD mutations elevate HIS4-lacZ expression to

an extent that parallels their 5-FTR/TRAR phenotypes, with

D497Y and T518A conferring only ,150% increases, N530K and

L527I conferring ,2-fold and ,5-fold increases, respectively,

relative to WT, and T518A/L527I exceeding the effect of GCN2c-

M788V (Fig. 4C). Hence, these four YKD mutations are bona fide

GCN2c alleles that activate Gcn2 in non-starvation conditions.

Interestingly, they alter surface-exposed residues, with the two

mutations with strongest Gcd2 phenotypes, N530K and L527I,

altering residues predicted to have the greatest exposure (among

the Gcd2 substitutions) and to reside in proximity to one another

(Fig. 4D). It is also intriguing that both Gcn2 and Gcd2

substitutions were identified in helix aI, in one case (F526K and

L527I) substituting adjacent residues with opposite outcomes for

Gcn2 function (Fig. 4D), thus underscoring the importance of aI in

regulating Gcn2 function.

Three other GCN2c mutations were identified in our screen that

alter residues located near the predicted hinge connecting the N-

and C-lobes of the YKD. These include Y353F, mapping between

b5 and aD in the hinge itself, G363F mapping between aD and

aE, and D406A mapping between b7 and b8 (Fig. 1). Although

individually they confer only slight increases in growth on 5-FT/

TRA medium, stronger 5-FTR/TRAR phenotypes were produced

by the combination of G363F and D406A, or of all three

mutations, in the same allele, which was achieved by site-directed

mutagenesis (Fig. 5A). Moreover, whereas the single mutations

evoked relatively small increases in basal eIF2a-P, the double and

triple mutants conferred relatively larger increases in eIF2a-P

under nonstarvation conditions compared to WT cells (Fig. 5B).

The double and triple YKD mutations also derepressed the HIS4-

lacZ fusion in non-starvation conditions, conferring Gcd2 pheno-

types (Fig. 5C). Thus, G363F/D406A and Y353F/G363F/D406A

are additional GCN2c alleles that activate Gcn2 in non-starvation

conditions.

It is intriguing that an alignment of the YKD and authentic KD

of yeast Gcn2 reveals that the YKD residues substituted by Y353F,

G363F, and D406A align closely with KD residues, R794, E803

and R847, respectively (Fig. 5D), which interact with one another

and rigidify the hinge of the KD [9] (Fig. 5E). Two of these KD

residues (R794 and E803) are altered by GCN2c mutations [8,33],

leading to the model that hinge rigidity contributes to

latency of the Gcn2 KD by impeding inter-lobe mobility [9]. It

is intriguing to consider the possibility that the Y353F and D406A

substitutions could eliminate hydrogen bonding and salt-bridge

interactions, respectively, and that G363F could perturb the

orientation of a nearby residue in aD, which all could normally

promote hinge rigidity of the YKD. In this event, increasing the

flexibility of the predicted hinge and interlobe mobility in the

YKD could be responsible for the ability of these substitutions to

activate the KD in the absence of high-level binding of uncharged

tRNA to the HisRS domain and thereby confer the Gcd2

phenotype.

It is noteworthy that all of the Gcd2 variants harboring single

substitutions in the YKD confer higher levels of eIF2a-P in

histidine starved, 3-AT-treated cells compared to non-starved cells

(eg., + and 2 lanes for D497Y and T518A in Fig. 4B). This

observation suggests that the Gcd2 mutants retain the ability to

bind uncharged tRNA and can be activated to a greater extent

than WT Gcn2 by basal levels of uncharged tRNA in non-starved

cells.

YKD regulatory mutations alter Gcn2 kinase activity in
vitro without commensurate changes in tRNA binding

Uncharged tRNA is the activating ligand for Gcn2, and there

are Gcn2 and Gcd2 mutations known that impair or enhance

tRNA binding, respectively, by purified Gcn2 in vitro [14,34].

While there is no evidence that the YKD affects tRNA binding to

the HisRS-like domain in Gcn2, this possibility could not be

dismissed a priori. Accordingly, we examined whether exemplar

Gcn2 and Gcd2 mutations in the YKD have the expected effects

on Gcn2 kinase function in vitro, and whether these alterations in

kinase activity are associated with corresponding changes in tRNA

binding. Mutant and WT Gcn2 proteins were purified from yeast

and tested for kinase activity using [32P]-labeled ATP and a

recombinant yeast eIF2a peptide as substrates, and SDS-PAGE/

autoradiography to detect the reaction products. It was shown

previously that WT Gcn2 displays similar kinase activity whether

Figure 4. Mutations in the aI helix of the YKD constitutively activates Gcn2 in vivo. (A) Transformants of gcn2D strain H1149 containing
p722 derivatives with WT GCN2, gcn2-m2, GCN2c-M788V, or mutations affecting residues in helix aI of the YKD were replica-plated to SC-Ura, SC-Ura
plus 30 mM 3-AT, or SD plus 0.5 mM 5-FT and 0.125 mM TRA (5FT/TRA) and incubated for 3 d at 30uC. (B) Cultures of strains from panel A were
analyzed for levels of eIF2a-P as in Fig. 3B. Western signals on the upper panel (P-eIF2a) were quantified by scanning densitometry of exposed films
using ImageJ software, normalized for the corresponding signals in the middle panel (total eIF2a), and the ratios of the two signals (eIF2a-P; eIF2a)
are indicated below the lanes. Standard errors are less than 6.5% of the mean values shown. (C) Gcd2 phenotypes of the indicated mutants were
quantified by measuring HIS4-lacZ expression. Strains from (A) were cultured in nonstarvation conditions as described in Materials and Methods and
WCEs were prepared and assayed for b-galactosidase activities. Results are the means and S.E.M.s calculated from three transformants, with activity
expressed as nanomoles of o-nitrophenyl-b-D-galactopyronoside hydrolyzed per minute per milligram of protein. (D) Locations on the predicted
structure of the YKD domain of Gcd2 substitutions (from panel A; green) and a subset of Gcn2 substitutions in aE and aI (red) determined as in
Fig. 3C.
doi:10.1371/journal.pgen.1004326.g004
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purified from starved or non-starved cells and that the Gcn2 m2

mutation, which impairs tRNA binding by Gcn2, reduces the

kinase activity of purified Gcn2. This effect of the m2 mutation was

attributed to reduced activation of Gcn2 in vitro by deacylated

tRNA present in cell lysates prior to Gcn2 purification [13].

Consistent with previous findings [13], we observed that a Gcn2

mutant harboring a substitution in the HisRS domain (R1325E)

that impairs tRNA binding in vitro (see below) reduces both the

autophosphorylation and eIF2a kinase activity of purified Gcn2

(Fig. 6A–B). The YKD Gcn2 mutants E379K (aE substitution)

and R528A (aI substitution) exhibit comparable (E379K) or even

larger (R528A) reductions in both autophosphorylation and eIF2a
phosphorylation compared to the R1327K variant. These findings

are consistent with the conclusion that the YKD Gcn2 substitu-

tions impair activation of Gcn2 by uncharged tRNA. By contrast,

the Gcd2 mutants L527I (aI substitution) and Y353F/G363F/

D406A (hinge-related substitutions) display substantially higher

than WT observed rates of autophosphorylation and substrate

phosphorylation (Fig. 6A–B), consistent with the idea that these

substitutions increase the ability of the KD to be activated by

uncharged tRNA.

To determine if the changes in kinase activity evoked by these

mutations result from alterations in tRNA binding affinity, we

tested the purified Gcn2 variants for binding of [32P]-labeled total

tRNA using a gel mobility shift assay to detect Gcn2-tRNA

complexes. The R1325E substitution in the HisRS domain

eliminated detectable binding of uncharged tRNA by Gcn2 in

vitro (Fig. 6C), consistent with its strong Gcn2 phenotype (S.L.

and A.G.H., unpublished observations). By contrast, the Gcn2

mutants E379K and R528A exhibit tRNA binding indistinguish-

able from WT Gcn2 (Fig. 6C), implying that their inability to be

activated in starved cells does not result from reduced binding of

uncharged tRNA to the HisRS-like domain. Interestingly, the

Gcd2 mutants L527I and Y353F/G363F/D406A show reduced

tRNA binding activity (Fig. 6C), at odds with the possibility that

the constitutive activation of kinase function displayed by these

variants results from increased affinity for uncharged tRNA. One

explanation for this last result could be that the reduced tRNA

binding by the Gcd2 variants results from a putative negative

autoregulation of tRNA binding in response to hyperactivation of

kinase function. Another possibility would be that it reflects a

greater than WT level of co-purification of the Gcd2 variants with

endogenous tRNA. The latter explanation is very improbable in

view of our finding that the purified Gcn2 preparations contain

only small amounts of tRNA, estimated to be ,5% on a molar

basis, which do not vary between the WT, Gcd2 and Gcn2

proteins analyzed in Fig. 6 (data not shown).

Evidence that YKD Gcd2 substitutions in aI enhance
YKD-KD interactions

We next considered the possibility that the YKD mutations

alter a regulatory interaction between the YKD and KD that

evokes allosteric activation of Gcn2 kinase function. To address

this possibility, we first employed an assay described previously

wherein full-length Gcn2 (WT or YKD mutants) is coimmuno-

precipitated from cell extracts with an HA epitope-tagged LexA

fusion to a Gcn2 KD segment (residues 720–999) that harbors a

portion of the large Gcn2-specific insert between strands b4 and

b5, strand b5 from the N-lobe, the hinge, and entire C-lobe.

While this represents an incomplete KD, the C-lobe can be

expected to fold independently of the N-lobe [9]; and this KD

segment was shown previously to interact specifically with the

CTD in a manner dependent on the C-terminal portion of the

large KD insert and impaired by the GCN2c-E803V Gcd2

substitution of a key residue in the KD region [15]. Moreover, in

agreement with previous results, we found that deletion of the

entire YKD reduces interaction of otherwise full-length Gcn2

with this HA-LexA-KD fusion. Thus, the proportion of Gcn2-

DYKD present in the input (I) sample that co-immunoprecipi-

tates with the HA-LexA-KD fusion in the pellet (P) fraction was

decreased to ,1/3rd of the level seen with WT Gcn2 (Fig. 7A–B,

WT vs. DYKD). This reduction has been attributed to loss of

interaction between the YKD in full-length Gcn2 and the KD

segment in HA-LexA-KD [19]. We found here that YKD Gcn2

substitutions in aC (E307P), aE (E379K), the activation loop

(P448L/P449L) and aI (R528A), as well as the Gcd2 hinge-

related triple substitutions Y353F/G363F/D406A, had little or

no effect on the percentage of Gcn2 coimmunoprecipitated with

HA-LexA-KD. By contrast, the Gcd2 substitutions in aI, T518A,

L527I, and T518A/L527I, all reproducibly increased the

proportion of the input Gcn2 recovered with HA-LexA-KD in

the pellet (Fig. 7A–B). (Note that results in Fig. 7B were obtained

by calculating the ratio of P to I signals for each variant and

normalizing the P:I ratios by the intensity of HA-LexA-KD in the

P fraction for that variant.) It is noteworthy that the Gcn2-

T518A/L527I double mutant showed a reproducibly higher level

of coimmunoprecipitation with HA-LexA-KD compared to the

corresponding two single mutants (Fig. 7B), commensurate with

the relatively stronger Gcd2 phenotype of the double mutant

(Fig. 4C).

Considering that the increases in Gcn2:HA-LexA-KD associa-

tion provoked by the Gcd2 substitutions T518A and L527I were

#33% (Fig. 7B), we sought additional evidence that these results

are physiologically relevant to the increased kinase function

evoked by the Gcd2 substitutions. To this end, we evaluated the

effects of double substitutions combining these two Gcd2

substitutions with Gcn2 substitutions E379K and/or R528A.

Interestingly, all three double mutants we examined exhibit 3-ATS

and 5-FTS/TRAS phenotypes indistinguishable from the Gcn2

single mutants (Fig. 7C, rows 15–17 vs. 9–10, 4 & 6; and data

not shown), indicating that the Gcn2 substitutions fully

suppress the activating effects of the Gcd2 substitutions. We

reasoned that if the tighter association between the YKD and KD

contributes to the Gcd2 phenotypes of T518A and L527I, then

the Gcn2 substitutions should also suppress this aspect of

the Gcd2 substitutions. Supporting this prediction, combining

aE Gcn2 substitution E379K with each of the aI Gcd2

Figure 5. Substitutions in the predicted hinge of the YKD constitutively activate Gcn2 in vivo. (A) Transformants of gcn2D strain H1149
harboring the indicated GCN2 alleles were analyzed for resistance to 3-AT and 5-FT/TRA as in Fig. 4A. (B) Strains from (A) were analyzed for eIF2a-P as
in Fig. 4B. Standard errors are less than 8.5% of the mean values shown. (C) Strains from (A) were analyzed for HIS4-lacZ expression in non-starvation
conditions as in Fig. 4C. (D) Structure-based sequence alignment and conservation of the hinge regions of the Gcn2 KD and YKD domains. Regions of
predicted a-helical and b-strand secondary structures are denoted schematically above sequence. The HRD catalytic motif in the KD domain is
underlined. Mutations causing Gcd2 phenotypes in each domain are indicated. (E) Locations of Gcd2 substitutions on the predicted YKD structure
(left) and KD (right, in boldface) along with the residue interactions that rigidify the hinge in the KD domain (right). (Image on the right reproduced
from Fig. 3C of Padyana et al. (2005)).
doi:10.1371/journal.pgen.1004326.g005
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substitutions reduced the proportions of Gcn2 that coimmuno-

precipitated with HA-LexA-KD (normalized P:I ratios) from the

elevated values seen for the Gcd2 single mutants to the lower

values given by the Gcn2 single mutants (Fig. 7A–B). Similar

results were observed on combining Gcn2 (R528A) and Gcd2

substitutions (T518A) in aI (Fig. 7A–B), supporting the idea that

tighter association between the YKD and authentic KD contrib-

utes to the activating effect of Gcd2 substitutions in the aI segment

of Gcn2.

We sought next to provide evidence that Gcd2 substitutions in

aI increase a direct interaction between the YKD and KD. To this

end, we incubated [35S]-methionine-labeled WT or mutant YKD

fragments, synthesized by in vitro transcription/translation, with

yeast extracts from a gcn2D strain containing the HA-LexA-KD

fusion described above and measured the amounts of labeled

YKD fragments that coimmunoprecipitated from the extracts with

HA-LexA-KD. Interestingly, the L527I and T518A/L527I YKD

fragments, harboring Gcd2 substitutions in aI, were co-immuno-

precipitated with HA-LexA-KD at levels ,4-fold higher than that

observed for WT YKD (Fig. 8A). By contrast, the R528A YKD

fragment, harboring a Gcn2 substitution in aI coimmunopreci-

pitated with HA-LexA-KD at only 60% of the WT value (Fig. 8A).

Importantly, Gcn2 substitution E379K abolished the effect of

the double Gcd2 substitutions T518A/L527I in the relevant

triple mutant to render a level of YKD fragment binding

only slightly higher than that given by E379K alone (Fig. 8B).

These findings strongly support the notion that Gcd2 substitutions

in aI increase the affinity of the YKD for the KD of Gcn2,

whereas Gcn2 substitutions in aE or aI suppress this tighter

interaction.

Discussion

In this report, we provide strong evidence that the Gcn2 YKD is

a positive regulatory domain required to overcome the latency of

the adjoining KD under amino acid starvation conditions, and we

identified specific residues located in a discrete region of the YKD

that are likely situated at the YKD-KD interface and modulate,

positively or negatively, this regulatory interaction. Mutation of

certain residues at this predicted interface greatly impairs or

eliminates phosphorylation of eIF2a on Ser-51 and confers the

expected strong sensitivity to an inhibitor of histidine biosynthesis

(3-AT) that signifies decreased induction of GCN4 and its target

amino acid biosynthetic genes. These Gcn2 mutations were

obtained by targeting a subset of residues found to be evolution-

arily conserved among YKDs of fungal Gcn2 homologs and that

were predicted to reside on the surface of the YKD. These latter

predictions were based on a sequence alignment of fungal Gcn2

YKDs with a group of authentic KDs, which allowed us to project

onto the crystal structure of the yeast Gcn2 KD the sequence

conservation of all YKD residues that can be aligned with residues

in authentic KDs. According to the predicted tertiary structure of

the YKD (Fig. 2), the substitutions found to have Gcn2

phenotypes alter residues that are visible on one face of the

predicted YKD (Fig. 3C, middle image) and, hence, could define a

single, continuous regulatory surface comprised of residues near

helix aC, within the activation loop, and belonging to predicted

helices aE and aI. As discussed below, however, substitutions in

aC and the activation loop might identify an interaction site(s)

distinct from that defined by Gcn2 substitutions in aE and aI of

the YKD.

We also identified Gcd2 substitutions in the YKD, which

increase eIF2a phosphorylation and derepress expression of the

Gcn4-dependent HIS4-lacZ reporter in nonstarvation conditions.

It is intriguing that the most potent of these substitutions also map

in predicted aI, and that substitutions of adjacent residues in aI

were identified that either impair (Gcn2) or constitutively activate

(Gcd2) Gcn2 kinase function. These results identify aI as a key

regulatory element of the YKD. Another group of Gcd2

substitutions alter residues predicted to reside in the hinge region

of the YKD, which align closely with residues in the authentic

Gcn2 KD that interact with one another and promote hinge

rigidity in a manner believed to promote latency of the KD by

restricting inter-lobe mobility [9]. Thus, inter-lobe mobility might

also be important for the regulatory interactions of the YKD.

Of course, knowledge of the true locations of the YKD residues

altered to produce Gcn2 or Gcd2 phenotypes will require

structural analysis of this domain. However, the fact that the

YKD structural model was instrumental in identifying functionally

important conserved residues, at least some of which alter physical

interaction between the YKD and KD, supports the idea that the

affected amino acids define an important regulatory interface

between the YKD and KD of Gcn2.

Previous work from our laboratory on Gcn2 derivatives lacking

the entire YKD indicated that the YKD is not required for

ribosome-binding [21], dimerization by full-length Gcn2 [19], or

interactions with positive effectors Gcn1/Gcn20 [26]. Given that

the YKD also is not required for kinase function per se [32], it

appears to mediate the stimulatory effect of uncharged tRNA that

elevates eIF2a phosphorylation in starved cells. In addition, we

showed here that neither Gcn2 nor Gcd2 substitutions in the

YKD alter tRNA binding by purified Gcn2 in a manner that

would explain the alterations in kinase activity conferred by these

substitutions. Accordingly, we hypothesized that the YKD

substitutions alter a physical interaction between the YKD and

KD that allosterically activates kinase function in starved cells in

response to increased occupancy of the HisRS-like domain by

uncharged tRNA.

Figure 6. Effect of YKD substitutions on kinase activity and tRNA binding by purified Gcn2 in vitro. (A) The indicated Gcn2 proteins
(0.25 mg) were incubated with 3 mCi of [c-32P]ATP (6000 Ci/mmol, Amersham), 1 mg of recombinant eIF2a2DC purified from E. coli, and 0.5 mg of
bovine serum albumin in 20 mL of kinase assay buffer (20 mM Tris–HCl [pH 7.9], 50 mM NaCl, 10 mM MgCl2, 1 mM dithiothreitol, and 100 mM PMSF)
for 5 to 15 min at 30uC. The samples were resolved by 8%–16% SDS–PAGE and subjected to autoradiography. Positions of autophosphorylated Gcn2
(Gcn2-P) and phosphorylated eIF2a2DC (eIF2a-P) are indicated. All results were cropped from the same autoradiogram except for those obtained for
the R1325E variant, which was analyzed separately with the same WT protein. The results for WT in the latter autoradiogram were essentially identical
to those shown here. (B) The extent of Gcn2 autophosphorylation and eIF2a phosphorylation at each time point in (A) was determined by
quantifying the intensity of the relevant bands by phosphorimaging of the respective gel bands. Data obtained from 3 independent experiments was
averaged and plotted with S.E.M.s as error bars. (C) Purified Gcn2 proteins were incubated at the indicated concentrations with [32P]-labeled total
yeast tRNA in 20 mL of GMSA buffer. Gcn2-tRNA complexes were resolved by electrophoresis through a 1% agarose gel in 16MOPS buffer (1.5 h,
100 V), transferred to a nitrocellulose membrane and visualized by autoradiography. Unbound [32P]-tRNA, which has a higher mobility, was present at
essentially identical amounts in each lane at levels ,15-fold higher than the WT Gcn2/tRNA complexes formed at 4 mM (data not shown). All results
shown originate from the same gel except for those obtained for the R1325E variant, which was analyzed separately with the same WT protein. The
results for WT in the latter gel were similar to those shown here.
doi:10.1371/journal.pgen.1004326.g006
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Supporting this model, we found that the Gcd2 substitutions

T518A and L527I in predicted aI of the YKD produce additive

increases in association of full-length Gcn2 with the isolated Gcn2

KD in a LexA fusion in yeast WCEs. We showed previously, and

confirmed here, that eliminating the YKD reduces the ability of

otherwise WT Gcn2 to coimmunoprecipitate with the LexA-KD

fusion. Because eliminating the authentic KD from Gcn2

abolishes, and not merely reduces, its interaction with LexA-

KD in this assay [19], we presume that LexA-KD dimerizes with

the KD in full-length Gcn2 and that additional interaction of the

YKD with the KD moiety of LexA-KD increases the stability of

the Gcn2?LexA-KD complex. In this view, the Gcd2 substitu-

tions T518A and L527I increase the yield of Gcn2?LexA-KD

complexes by strengthening YKD-KD interaction, which suggests

in turn that the ability of these Gcd2 substitutions to activate

kinase function results from tighter YKD-KD association within

Gcn2. Additional evidence supporting this conclusion came from

our finding that combining the Gcd2 substitutions T518A and

L527I with the Gcn2 substitutions E379K and R528A com-

pletely suppressed the Gcd2 phenotype of the former mutations,

with the strong 3ATS/Gcn2 phenotype of the latter mutations

being expressed in the double mutants. Importantly, the Gcn2

substitutions E379K/R528A also abolished the increased coim-

munoprecipitation of Gcn2 with the LexA-KD conferred by the

Gcd2 substitutions. The co-suppression of both phenotypes

strongly supports a mechanistic linkage between increased

interaction between Gcn2 and LexA-KD (signifying increased

YKD-KD association) and elevated Gcn2 kinase function.

Further bolstering this conclusion, we provided direct evidence

that the YKD Gcd2 substitutions T518A and L527I enhance

interaction of recombinant YKD with LexA-KD in complexes

reconstituted in vitro, whereas the Gcn2 substitutions E379K and

R528A masked the stabilizing effect of the Gcd2 substitutions on

YKD-KD association in the E379K/T518A/L527I triple

mutant.

It might seem puzzling that (i) the YKD Gcd2 substitutions

had greater effects on YKD-KD interactions than did the Gcn2

substitutions, even though both categories of substitutions evoke

strong changes in Gcn2 kinase function in vivo; whereas the

Gcn2 substitutions did substantially affect YKD-KD interac-

tions when examined in the presence of YKD Gcd2 substitu-

tions (Figs. 7–8). One way to explain these findings is to propose

that the Gcn2 substitutions weaken a tighter YKD-KD

association that is normally established only during activation

of full-length Gcn2 by uncharged tRNA in starved cells. The

normal activation process could be disrupted in the artificial

Gcn2?LexA-KD complexes formed in the assays of Fig. 7; and

they cannot occur in the assays of direct YKD-KD interactions

shown in Fig. 8 because the tRNA-binding HisRS domain is

absent in those constructs. By contrast, because the Gcd2

substitutions bypass the normal activation mechanism and

strengthen YKD-KD interactions constitutively, their effects

can be observed in either assay; and they can be reversed by

Gcn2 substitutions that weaken direct YKD-KD contacts in the

Gcd2 Gcn2 YKD double mutants. The fact that the Gcd2

triple substitution of YKD hinge residues Y353F/G363F/

D406A had only a small effect on direct interaction between

the YKD and KD (Fig. 7A–B) might indicate that these residues

are not present at the YKD-KD interface and act indirectly to

alter the conformation of full-length Gcn2 in a way that

increases access of the YKD to the KD. However, as this triple

substitution has a weaker Gcd2 phenotype compared to those

conferred by the aI Gcd2 substitutions (cf. Figs. 4C &5C), it

might simply have a correspondingly smaller effect on direct

YKD-KD association.

Together, our results suggest that the YKD interacts directly

with the KD dependent on residues in helix aI to mediate

allosteric activation of Gcn2 kinase function. If this interaction is

restricted to starvation conditions, as suggested above, then it

presumably depends on other conformational changes within

Gcn2 triggered by binding uncharged tRNA to the HisRS-like

domain. One interesting possibility is prompted by our previous

evidence that the CTD interacts with the KD to inhibit kinase

function in a manner overcome by tRNA binding to the HisRS

domain [15]. The CTD could inhibit the KD, at least partially, by

the indirect mechanism of blocking the proposed stimulatory

YKD-KD interaction. Binding of uncharged tRNA to the HisRS-

like domain would partly dissociate the HisRS/CTD module from

the KD segment and provide the YKD with access to its binding

site(s) in the KD for allosteric stimulation of kinase function

(Fig. 8C).

Our identification of Gcn2 mutations in the predicted

activation loop of the YKD, and of Gcd2 substitutions in the

YKD hinge region, raise the possibility that the conformation of

the YKD is altered during the activation process in a manner that

stabilizes the stimulatory YKD-KD interaction. It is unclear,

however, how tRNA binding to the HisRS region would trigger

this hypothetical alteration of YKD conformation. Accordingly,

the predicted activation loop and hinge region, being exposed on

the YKD surface, might simply provide additional contact points

for the KD or CTD rather than mediating a conformational

rearrangement of the YKD. In this view, the aI-aE surface of the

C-lobe and one or more YKD segments including residues in aC,

the hinge and activation loop would make independent stimula-

tory contacts with the KD (Fig. 8C). A precedent for this idea of a

multivalent YKD-KD interaction surface is provided by activation

of kinase LKB1 by the YKD STRAD in a manner facilitated by

the scaffold protein MO25. Substrate binding determinants and

the activation loop of STRAD contact the N- and C- lobe of

LKB1, while STRAD’s aC anchors it to MO25, and MO25

stabilizes the active conformation of the LKB1 (nonphosphory-

lated) activation loop [35].

Figure 7. Certain Gcd2 substitutions in the YKD enhance coimmunoprecipitation of Gcn2 with LexA-HA-KD from yeast extracts. (A)
WCEs were prepared from transformants of gcn2D strain HQY132 bearing high-copy-number plasmid p2825 encoding LexA-HA-KD (720–999) and
plasmids encoding wild-type Gcn2 (p630) or the indicated Gcn2 mutant. Aliquots of extracts containing 50 mg of protein were immunoprecipitated
with anti-HA antibodies and the precipitates were resolved by SDS-PAGE and subjected to immunoblot analysis with anti-Gcn2 antibodies (upper
panel) or anti-LexA antibodies (lower panel), and enhanced chemiluminescence was used to detect immune complexes. Input (I) lanes contain 5 mg
of starting WCEs and pellet (P) lanes contain immune complexes recovered from 25 mg of WCEs. All results shown for each protein were cropped
from the same immunoblot. (B) Densities of bands in I and P lanes of (A) were quantified by scanning densitometry of exposed films using ImageJ
software, and P:I ratios of Gcn2 signals were normalized to the LexA-HA-KD signals in the corresponding P lanes. The normalized ratios were
calculated from three independent experiments and the average and S.E.M.s were plotted for each Gcn2 variant. (C) Transformants of gcn2D strain
HQY132 containing high-copy-number plasmids encoding WT Gcn2 (p630) or the indicated YKD mutants were replica-plated to SC-Ura and SC-Ura
plus 30 mM 3-AT and incubated for 3 d at 30uC.
doi:10.1371/journal.pgen.1004326.g007
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Materials and Methods

Computational methods
Multiple sequence alignments were generated using MUSCLE

at http://www.ebi.ac.uk/Tools/msa/muscle/. ConSurf [36] and

PyMOL [37] were used to obtain sequence conservation scores

and generate the surface representation of sequence conservation

on the crystal structure of the yeast Gcn2 KD (pdb: 1ZYC).

Plasmids and strains
Plasmids employed are listed in Table 1. QuikChange site-

directed mutagenesis (Stratagene) was used to generate the novel

derivatives of plasmid p722 (pSL201-pSL242) and p630 (pSL301-

pSL311) and GCN2 was sequenced in its entirety for those alleles

exhibiting significant Gcn2 or Gcd2 phenotypes. For Gcd2

mutations identified by random mutagenesis, p722 was subjected

to error-prone PCR mutagenesis using the GeneMorph II kit

(Stratagene) by using primer pairs PS-1 (59-ATAGCAAATTTA-

GAGAAAGAGTTAG-39) and PS-2 (59-CTTAACAGCAGT-

CATCGGTTTTAC-39). The BlpI -XhoI 1.4-kb GCN2 fragment

encoding the YKD was isolated from plasmid DNA prepared from

a pool of E. coli transformants harboring mutagenized plasmids

and subcloned into p722. Plasmid DNA prepared from a pool of

the resulting E. coli transformants was introduced into yeast strain

H1149 and transformants were selected on minimal (SD) medium

containing 0.5 mM 5-FT. Resident plasmids were isolated from

colony-purified transformants and subjected to DNA sequence

analysis to identify the mutations. As multiple mutations generally

occurred, site-directed mutagenesis was used to produce plasmids

pSL233, pSL234, pSL235, pSL237, pSL238, pSL239 and

pSL240, containing only single mutations in GCN2. pSL102-

pSL106 were generated by replacing the 1.2-kb BlpI-BspEI

fragment encoding the YKD in pSL101 with the corresponding

fragment from p722 derivatives harboring the appropriate GCN2

mutations. The same strategy was used to construct pSL401-

pSL405 from pHQ539.

Yeast strains employed included H1149 (MATa gcn2D::LEU2

ino1 ura3-52 leu2-3 leu2-112 ,HIS4-lacZ.) [11], HQY132 (MATa
trp1 ura3 his3 lexAop-LEU2 gcn2D::hisG) [19], and H2684 (MATa

ino1 ura3-52 gcn1D gcn2D gcn20D) (M. Marton and A.G.H.,

unpublished observations).

Protein purification
Transformants of H2684 bearing plasmids pSL101, pSL102,

pSL103, pSL104, pSL105, or pSL106 were grown to saturation in

SC-Ura medium, diluted to A600 = 0.2 in SC-Ura containing 10%

galactose as carbon source and grown to A600 ,2.5. Cells were

harvested (,25 g), washed with cold distilled water containing

EDTA-free protease inhibitor cocktail (PIC) (Boehringer Mann-

heim) and 0.5 mM PMSF, resuspended in ice-cold binding buffer

(BB) (100 mM sodium phosphate [pH 7.4], 500 mM NaCl, 0.1%

Triton X-100, EDTA-free PIC, 1 mg/ml leupeptin, and 1 mM

PMSF) and disrupted using SPEX freezer mill (model 6870).

Lysates were clarified by centrifugation at 39,0006g for 2 h at 4uC
and mixed with 1 ml of M2-FLAG affinity resin (Sigma) overnight

at 4uC. The resin was washed three times with 10 vol of BB and

Gcn2 was eluted with 100 units of AcTEV protease in 500 ml of

16 TEV buffer (50 mM Tris pH 8, 0.5 mM EDTA, 1 mM

DTT). The eluates were concentrated with an Amicon Centricon

filter (exclusion limit of Mr 10,000) and dialyzed against 10 mM

Tris-HCl [pH 7.4], 50 mM NaCl, 20% glycerol and stored at 2

80uC. The eIF2a2DC protein was purified from E. coli as

previously described [13].

Biochemical assays in Whole Cell Extracts (WCEs)
Assays of b-galactosidase activity in WCEs were performed as

described previously [38]. For Western analysis, WCEs were

prepared by trichloroacetic acid extraction, as described previ-

ously [39], and immunoblot analysis was conducted as described

[19] using phosphospecific antibodies against eIF2a-P (Biosource

International) and polyclonal antibodies against eIF2a [40] or

Gcn2 [16].

Kinase and tRNA-binding assays of purified Gcn2
Assaying autophosphorylation and eIF2a phosphorylation by

purified Gcn2 was conducted as described previously [8]. Binding

of tRNA was measured with a gel mobility shift assay as follows.

Total yeast tRNA was purchased from Roche. tRNA was first

dephosphorylated using calf intestine alkaline phosphatase (New

England BioLabs) for 1 h at 37uC in 16Dephosphorylation buffer

provided with the enzyme and followed by phenol/chloroform

extraction and ethanol precipitation. Three micrograms of the

dephosphorylated tRNA was phosphorylated using 25 pmol of

[c-32P]ATP and 10 units polynucleotide kinase for 1 h in 16
kinase buffer provided with the enzyme. The reaction was stopped

by adding EDTA to 1 mM and heating for 2 min at 95uC. tRNA

was purified from free nucleotides using MicroSpin G-25 Columns

(GE Healthcare). Fifty nanograms of [32P]-labelled tRNA were

mixed with purified Gcn2 (1–4 mM) and 10 U RNasin Ribonu-

clease Inhibitor (N2511; Promega), in 16 GMSA buffer (2 mM

HEPES [pH 7.4], 15 mM NaCl, 15 mM MgCl2, 10% glycerol) in

a total volume of 20 ml. After incubating for 30 min at 30uC, 4 ml

of 66nucleic acid loading buffer (30% (v/v) glycerol, 0.25% (w/v)

bromophenol blue) were added and the mixture was resolved by

electrophoresis on a 1% agarose gel cast in 16 MOPS buffer

(Quality Biological, Inc) at 100 V for 1.5 h. RNA and protein

Figure 8. Gcd2 YKD substitutions in aI enhance direct binding between YKD and KD segments in a manner suppressed by Gcn2

YKD substitutions in aE. (A–B) YKD Gcn2 segments (WT or the indicated mutants) were translated in vitro with [35S]methionine and incubated
with 50 mg of WCEs from transformants of gcn2D strain HQY132 expressing LexA-HA-KD(720–999). Reactions were immunoprecipitated with anti-HA
antibodies and immune complexes were resolved by SDS-PAGE and visualized by fluorography. Input (I) lanes contain aliquots of reticulocyte lysates
containing the input [35S]-labeled YKD fragments and pellet (P) lanes contain immune complexes recovered from reaction aliquots corresponding to
1/2 of the starting lysates. (B) Densities of bands in I and P lanes of (A) were quantified using a PhosphorImager Storm Scanner and ImageQuant
software and P:I ratios were calculated and normalized to that determined for the WT YKD fragment. Normalized ratios were calculated from three
independent experiments and the average and S.E.M.s were plotted (C) Model of allosteric activation of the KD via direct interaction with the YKD,
regulated by competing CTD:KD association and tRNA binding to the HisRS-like domain. Inactive WT Gcn2 in nonstarved cells contains the CTD and
HisRS-like domains engaged with the KD. These interactions could contribute directly to latency of the KD, but we propose here that the CTD acts
indirectly to block the stimulatory YKD-KD interaction. YKD-CTD interaction helps to stabilize the inhibitory CTD-KD association in the inactive state.
Uncharged tRNA binding to the HisRS domain and possibly also the CTD [14] would activate Gcn2 by dissociating the CTD from the KD to enable the
stimulatory YKD-KD interaction uncovered in this study. YKD Gcn2 and Gcd- substitutions would weaken or strengthen, respectively, the stimulatory
YKD-KD interaction.
doi:10.1371/journal.pgen.1004326.g008
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Table 1. Plasmids used in this study.

Name Description Source or reference

p722 CEN6 URA3 GCN2 [32]

p2201 gcn2-m2 in p722 backbone [12]

p912 gcn2-M788V in p722 backbone [33]

pSL201 gcn2-E307P in p722 backbone This study

pSL202 gcn2-R371A in p722 backbone This study

pSL203 gcn2-L377K in p722 backbone This study

pSL204 gcn2-L378K in p722 backbone This study

pSL205 gcn2-E379K in p722 backbone This study

pSL206 gcn2-P448L/E449L in p722 backbone This study

pSL207 gcn2-L521K in p722 backbone This study

pSL208 gcn2-F526K in p722 backbone This study

pSL209 gcn2-R528A in p722 backbone This study

pSL210 gcn2-K300E in p722 backbone This study

pSL211 gcn2-L310A in p722 backbone This study

pSL212 gcn2-E311A in p722 backbone This study

pSL213 gcn2-T312A in p722 backbone This study

pSL214 gcn2-L314A in p722 backbone This study

pSL215 gcn2-H318A/V321A in p722 backbone This study

pSL216 gcn2-I343A in p722 backbone This study

pSL217 gcn2-L346A in p722 backbone This study

pSL218 gcn2-E348A in p722 backbone This study

pSL219 gcn2-W373A in p722 backbone This study

pSL220 gcn2-H385A in p722 backbone This study

pSL221 gcn2-H391A in p722 backbone This study

pSL222 gcn2-K392A in p722 backbone This study

pSL223 gcn2-K413A in p722 backbone This study

pSL224 gcn2-V423A in p722 backbone This study

pSL225 gcn2-W445A in p722 backbone This study

pSL226 gcn2-T462A in p722 backbone This study

pSL227 gcn2-D463A in p722 backbone This study

pSL228 gcn2-W465A in p722 backbone This study

pSL229 gcn2-G468A in p722 backbone This study

pSL230 gcn2-D502A/L503K in p722 backbone This study

pSL231 gcn2-K513A/K514A/R515A in p722 backbone This study

pSL232 gcn2-R515A in p722 backbone This study

pSL233 gcn2-D497Y in p722 backbone This study

pSL234 gcn2-T518A in p722 backbone This study

pSL235 gcn2-L527I in p722 backbone This study

pSL236 gcn2-T518A/L527I in p722 backbone This study

pSL237 gcn2-N530K in p722 backbone This study

pSL238 gcn2-Y353F in p722 backbone This study

pSL239 gcn2-G363F in p722 backbone This study

pSL240 gcn2-D406A in p722 backbone This study

pSL241 gcn2-G363F/D406A in p722 backbone This study

pSL242 gcn2-Y353F/G363F/D406A in p722 backbone This study

pSL101 PGAL-FLAG-TEV-GCN2 [23]

pSL102 PGAL-FLAG-TEV-gcn2-m2 in pSL101 backbone This study

pSL103 PGAL-FLAG-TEV-gcn2-E379K in pSL101 backbone This study

pSL104 PGAL-FLAG-TEV-gcn2-R528A in pSL101 backbone This study

pSL105 PGAL-FLAG-TEV-gcn2-L527I in pSL101 backbone This study
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molecules were transferred from the gel to a nitrocellulose

membrane (162-0097; Bio-Rad, Hercules, CA, USA) by capillary

action in 106 SSC for 16 h. [32P]tRNA–Gcn2 complexes were

quantified with a phosphorimager (Molecular Dynamics) using the

Image Quant software provided by the vendor.

Co-immunoprecipitation and immunoblotting
Coimmunoprecipitations of Gcn2 with LexA-HA-KD fusion

protein were conducted as described previously [19] using HA-

probe Antibody agarose conjugate (sc-7392 AC) and LexA

antibodies (sc-7544, 1:2000 dilution) purchased from Santa Cruz.

Coimmunoprecipitation of [35S]-methionine-labeled Gcn2 YKD

polypeptides with LexA-HA-KD fusion protein was executed as

follows. In vitro transcription/translation with [35S]-methionine

was conducted using the TNT T7 Coupled Reticulocyte Lysate

System (Promega) according to the vendor’s instructions. In vitro-

translated proteins were partially purified by ammonium sulfate

precipitation as described previously [41] and resuspended in

50 ml of buffer A (20 mM Tris/HCl pH 7.5, 100 mM NaCl,

0.2 mM EDTA, 1 mM DTT) containing 12.5% glycerol. Fifty mg

of WCE prepared from p2825 transformants of HQY132 and

10 mL of in vitro-translated proteins were diluted to a final volume

of 200 mL with breaking buffer (50 mM Tris/HCl, ph 7.5, 50 mM

NaCl, 0.1% Triton-100, 1 mM DTT) containing protease

inhibitors (Aprotinin 10 mg/mL, Leupeptin 10 mg/mL, Pepstatin

10 mg/mL and 1 mM PMSF) and pre-incubated with 20 mL of

protein A-agarose beads (Santa Cruz, sc-2001) suspended in

breaking buffer for 1 h at 4uC with rocking. The beads were

removed by centrifugation and the supernatant added to HA-

probe Antibody agarose conjugate (Santa Cruz, sc-7392) and

incubated at 4uC for 2 h with rocking. The beads were collected

by centrifugation, washed three times with 500 ml of breaking

buffer, and resuspended in 40 ml of Tris-Glycine SDS Sample

Buffer (Novex). Proteins in the immune complexes were resolved

by sodium dodecyl sulfate (SDS)-polyacrylamide gel electropho-

resis (PAGE). For detecting [35S]-labeled proteins, gels were fixed

with 25% ethanol/10% acetic acid, treated with Amplify

(Amersham), dried, and subjected to fluorography.

Supporting Information

Figure S1 Structure-based sequence alignment of the YKD

region of fungal Gcn2 proteins with authentic KDs. (A–G)

Multiple sequence alignment of Gcn2 YKDs from 29 fungal

species, and KDs from 12 different eIF2a kinases and 15 other

kinases, was built using the MUSCLE program, and amino acid

residue coloring was generated with the software MacClade 4.08.

Sequences are identified on the far left with abbreviations of their

species of origin. Numbering corresponds to residue positions in

full-length S. cerevisiae Gcn2 (residues 280–534). Regions of a-

helical and b-strand secondary structures are denoted at the top

based on their locations in the Gcn2 KD (pdb: 1ZYC), along with

the positions of signature motifs critical for kinase function. Gcn2

YKD substitutions examined in this study are shown along the top

at their positions in the alignment, with those conferring Gcn2

phenotypes shown in red, those conferring Gcd2 phenotypes

shown in green, and those preserving WT function shown in black.

(PDF)

Figure S2 Summary of phenotypes conferred by targeted

substitutions of residues highly conserved among fungal Gcn2

YKDs and predicted to be surface-exposed. (A–B) Transformants

of gcn2D strain H1149 containing derivatives of low-copy GCN2

Table 1. Cont.

Name Description Source or reference

pSL106 PGAL-FLAG-TEV-gcn2-Y353F/G363F/D406A in pSL101 backbone This study

p630 URA3 2-micron GCN2 [32]

p2327 gcn2-D324-538 in p630 backbone [19]

pSL301 gcn2-E307P in p630 backbone This study

pSL302 gcn2-E379K in p630 backbone This study

pSL303 gcn2-P448L/E449L in p630 backbone This study

pSL304 gcn2-R528A in p630 backbone This study

pSL305 gcn2-T518A in p630 backbone This study

pSL306 gcn2-L527I in p630 backbone This study

pSL307 gcn2-T518A/L527I in p630 backbone This study

pSL308 gcn2-Y353F/G363F/D406A in p630 backbone This study

pSL309 gcn2-T518A/E379K in p630 backbone This study

pSL310 gcn2-T518A/R528A in p630 backbone This study

pSL311 gcn2-L527I/E379K in p630 backbone This study

pHQ539 GCN2 (230–604) under T7 promotor [19]

pSL401 gcn2-E379K in pHQ539 backbone This study

pSL402 gcn2-R528A in pHQ539 backbone This study

pSL403 gcn2-L527I in pHQ539 backbone This study

pSL404 gcn2-T518A/L527I in pHQ539 backbone This study

pSL405 gcn2-E379K/T518A/L527I in pHQ539 backbone This study

pHQ587 HIS3 2-micron PGAL-LexA-HA-GCN2 (720–999) [19]

doi:10.1371/journal.pgen.1004326.t001
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plasmid p722 harboring known Gcn2 mutation m2, known Gcd2

mutation M788V, or the indicated mutations altering predicted

segments of the Gcn2 YKD were replica-plated to SC-Ura, SC-

Ura plus 30 mM 3-AT, or SD plus 0.5 mM 5-FT/0.125 mM

TRA (5FT/TRA) and incubated for 3 d at 30uC. The predicted

secondary structure elements of the YKD altered by the mutations

are given schematically to the left of the allele names. Except for

H385A (highlighted with an asterisk), which reduces Gcn2 protein

abundance, none of these mutations altered sensitivity to 3-AT or

5-FT/TRA and, hence, do not appear to affect Gcn2 function. (C)

Complete list of mutations examined in this study that alter the

YKD. Growth on SC containing 3-AT or on SD containing 5-

FT/TRA was examined as described in (A–B), and in Figs. 3A,

4A, and 5A, and is summarized qualitatively in columns 2 and 3,

respectively. Column 4 summarizes the results of Western analysis

of WCEs using antibodies against Gcn2 as described in Figs. 3B,

4B, and 5B and from data not shown. Only the gcn2-H385A

product was found to be expressed at lower than WT levels, and

was undetectable (data not shown).

(PDF)

Acknowledgments

We thank Jinwei Zhang for electrophoretic analysis of tRNA abundance in

the purified Gcn2 samples; and Tom Dever, Evelyn Sattlegger, and

members of our laboratory for many helpful discussions.

Author Contributions

Conceived and designed the experiments: SL AGH. Performed the

experiments: SL. Analyzed the data: SL SR TED AGH. Contributed

reagents/materials/analysis tools: SR. Wrote the paper: SL SR TED

AGH.

References

1. Lu PD, Harding HP, Ron D (2004) Translation reinitiation at alternative open

reading frames regulates gene expression in an integrated stress response. J Cell

Biol 167: 27–33.

2. Vattem KM, Wek RC (2004) Reinitiation involving upstream ORFs regulates

ATF4 mRNA translation in mammalian cells. Proc Natl Acad Sci U S A 101:

11269–11274.

3. Hinnebusch AG (2005) Translational regulation of GCN4 and the general

amino acid control of yeast. Annu Rev Microbiol 59: 407–450.

4. Guo F, Cavener DR (2007) The GCN2 eIF2a kinase regulates fatty-acid

homeostasis in the liver during deprivation of an essential amino acid. Cell

Metab 5: 103–114.

5. Hao S, Sharp JW, Ross-Inta CM, McDaniel BJ, Anthony TG, et al. (2005)

Uncharged tRNA and sensing of amino acid deficiency in mammalian piriform

cortex. Science 307: 1776–1778.

6. Costa-Mattioli M, Gobert D, Harding H, Herdy B, Azzi M, et al. (2005)

Translational control of hippocampal synaptic plasticity and memory by the

eIF2a kinase GCN2. Nature 436: 1166–1173.

7. Murguia JR, Serrano R (2012) New functions of protein kinase Gcn2 in yeast

and mammals. IUBMB Life 64: 971–974.

8. Qiu H, Hu C, Dong J, Hinnebusch AG (2002) Mutations that bypass tRNA

binding activate the intrinsically defective kinase domain in GCN2. Genes Dev

16: 1271–1280.

9. Padyana AK, Qiu H, Roll-Mecak A, Hinnebusch AG, Burley SK (2005)

Structural basis for autoinhibition and mutational activation of eukary-

otic initiation factor 2a protein kinase GCN2. J Biol Chem 280: 29289–

29299.

10. Garriz A, Qiu H, Dey M, Seo EJ, Dever TE, et al. (2008) A network of

hydrophobic residues impeding helix aC rotation maintains latency of eIF2a
kinase Gcn2. Mol Cell Biol 29: 1592–1607.

11. Wek RC, Jackson BM, Hinnebusch AG (1989) Juxtaposition of domains

homologous to protein kinases and histidyl-tRNA synthetases in GCN2 protein

suggests a mechanism for coupling GCN4 expression to amino acid availability.

Proc Natl Acad Sci USA 86: 4579–4583.

12. Wek SA, Zhu S, Wek RC (1995) The histidyl-tRNA synthetase-related sequence

in the eIF-2a protein kinase GCN2 interacts with tRNA and is required for

activation in response to starvation for different amino acids. Mol Cell Biol 15:

4497–4506.

13. Zhu S, Sobolev AY, Wek RC (1996) Histidyl-tRNA synthetase-related sequences

in GCN2 protein kinase regulate in vitro phosphorylation of eIF-2. J Biol Chem

271: 24989–24994.

14. Dong J, Qiu H, Garcia-Barrio M, Anderson J, Hinnebusch AG (2000)

Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from

a bipartite tRNA-binding domain. Mol Cell 6: 269–279.

15. Qiu H, Dong J, Hu C, Francklyn CS, Hinnebusch AG (2001) The tRNA-

binding moiety in GCN2 contains a dimerization domain that interacts with the

kinase domain and is required for tRNA binding and kinase activation. EMBO J

20: 1425–1438.

16. Romano PR, Garcia-Barrio MT, Zhang X, Wang Q, Taylor DR, et al. (1998)

Autophosphorylation in the activation loop is required for full kinase activity in

vivo of human and yeast eukaryotic initiation factor 2a kinases PKR and GCN2.

Mol Cell Biol 18: 2282–2297.

17. Dey M, Cao C, Sicheri F, Dever TE (2007) Conserved intermolecular salt-

bridge required for activation of protein kinases PKR, GCN2 and PERK. J Biol

Chem 282: 6650–6660.

18. Dar AC, Dever TE, Sicheri F (2005) Higher-order substrate recognition of

eIF2a by the RNA-dependent protein kinase PKR. Cell 122: 887–900.

19. Qiu H, Garcia-Barrio MT, Hinnebusch AG (1998) Dimerization by translation

initiation factor 2 kinase GCN2 is mediated by interactions in the C-terminal

ribosome-binding region and the protein kinase domain. Mol Cell Biol 18:

2697–2711.

20. Narasimhan J, Staschke KA, Wek RC (2004) Dimerization is required for
activation of eIF2 kinase Gcn2 in response to diverse environmental stress

conditions. J Biol Chem 279: 22820–22832.

21. Ramirez M, Wek RC, Hinnebusch AG (1991) Ribosome-association of GCN2

protein kinase, a translational activator of the GCN4 gene of Saccharomyces

cerevisae. Mol Cell Biol 11: 3027–3036.

22. Zhu S, Wek RC (1998) Ribosome-binding domain of eukaryotic initiation

factor-2 kinase GCN2 facilitates translation control. J Biol Chem 273: 1808–

1814.

23. Visweswaraiah J, Lageix S, Castilho BA, Izotova L, Kinzy TG, et al. (2011)

Evidence that eukaryotic translation elongation factor 1A (eEF1A) binds the
Gcn2 protein C terminus and inhibits Gcn2 activity. J Biol Chem 286: 36568–

36579.

24. Marton MJ, Vasquez de Aldana CR, Qiu H, Charkraburtty K, Hinnebusch AG
(1997) Evidence that GCN1 and GCN20, translational regulators of GCN4,

function on enlongating ribosomes in activation of the eIF2a kinase GCN2. Mol

Cell Biol 17: 4474–4489.

25. Vazquez de Aldana CR, Marton MJ, Hinnebusch AG (1995) GCN20, a novel

ATP binding cassette protein, and GCN1 reside in a complex that mediates
activation of the eIF-2a kinase GCN2 in amino acid-starved cells. EMBO J 14:

3184–3199.

26. Garcia-Barrio M, Dong J, Ufano S, Hinnebusch AG (2000) Association of
GCN1/GCN20 regulatory complex with the conserved N-terminal domain of

eIF2a kinase GCN2 is required for GCN2 activation in vivo. EMBO J 19: 1887–

1899.

27. Sattlegger E, Hinnebusch AG (2005) Polyribosome binding by GCN1 is

required for full activation of eukaryotic translation initiation factor 2a kinase
GCN2 during amino acid starvation. J Biol Chem 280: 16514–16521.

28. Sattlegger E, Hinnebusch AG (2000) Separate domains in GCN1 for binding

protein kinase GCN2 and ribosomes are required for GCN2 activation in amino
acid-starved cells. EMBO J 19: 6622–6633.

29. Visweswaraiah J, Lee SJ, Hinnebusch AG, Sattlegger E (2012) Overexpression

of eukaryotic translation elongation factor 3 impairs Gcn2 protein activation.
J Biol Chem 287: 37757–37768.

30. Murphy JM, Zhang Q, Young SN, Reese ML, Bailey FP, et al. (2013) A robust

methodology to subclassify pseudokinases based on their nucleotide binding
properties. Biochem J 457:323–34.

31. Boudeau J, Miranda-Saavedra D, Barton GJ, Alessi DR (2006) Emerging roles
of pseudokinases. Trends Cell Biol 16: 443–452.

32. Wek RC, Ramirez M, Jackson BM, Hinnebusch AG (1990) Identification of

positive-acting domains in GCN2 protein kinase required for translational
activation of GCN4 expression. Mol Cell Biol 10: 2820–2831.

33. Ramirez M, Wek RC, Vazquez de Aldana CR, Jackson BM, Freeman B, et al.

(1992) Mutations activating the yeast eIF-2a kinase GCN2: Isolation of alleles
altering the domain related to histidyl-tRNA synthetases. Mol Cell Biol 12:

5801–5815.

34. Garcia-Barrio M, Dong J, Cherkasova VA, Zhang X, Zhang F, et al. (2002)
Serine-577 is phosphorylated and inhibits the tRNA binding and eIF2a kinase

activities of GCN2. J Biol Chem 277: 30675–30683.

35. Zeqiraj E, Filippi BM, Deak M, Alessi DR, van Aalten DM (2009) Structure of
the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase

activation. Science 326: 1707–1711.

36. Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, et al. (2005) ConSurf

2005: the projection of evolutionary conservation scores of residues on protein

structures. Nucleic Acids Res 33: W299–302.

37. DeLano WL (2002) The PyMOL Molecular Graphics System. Palo Alto, CA.

38. Moehle CM, Hinnebusch AG (1991) Association of RAP1 binding sites with

stringent control of ribosomal protein gene transcription in Saccharomyces cerevisiae.
Mol Cell Biol 11: 2723–2735.

39. Reid GA, Schatz G (1982) Import of proteins into mitochondria. Yeast cells

grown in the presence of carbonyl cyanide m-chlorophenylhydrazone accumu-

Regulatory Role of Gcn2 Pseudokinase Domain

PLOS Genetics | www.plosgenetics.org 19 May 2014 | Volume 10 | Issue 5 | e1004326



late massive amounts of some mitochondrial precursor polypeptides. J Biol

Chem 257: 13056–13061.
40. Cigan AM, Pabich EK, Feng L, Donahue TF (1989) Yeast translation initiation

suppressor sui2 encodes the a subunit of eukaryotic initiation factor 2 and shares

identity with the human a subunit. Proc Natl Acad Sci USA 86: 2784–2788.

41. Bardwell L, Cooper AJ, Friedberg EC (1992) Stable and specific association

between the yeast recombination and DNA repair proteins RAD1 and RAD10

in vitro. Mol Cell Biol 12: 3041–3049.

Regulatory Role of Gcn2 Pseudokinase Domain

PLOS Genetics | www.plosgenetics.org 20 May 2014 | Volume 10 | Issue 5 | e1004326


