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ABSTRACT

Objective: Ischemic cardiomyopathy (ICM) is the leading cause of heart failure. Proteomic and 
genomic studies have demonstrated ischemic preconditioning (IPC) can assert cardioprotection 
against ICM through mitochondrial function regulation. Considering IPC is conducted in a 
relatively brief period, regulation of protein expression also occurs very rapidly, highlighting 
the importance of protein function modulation by post-translational modifications. This 
study aimed to identify and analyze novel phosphorylated mitochondrial proteins that can be 
harnessed for therapeutic strategies for preventing ischemia/reperfusion (I/R) injury.
Methods: Sprague-Dawley rat hearts were used in an ex vivo Langendorff system to simulate 
normal perfusion, I/R, and IPC condition, after which the samples were prepared for 
phosphoproteomic analysis. Employing human cardiomyocyte AC16 cells, we investigated the 
cardioprotective role of CKMT2 through overexpression and how site-directed mutagenesis of 
putative CKMT2 phosphorylation sites (Y159A, Y255A, and Y368A) can affect cardioprotection 
by measuring CKMT2 protein activity, mitochondrial function and protein expression changes.
Results: The phosphoproteomic analysis revealed dephosphorylation of mitochondrial 
creatine kinase (CKMT2) during ischemia and I/R, while preserving its phosphorylated state 
during IPC. CKMT2 overexpression conferred cardioprotection against hypoxia/reoxygenation 
(H/R) by increasing cell viability and mitochondrial adenosine triphosphate level, preserving 
mitochondrial membrane potential, and reduced reactive oxygen species (ROS) generation, 
while phosphomutations, especially in Y368, nullified cardioprotection by significantly reducing 
cell viability and increasing ROS production during H/R. CKMT2 overexpression increased 
mitochondrial function by mediating the proliferator-activated receptor γ coactivator-1α/
estrogen-related receptor-α pathway, and these effects were mostly inhibited by Y368A mutation.
Conclusion: These results suggest that regulation of quantitative expression and 
phosphorylation site Y368 of CKMT2 offers a unique mechanism in future ICM therapeutics.
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INTRODUCTION

Ischemic cardiomyopathy (ICM) occurs when the lack of adequate blood flow to the 
cardiomyocytes results in the heart muscles not being able to meet its electric, functional, 
and metabolic needs, effectively reducing the pumping ability of the heart.1 ICM is the 
leading cause of heart failure globally yet mortality rates remain substantially high despite 
scientific advances.2 Effects of ICM can be alleviated with the use of ischemic preconditioning 
(IPC), which are quick bouts of ischemia before a prolonged ischemia/reperfusion (I/R) 
injury.3 As such, there have been growing calls to look beyond conventional cardioprotective 
methods in addressing ICM, and rather identify new targets regulated during IPC such as the 
mitochondria when considering approaches to address the disease.4,5

Mitochondria are deeply implicated in the progression of cardiac diseases, making it 
an attractive target for ICM therapeutic strategies. Mitochondrial reprogramming and 
dysfunction and damage to its ultrastructure have long been hallmarks of a pathological 
heart.6 Modern technology has allowed researchers to profile the cardiac genome and 
proteome that made it easier to identify target proteins and understand previously unknown 
mechanisms related to cardiac pathology. Proteomic and genomic studies were able to 
ascertain the critical role of metabolic processes such as oxidative phosphorylation, cardiac 
metabolism, and protein folding in the progression of ICM and heart failure.7,8 As such, 
several proteomic studies in I/R samples have determined post-translationally altered cardiac 
mitochondrial proteins.

Protein post-translational modifications are essential for understanding cardiovascular 
diseases, considering these alterations after the completion of the translational process can 
regulate a plethora of other functions and factors not only in physiological processes but also 
in pathology.9 proteomic studies have identified proteins that are posttranslationally altered 
during ischemia. However, the downside to these phosphoproteomic studies is that most of 
these proteins do not necessarily focus on the cardiac mitochondrial proteome and/or have 
not been functionally studied and validated experimentally. Thus, we conducted our own 
phosphoproteomic analysis of cardiac mitochondrial proteins posttranslationally altered 
during perfusion, I/R, and IPC condition to identify novel proteins that can be targeted for 
cardiac protection. One of the candidates that stood out was CKMT2.

The mitochondrial creatine kinase (CKMT2), one of the creatine kinase (CK) isoenzymes, is 
tightly coupled to adenosine triphosphate (ATP) export via adenine nucleotide transporter 
or carrier, making it an important player in ATP-synthesis and respiratory chain activity.10,11 
CKMT2 activity is correlated to oxidative capacity as it increases the availability of ADP for 
complex V of the respiratory chain, thus regulating mitochondrial membrane potential 
(Δψm) and reactive oxygen species (ROS) formation.11-14 CKMT2 has previously been 
implicated in various cardiac dysfunction. Under hypoxic conditions, an increase in CK 
activity can be attributed mainly to increased CKMT2 as an adaptive response to improve 
oxidative phosphorylation.15-17 Its modest elevation in the heart do not pose any unfavorable 
effects to cellular metabolism, mitochondrial or in vivo cardiac function, but regulates 
mitochondrial permeability transition pore opening to protect against I/R injury and 
ameliorate functional recovery. Enhancing CKMT2 expression thus can possibly provide 
an important strategy for improving myocardial ATP delivery and mechanical function 
for reducing I/R injury. However, phosphorylation of CKMT2 in both physiological and 
pathological states have not yet been studied.
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Here we first characterized how CKMT2 overexpression renders protection during hypoxia/
reoxygenation (H/R). We also determined vital phosphorylation sites in CKMT2 and 
described how its phosphorylation can affect mitochondrial function which can lend cardiac 
protection. For this purpose, we used transient expression in AC16 cell line. The current 
study illustrates the essential phosphorylation sites in CKMT2, especially Y368, and how 
these sites mediate cardiac protection against H/R injury through mitochondrial function 
and protein regulation, offering new targets and insights in developing future therapeutic 
strategies for ICM.

MATERIALS AND METHODS

1. Patients
Patients were categorized as non-responders when their left-ventricular (LV) ejection fraction 
did not show more than 10% improvement at remote phase after biopsy. Consent for biopsy 
procedures or use of explanted tissues prospectively were obtained in all cases. Study procedures 
involving humans were approved by the Research Ethic Committee of Niigata University.

2. Ethics statement
All experimental procedures in animals in this study were approved by the Institutional Review 
Board of Animals, Inje University College of Medicine (approval No. 2011-049). Prior to surgery, 
all animals were anaesthetized using sodium pentobarbital to minimize animal suffering.

3. Langendorff perfusion of isolated rat hearts
Eight-week Sprague-Dawley rats were anaesthetized intraperitoneally (100 mg/kg) before 
sacrifice, and was checked for stimuli response after to confirm anaesthetization. Rat hearts 
were excised surgically and quickly mounted onto the Langendorff system and perfused 
with normal Tyrode's solution to remove all blood. Stabilization was performed for 20 
minutes before conducting the experiments. Control hearts were continuously perfused for 
40 minutes. Ischemia only was performed for 20 minutes. I/R hearts were exposed to 20 
minutes of ischemia, followed by 20 minutes of reperfusion. IPC of hearts was performed for 
total of 20 minutes, followed by 20 minutes of perfusion.18,19

4. Cardiac sample preparation and phosphoproteomics
Whole heart samples were isolated and prepared as previously described.20 Samples were sent 
to Bioconvergence (Suwon, Korea) and were then analyzed via 2-dimensional electrophoresis 
and matrix-associated laser desorption ionization time of flight mass spectrometry analysis. 
Methodology employed were similar to a previously described paper.19 The Gene Ontology 
(GO) enrichment analysis was carried out using Protein Analysis Through Evolutionary 
Relationships (PANTHER; http://www.pantherdb.org/about.jsp) and Database for 
Annotation, Visualization and Integrated Discovery (DAVID; https://david.ncifcrf.gov).21-23 
Protein-protein interactions were visualized using Search Tool for the Retrieval of Interacting 
Gene Database (STRING, https://string-db.org/cgi/about.pl) version 11.0 with a confidence 
cutoff of 0.4.24

5. In silico analysis
Phosphorylation sites were primarily identified through PhosphoSitePlus in Homo sapiens, 
Mus musculus, and Rattus norvegicus data, where modifications in residues were recorded 
through proteomic discovery mass spectrometry. Tyr159 (Y159), Tyr255 (Y255), and Tyr368 
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(Y368), the 3 residues recorded to have the most hits were then analyzed and calculated for 
its conservation across 150 different species using ConSurf server.25 HOPE mutant analysis 
server was then used to determine deleterious effects of protein mutation at selected 
residues.26 CKMT2 structure was retrieved from PDB database (CKMT ID: 4Z9M) and was 
rendered using Biorender.

6. Plasmid constructs and site-directed mutagenesis
Full-length CKMT2 (GenBank Accession No. NM_001099735.2) was created using a 
complementary DNA template by polymerase chain reaction (PCR). A site-directed 
mutagenesis system (EZ024S; Enzynomics, Daejeon, Korea) was used to mutate the 
constructs of Y159A, Y255A, Y368A, and Y159AY255AY368A. The resulting PCR products 
were cloned into GFPN1 and pcDNA6.C vectors using In-Fusion® HD Cloning Kit (102518; 
Takara Bio, Mountain View, CA, USA).

7. Cell culture and transfection
AC16 cells were cultured in DMEM/F-12 (12634028; Gibco, Carlsbad, CA, USA) media with 
10% FBS (12484028; Gibco) and 100 units/ml penicillin-streptomycin (15140-122; Gibco) at 
37°C with 5% CO2. Transfection of expression vectors was performed using TurboFect™ 
Transfection Reagent (R0532; Thermo Fisher Scientific, Hanover Park, IL, USA) according to 
the manufacturer's protocol.

8. Simulated H/R conditions
Equal numbers of cells (2.4×105 cells) were plated onto 6-well tissue culture plates. After 24 
hours, GFPN1–CKMT2 and GFPN1-mutant plasmids were transfected into AC16 cells and 
subjected to 1% O2, in hypoxia condition for 18 hours, followed by 2 hours of reoxygenation 
at 18% O2, 5% CO2, at 37°C under normoxia. Cells were collected and resuspended in 
phosphate-buffered saline (PBS) solution before analysis.

9. Localization and confocal microscopy
AC16 cells were transfected with pGFPN1-CKMT2 and mutant constructs and were visualized 
under a confocal microscope (LSM-700; Carl Zeiss, Oberkochen, Germany). For the detection 
of Δψm, cells were stained with 200 nM TMRE for 30 minutes at 37°C.

10. Measurement of Cell viability
Equal numbers of cells (1.2×104 cells/well) were plated onto 96-well tissue culture plates and 
incubated the plate in a humidified incubator (5% CO2, at 37°C) for 24 hours. 10 μL of the 
CCK8 solution (CK04-20; Dojindo Molecular Technologies, Kumamoto, Japan) were added 
to each well and then incubated for 4 h. Cells were measured for their absorbance at 450nm 
using SpectraMax M3 microplate reader (Molecular Devices, San Jose, CA, USA).

11. Measurement of mitochondria ATP content
Equal numbers of cells (1.2×104, 96-well tissue culture plates) were lysed to determine 
mitochondria ATP using an ATP detection kit (G7573; Promega, Madison, WI, USA) 
according to the manufacturer's protocol. Chemiluminescence was measured using 
SpectraMax M3 microplate reader (Molecular Devices). ATP production independent of 
oxidative phosphorylation was determined by treating cells with 1 μM rotenone (R8875; 
Sigma Aldrich, St. Louis, MO, USA) and 1 μM antimycin A (A8674; Sigma Aldrich) for 1 hour 
before collection. ATP production by oxidative phosphorylation was calculated by subtracting 
(ATP produced in cells treated with rotenone and antimycin A) from (total cellular ATP).
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12. Analysis of TMRE and mitochondria-ROS
GFPN1–CKMT2 and GFPN1-mutant plasmids were transfected into AC16 cells. AC16 cells 
were exposed to H/R conditions as explained above. After H/R, cells were stained with 200 
nM TMRE (T669) or 1 μM MitoSOX™ Red Mitochondrial Superoxide Indicator (M36008; 
both from Thermo Fisher Scientific, Waltham, MA, USA) for 30 minutes at 37°C to measure 
levels of Δψm or superoxide production. After washing with PBS, cells were analyzed flow 
cytometry using FACS Calibur (BD Biosciences, Franklin Lakes, NJ, USA).

13. CKMT2 activity assay
One mL of CK-NAC (TR14110; Thermo Fisher Scientific) was incubated together with 20 μL 
of cell lysate was incubated at 30°C. Three minutes later, CK activity was measured using a 
CK activity assay kit (ab155091; Abcam, Cambridge, UK) according to the manufacturer's 
protocol and read using SpectraMax M3 microplate reader (Molecular Devices). The assay 
was performed in triplicate and results normalized to total protein levels using a BCA assay 
(23225; Thermo Fisher Scientific).

14. Purification of His-tagged protein
For His-tagged protein purify, pcDNA6.C/HIS, MYC-CKMT2 and pcDNA6.C/HIS, and MYC-
mutant plasmids were transfected into HEK293 cells and extracted after 24 hours. Cell lysates 
of HIS-CKMT2 and mutant protein were purified using PRO·Hunt His·Bind Buffer Kit (EBE-
1040; Elpisbio, Daejeon, Korea) following manufacturer protocol.

15. Western blot analysis
Proteins were extracted with RIPA buffer (50 mM Tris-HCL [pH 7.4], 150 mM NaCl, 1% 
Nonidet P-40, 0.2% sodium deoxycholate, 0.1% SDS) containing a protease inhibitor cocktail 
(11836170001; Roche, Penzberg, Germany). Proteins were then separated by SDS-PAGE and 
were transferred to a nitrocellulose membrane, which was blotted with antibodies against 
PGC1α (54481; Abcam), estrogen-related receptor-α (ERRα, ab93173; Abcam), glyceraldehyde 
3-phosphate dehydrogenase (sc-32233; Santa Cruz Biotechnology, Dallas, TX, USA). Blots 
were then washed and incubated with horseradish peroxidase-conjugated anti-mouse or 
anti-rabbit secondary antibodies, followed by washing and immunoreactivity detection with 
enhanced chemiluminescence (RPN2232; GE Healthcare, Chicago, IL, USA).

16. Statistical analysis
Data were analyzed using unpaired Student's t-tests, 1-way or 2-way analysis of variance 
followed by Tukey's post hoc analysis wherever applicable. Values were expressed as 
mean±standard error of the mean, with p-values ≤0.05 considered statistically significant. 
Statistical analyses were carried out using GraphPad Prism 8.0 (GraphPad Software, Inc., San 
Diego, CA, USA).

RESULTS

1. Identification of cardiac protein phosphorylation and classification
Screening of candidate proteins were performed by comparing protein differential 
expression in rat hearts under perfusion (control), ischemia only, I/R, and IPC (Fig. 1A). Data 
analysis of cardiac proteins between perfused and IPC rat hearts identified a total of 871 
phosphopeptides from a total of 265 proteins, 515 of which are exclusively phosphorylated 
during IPC only in 54 proteins (Fig. 1B and C). To determine which molecular functions were 
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altered during IPC, we performed a GO enrichment analysis of our gene list using PANTHER 
software against a R. norvegicus background. The enriched terms for molecular functions include 
protein binding, transcription regulation, and structural roles (Supplementary Fig. 1A). When 
checked for protein class, one of the enriched terms included metabolite interconversion 
(Supplementary Fig. 1B). These results were conferred with DAVID software using a p-value of 
0.05, which rendered more specific terms. Enriched terms for biological processes included 
heart development and phosphorylation, few of which are located in the mitochondria and 
are involved in ATP binding (Supplementary Fig. 1C-E, Supplementary Data 1). Among the 
proteins phosphorylated only during IPC, only few fit most if not all of those aforementioned 
characteristics, one of which is CKMT2. Analysis using STRING also revealed significant 
upregulation in CKMT2 functional interaction with other phosphoproteins during IPC 
(Supplementary Fig. 2A and B).

2.  CKMT2 messenger RNA (mRNA) remain unchanged in human cardiac 
disease models

Since we have identified a candidate protein CKMT2 based on phosphoproteomics, we 
investigated for a relationship between the expression of CKMT2 in patients and heart failure 
incidence. Patients were classified as non-responders when their LV ejection fraction did 
not show more than 10% improvement at the remote phase after biopsy. Non-responding 
patients exhibited no significant change in CKMT2 mRNA as compared to healthy patients 
(Fig. 1E), revealing a similar trend with patients experiencing dilated cardiomyopathy based 
on GEO database statistics (GSE3585) (Fig. 1F). Interestingly, data during perfusion and 
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IPC of the rat hearts demonstrated that Y368 of CKMT2 is phosphorylated as compared to 
ischemia only and I/R, which displayed dephosphorylation at the same site. This can indicate 
that phosphorylation of Y368 can play an important role in cardioprotection (Fig. 1D,  
Supplementary Table 1). These data indicate a possible involvement of CKMT2 post-
translationally during cardiac pathophysiology.

3.  CKMT2 overexpression regulated mitochondrial function to confer 
cardioprotection during H/R

CKMT2 protein expression has been observed to be decreased in cardiac pathological 
models15,27; thus, CKMT2 overexpression can lead to recovery. To determine the effect 
of CKMT2 on mitochondria function and cell survival during a simulated I/R model, we 
performed in vitro analysis using AC16 human cardiac ventricular cell lines under normoxia 
or after 18 hours of hypoxia/2 hours reoxygenation (H/R) using MTS-GFP and CKMT2-GFP 
constructs (Fig. 2A). We first sought to establish mitochondrial localization of CKMT2 
and determined its location in the mitochondrial inter membrane space, appearing in a 
red thread-like manner (Fig. 2B). We then proceeded to investigate whether AC16 cells 
transfected with MTS-GFP and CKMT2-GFP influence cell viability and intracellular ATP 
content under normoxia or H/R condition. Exposure of AC16 cells to H/R significantly 
decreased viability, but CKMT2-GFP overexpression renders protection as exhibited by a 
significant increase in cell survival (≤16% increase) as compared to MTS-GFP (Fig. 2C). 
ATP level in normoxia during CKMT2 overexpression was significantly increased, but not 
during H/R (Fig. 2D). ATP is not synthesized during hypoxia, and since CKMT2 is merely a 
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“converter” for the Cr/PCr shuttle, overexpression of CKMT2 did not affect ATP production 
because there are no metabolites to shuttle.

During hypoxic conditions, Δψm decreases below its endogenous steady-state level. This 
explains the decrease of Δψm during H/R in MTS-GFP, which ultimately recovered during 
CKMT2-GFP overexpression (≤19% higher vs MTS-GFP) to levels similar to normoxia (Fig. 2E).  
Recovery was also observed in H/R upon CKMT2 overexpression as mitochondrial ROS 
(mtROS) production demonstrated a ≤26% decrease in mitochondrial superoxide production 
compared to MTS-GFP (Fig. 2F). Together, these results suggest that overexpression of 
CKMT2 improves cell viability by regulating ΔΨm and mtROS production independent of 
ATP production, which in turn allows for cardiac cell survival under H/R.

4. Phosphorylation of human CKMT2 occurs at various conserved sites
We then considered investigating the possible phosphorylation of CKMT2 by collecting 
protein phosphorylation data from Phosphosite.org. A cross-literature review and quantitative 
analysis of data from the site revealed the 3 phosphorylation sites with the most references: 
Tyr159 (Y159), Tyr255 (Y255), and Tyr368 (Y368) (Table 1, Fig. 3A and B). We then checked the 
conservation of these protein phosphorylation sites within protein domain families by 
collecting data from publicly available sources. If a site is highly conserved, it means that 
throughout its evolution the gene encoding the protein has served an important physiological 
purpose.28 Of the phosphosites initially identified, tyrosine in phosphorylation sites 159 and 
368 in CKMT2 were highly conserved across 150 diverse species, as revealed using ConSurf 
server.25 Tyrosine in 255 was only conserved for less than 1% of the species scanned.

We then confirmed for the effect of CKMT2 phosphorylation sites during deletion or 
mutation by performing analysis on Y159A, Y255A, and Y368A, substituting tyrosine for 
alanine which is made up of beta carbon but devoid of side-chain chemistry. First, we 
investigated the effects of mutation on protein stability using STRUM prediction software.29 
Analysis of all 3 phosphomutants sited resulted in negative ΔΔG values, denoting that 
these mutations do not affect the native folded structure of the protein and rather affects 
posttranslational modifications specifically phosphorylation (Table 2). Using HOPE mutant 
analysis server which predicts susceptibility of mutant proteins to disease or deleterious 
effects,26 we found that Y159 and Y368 were the most susceptible to deleterious effects during 
mutation (Fig. 3C) which indicate the importance of these phosphorylation sites.
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Table 1. Number of HTP proteomic references in selected CKMT2 residues Y159, Y255, and Y368
Phosphosite Human sequence
T151 DLDASKITQGQFDEH
Y159 QGQFDEHYVLSSRVR
Y207 KGDLAGRYYKLSEMT
Y208 GDLAGRYYKLSEMTE
S211 AGRYYKLSEMTEQDQ
Y255 ARGIWHNYDKTFLIW
Y313 MWNERLGYILTCPSN
S319 GYILTCPSNLGTGLR
S343 LSKDPRFSKILENLR
T361 RGTGGVDTAAVADVY
Y368 TAAVADVYDISNIDR
Y393 IVIDGVNYLVDCEKK
Only phosphorylated residues with HTP references more than 10 as indicated in Phosphosite.org were included in 
the table. Shaded boxes are the 3 with the most HTP references.
HTP, high throughput paper.



5.  Genetic substitution of CKMT2 affects mitochondria function under H/R 
condition

Mitochondrial protein phosphorylation is an important regulator of mitochondrial functions 
and tissue ATP levels, and thus could be potential targets for therapeutic interventions to 
mitigate the effects of ischemic injury.30 However, this possibility has not been demonstrated 
yet. Based on Fig. 1D, we found that CKMT2 could be post-translationally modified, we 
sought whether phosphorylation occurs at specific sites of the protein and how it can affect 
mitochondrial function. To address this, we constructed single amino acid substitution 
mutants of Y159A-GFP, Y255A-GFP, Y368A-GFP and investigated for mitochondria location, 
cell survival, ATP content, and mitochondria function using AC16 cells (Fig. 4A). Y159A-GFP, 
Y255A-GFP, and Y368A-GFP mutants were localized in the mitochondria; however, curved 
thread-like entanglements were observed in phosphomutants as opposed to the thread-like 
manner of CKMT2-GFP (Fig. 4B).

ATP production is directly linked to the CK/PCr shuttle and thus we, we then investigated 
whether the earlier decrease in ATP production could be linked to CK activity. We transfected 
empty pcDNA3.1(−) with various CKMT2 substitution mutants constructs in HEK293 cells 
and were purified using HIS-resin. CK activity was found to be significantly reduced in all 
CKMT2 substitution mutants compared to CKMT2 (compared to WT, Y159A: ≤80% decrease, 
Y255A: ≤45% decrease, Y368A: ≤77% decrease, Fig. 4C). These results suggest that CK 
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Table 2. Effect of site-directed mutagenesis in CKMT2 protein stability and native folding
Position Wild-type Mutant type ΔΔG
159 Y A −1.13
255 Y A −2.19
368 Y A −1.97
Data are represented as below: Y, tyrosine; A, alanine; ΔΔG, the effects of these mutations to protein stability as 
measured by Gibbs' free energy values.
Y residues in Y159, Y255, and Y368 were changed to A. A more negative value reflects a more stable protein.



inactivation due to dephosphorylation of CKMT2 affected CK activity, which is directly linked 
to ATP production.

Concurrently, the cell viability of single amino acid substitution mutant cells in normoxia 
was significantly lower by as much as ≤35% compared to CKMT2-GFP cells, and by as much 
as ≤62% during H/R (Fig. 4D). The decrease in cell viability of substitution mutant cells 
can be attributed to the pronounced decreased mitochondrial dysfunction, as shown by 
a significant decrease in ATP content and a significant decrease in Δψm and a significant 
increase in mtROS production during H/R (Fig. 4E-G). The change in levels of survival and 
ATP contents may be a result of the regulation of CKMT2. Taken together, these results 
indicating that CKMT2 inactivation due to dephosphorylation of CKMT2 may affect 
mitochondria function.
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6. CKMT2 mutation influence mitochondria protein expression
To determine whether substitution mutants of CKMT2 regulates mitochondrial proteins, 
western blotting was performed on transfected AC16 cells of CKMT2 and substitution 
mutants of CKMT2 under normoxia and H/R (Fig. 5A). Peroxisome proliferator-activated 
receptor γ coactivator-1α (PGC-1α) is the main regulator of oxidative phosphorylation and 
fatty acid oxidation, its absence is known to result in contractile dysfunction and heart 
failure.31 PGC-1α expression was significantly lower by ~20%–~50% in substitution mutants 
of CKMT2 under normoxia and decreased by as much as ≤70% during H/R. Transcription 
factor ERRα was also significantly lower in substitution mutants of CKMT2 under normoxia 
and H/R. Prohibitin 1 (PHB1), which is responsible for mitochondrial stabilization, was 
also lower in phosphomutations in normoxia and H/R (Fig. 5B). Taken together, these data 
suggest that CKMT2 can regulate mitochondrial protein expression.
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DISCUSSION

Here we report the regulatory role of CKMT2 overexpression in mitochondrial function 
which led to cardiac cell protection during H/R in an in vitro setting. We also determined 
and characterized 3 essential phosphorylation sites in CKMT2: Tyr159 (Y159), Tyr255 
(Y255), and Tyr368 (Y368). Mutations in these functional phosphorylation sites render a 
significant decrease in CKMT2 activity and mitochondrial dysfunction, which affected the 
cardioprotective capability of CKMT2, especially during H/R.

Our results compound on previous data which demonstrate the cardioprotective effect 
of CKMT2 overexpression during H/R.15,32 In our model, H/R induced a modest decrease 
in cell viability which was ameliorated by CKMT2 overexpression. On the other hand, 
ATP level remained unchanged during hypoxia and even during CKMT2 overexpression, 
similarly observed in in vivo CKMT2 overexpression models, which attributed possible 
elevated CKMT2 as a transformer of adenylate energy charge or cellular adenosine release 
under ischemic conditions.27 Previous reports have also observed near-normal ATP levels 
until end-stage heart failure which is attributed to the buffering capacity of PCr and the CK 
equilibrium constant strongly favoring ATP synthesis.33 In this case, the influence of CKMT2 
overexpression may possibly directly affect the Δψm-ROS axis.

Δψm-ROS are highly dependent on each other, as ROS production depends exponentially 
on ΔΨm and a high ΔΨm stimulates the mitochondrial respiratory chain to significantly 
increase ROS production.34 Thus, a balance between ΔΨm and ROS should be maintained 
to avoid excessive ROS production which can lead to various pathologies. ROS it in itself is 
also an attractive target to address these pathologies. It was previously reported that CK is 
the main target of ROS in heart myofibrils through the oxidation of sulfhydryl groups, and 
its deactivation results in a lower intramyofibrillar ATP-to-ADP ratio.35 Later on, CKMT2 
activity was discovered to play an antioxidant role against oxidative stress albeit in the brain 
instead of a heart, thereby reducing mitochondrial ROS generation through an ADP-recycling 
mechanism.36 Moreover, CKMT2 is hypersensitive to inactivation by ROS and other ischemia 
by-products (i.e., peroxynitrite).37

We further evaluated the cardioprotective role of CKMT2 by performing mutation on 
conserved phosphorylation sites. The current study is the first to characterize the functional 
role of Y159, Y255, and Y368 in CKMT2 through site-directed mutagenesis. The substitution 
of a single amino acid in a protein sequence can significantly alter a protein's stability (ΔΔG), 
where a positive ΔΔG represents a destabilizing mutation and a negative ΔΔG represents a 
stabilizing mutation.38 Because the mutations introduced in CKMT2 did not affect the native 
folding and stability of the protein, there could have been negligible effect to ligand binding, 
allosteric coupling, catalytic activity. Although our results demonstrated that CKMT2 was 
phosphorylated during perfusion and IPC in an animal model, human mRNA data and GEO 
data in disease models indicated that the mRNA expression was unchanged. We infer that the 
phosphorylation of CKMT2 is mediated by post-transcription regulation and the mutations 
introduced directly affected posttranslational modifications specifically phosphorylation 
which signals subsequent molecular mechanisms to proceed.39

Our current study demonstrates Y159, Y255, and Y368 as essential phosphorylation sites 
intersecting the Cr/PCr and ADP/ATP cycles which allows for the continuous production of 
energy supply and cell survival. Thus, activation of CKMT2 may be a normal event in cardiac 
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cells. In a different study done in breast cancer cells, researchers found that activation of 
Y153 phosphorylation, through the HER2/ABL axis, stabilizes the other mitochondrial 
CK isoenzyme CKMT1 to increase the phosphocreatine energy shuttle and promote 
proliferation.40 However, unlike the aforementioned study, we have not yet investigated 
potential mechanisms on Y159, Y255, and/or Y368 phosphorylation activation which may 
contribute to CK/PCr shuttle and ATP production in the cardiac setting and will merit future 
experiments. It will be interesting to find a tyrosine kinase that can phosphorylate the tyrosine 
residues of CKMT2, which in turn can regulate downstream mitochondria-related proteins.

Moreover, the dysregulation caused by the mutation and hypoxia can affect the PGC-1/
ERR axis, which regulates synchronized shifts in ATP production, energy metabolism, and 
mitochondrial function in the heart. This dysregulation eventually results in a progressive 
deactivation of the PGC-1/ERR axis and a further reduction in ATP levels as it directly impacts 
ATP-coupled respiration and efficacy of electron transport chain (ETC).41,42 Excessive amounts 
of mtROS are also produced as an unwanted by-product of a dysfunctional ETC, which 
is considered as its main source.43 Since mtROS are mainly sourced from ETC, and PHB1 
directly regulates ETC activity, PHB1 also has control in mtROS production, and in effect 
ΔΨm as well.44 Also, PHB1 compounded on the observed mitochondrial dysfunction as it also 
modulates mitochondrial integrity and bioenergetics under oxidative stress and is a known 
regulator of mitochondrial fragmentation, which can explain the thread-like fragmentation 
observed in the mitochondria of phosphomutants.45

In conclusion, here we report the regulatory role of CKMT2 overexpression in mitochondrial 
function which led to cardiac cell protection during H/R in an in vitro setting. We also 
determined and characterized 3 essential phosphorylation sites in CKMT2: Tyr159 (Y159), 
Tyr255 (Y255), and Tyr368 (Y368). Mutations in these functional phosphorylation sites render 
a significant decrease in CKMT2 activity and mitochondrial dysfunction, which affected the 
cardioprotective capability of CKMT2, especially during H/R. Our current study demonstrates 
Y159, Y255, and Y368 as essential phosphorylation sites intersecting the Cr/PCr and ADP/ATP 
cycles which allows for the continuous production of energy supply and cell survival (Fig. 6).  
Our current study offers a different perspective on cardioprotection during I/R and H/R injury 
by screening potential offering a novel target in rather than the conventional method of 
targeting infarct size reduction. However, we have yet to fully validate the phosphorylation state 
of these sites in future experiments using a phospho-antibody specific to the site. Moreover, we 
also have to identify a tyrosine kinase that can phosphorylate the tyrosine residues of CKMT2, 
which in turn can regulate downstream mitochondria-related proteins and can be used as a 
target for future therapeutic approaches to cardiac diseases.
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SUPPLEMENTARY MATERIALS

Supplementary Data 1
Full enriched biological processes, molecular function, and cellular component terms in 
control ischemic-preconditioned rat hearts using Database for Annotation, Visualization and 
Integrated Discovery (https://david.ncifcrf.gov).

Click here to view

Supplementary Table 1
List of phosphorylated cardiac mitochondria-specific proteins during perfusion, ischemia 
only, I/R, and IPC

Click here to view

Supplementary Fig. 1
(A) Gene Ontology enriched terms of molecular function and (B) protein class were analyzed 
using Protein Analysis Through Evolutionary Relationships (http://www.pantherdb.org/
about.jsp). Top 10 enriched (C) biological processes, (D) molecular function, and (E) cellular 
component terms in ischemic-preconditioned rat hearts using Database for Annotation, 
Visualization and Integrated Discovery (https://david.ncifcrf.gov). Full list of terms can be 
viewed in Supplementary Data 1 provided.

Click here to view
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Fig. 6. Phosphorylation of CKMT2 in Y159, Y255, and Y368 confer cardioprotection against H/R injury in AC16 cells. 
Schematic diagram indicating the specific tyrosine residues affected during H/R, which led to the regulation of 
creatine kinase activity and mitochondrial function. Created with BioRender.com. 
H/R, hypoxia/reoxygenation; ATP, adenosine triphosphate; Δψm, mitochondrial membrane potential; mtROS, 
mitochondrial reactive oxygen species.
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Supplementary Fig. 2
(A) Increased and (B) decreased protein functional interaction networks in heart 
phosphoproteome in control and ischemic preconditioned comparison groups. Interactions 
were mapped using Search Tool for the Retrieval of Interacting Genes/Proteins database 
version 11.0 with a confidence cutoff of 0.4.

Click here to view
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