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Recent large-scale integrative analyses (including 
Transcriptome-Wide Association Study [TWAS] and 
Summary-data-based Mendelian Randomization [SMR]) 
have identified multiple genes whose cis-regulated expres-
sion changes may confer risk of schizophrenia. Nevertheless, 
expression quantitative trait loci (eQTL) data and genome-
wide associations used for integrative analyses were mainly 
from populations of European ancestry, resulting in po-
tential missing of pivotal biological insights in other con-
tinental populations due to population heterogeneity. Here 
we conducted TWAS and SMR integrative analyses using 
blood eQTL (from 162 subjects) and GWAS data (22 778 
cases and 35 362 controls) of schizophrenia in East Asian 
(EAS) populations. Both TWAS (P  =  2.89  × 10–14) and 
SMR (P  =  6.04  × 10–5) analyses showed that decreased 
TMEM180 mRNA expression was significantly asso-
ciated with risk of schizophrenia. We further found that 
TMEM180 was significantly down-regulated in the pe-
ripheral blood of schizophrenia cases compared with con-
trols (P = 8.63 × 10–4 in EAS sample), and its expression 
was also significantly lower in the brain tissues of schizo-
phrenia cases compared with controls (P = 1.87 × 10–5 in 
European sample from PsychENCODE). Functional ex-
plorations suggested that Tmem180 knockdown affected 
neurodevelopment, ie, proliferation and differentiation of 
neural stem cells. RNA sequencing showed that pathways 
regulated by Tmem180 were significantly enriched in brain 
development and synaptic transmission. In conclusion, 
our study provides convergent lines of evidence for the in-
volvement of TMEM180 in schizophrenia, and highlights 

the potential and importance of resource integration and 
sharing at this big data era in bio-medical research.
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Introduction

Schizophrenia is a severe mental disorder imposing great 
economic and societal burden.1 High heritability indi-
cates a dominant role of genetic risk factors in schizo-
phrenia,2 and over 200 risk loci have been reported by 
genome-wide association studies (GWASs).3–12 Despite 
that GWASs have made unprecedented achievements in 
the past decade, deciphering the genetic underpinnings 
and pathophysiology of schizophrenia is still challenging 
owing to the genetic heterogeneity of the disease between 
continental populations13–15 and the unclear functionality 
of most GWAS loci.

Recent endeavors to overcome these challenges have 
achieved prominent success. For example, GWASs 
performed in populations of  East Asian (EAS),8,9,11 
Indian,16 African and Latino ancestries17 have identi-
fied novel risk loci for schizophrenia. In addition, in-
tegrative studies using European data have identified 
potential target genes of  multiple schizophrenia risk 
variants.18–27 Although these studies have provided 
novel biological insights, almost all of  these integrative 
analyses utilized genome-wide associations and eQTL 
data of  populations of  European ancestry, potentially 
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missing pivotal genetic and biological insights in 
other populations. To overcome the deficiency of  in-
tegrative analyses in non-European populations and 
to illuminate the potential roles of  the identified risk 
genes in schizophrenia, in this study, we firstly con-
ducted large-scale integrative analyses (ie, TWAS and 
Summary-Data-Based Mendelian Randomization 
[SMR]) using reported genome-wide associations 
and eQTL data of  population of  East Asian ancestry 
(EAS). We then explored if  risk genes identified by in-
tegrative analyses were dysregulated in schizophrenia 
cases compared with controls. We also investigated 
the role of  the identified risk gene (ie, Tmem180) in 
neurodevelopment by using neural stem cell model. 
Finally, we investigated the genes and pathways po-
tentially regulated by Tmem180 using transcriptome 
sequencing. Our study suggests that TMEM180 is a 
schizophrenia risk gene whose expression alternation 
may have a role in schizophrenia (through affecting 
neurodevelopment and schizophrenia-associated bio-
logical pathways).

Materials and Methods

Genome-Wide Associations of EAS

Genome-wide SNP associations in EAS were retrieved 
from a recent schizophrenia GWAS.11 Briefly, Lam et al 
conducted the largest schizophrenia GWAS (22 778 cases 
and 35 362 controls) in EAS and identified 21 genome-
wide significant associations at 19 loci.11 Detailed in-
formation about the EAS GWAS can be found in the 
original paper.11

eQTL Data of EAS

Recent studies have revealed differences in genetic archi-
tecture of gene expression in different populations,28,29 
indicating the importance of conducting integrative ana-
lyses using genetic associations and eQTL data from the 
same population (ie, if  GWAS associations were from 
EAS, it is better to use eQTL data from EAS). We used 
eQTL data from lymphoblastoid cell lines of EAS popu-
lations (162 donors) in this study.30 Detailed information 
about eQTL data of EAS are provided in the supplemen-
tary methods.

Transcriptome-Wide Association Study

To identify genes whose cis-regulated expression changes 
are associated with risk of schizophrenia, we performed a 
Transcriptome-Wide Association Study (TWAS) by inte-
grating GWAS associations and eQTL data. The TWAS 
analysis was performed using the FUSION software31 
(http://gusevlab.org/projects/fusion/). Detailed informa-
tion about TWAS are provided in the supplementary 
methods.

SMR Analysis

We used SMR integrative analysis approach developed by 
Zhu et al. to identify schizophrenia risk genes through in-
tegrating eQTL data and GWAS signals.32 Details about 
the SMR analyses can be found in the original paper32 
and are provided in the supplementary methods.

Functional Annotation of rs2902544

We explored the functionality of rs2902544 using func-
tional annotation tools RegulomeDB33 and Alibaba234. 
Detailed information about functional annotation are 
provided in the supplementary methods.

Expression Analysis of TMEM180 in Peripheral Blood 
of Schizophrenia Cases and Controls (EAS Sample)

TWAS identifies disease-associated genes under the as-
sumption that genetic variations confer risk of disease by 
modulating gene expression.31 To further explore if  the 
schizophrenia risk gene TMEM180 identified by TWAS 
and SMR integrative analyses in EAS was dysregulated 
in schizophrenia cases, we examined gene expression 
level of TMEM180 in peripheral blood of schizophrenia 
cases and controls by using the expression data from the 
study of Sun et al.35 More detail information about schiz-
ophrenia diagnosis, blood collection, RNA extraction, 
quality control, and statistical analysis were provided in 
supplementary material and can be found in the original 
publication.35

Expression Analysis of TMEM180 in Brain Tissues of 
Schizophrenia Cases and Controls (European Sample)

We further examined TMEM180 mRNA expression level 
in brains of schizophrenia cases and controls. As there 
is no publicly available Asian brain expression data for 
analysis, we used European brain expression data from 
the PsychENCODE21 for TMEM180 expression analysis. 
We extracted the expression values (fragments per kilo-
base of transcript per million mapped reads (FPKM)) 
and P value of TMEM180 from PsychENCODE web-
site. Detailed information about the study subjects are 
provided in supplementary material and can be found in 
the related publication.21

Isolation and Culture of Mouse Neural Stem 
Cells (mNSCs)

We isolated mNSCs according to the published proto-
cols36,37 with some minor modifications as described in 
our recent study.38 In brief, brains of mouse embryos (em-
bryonic day 13.5 (E13.5), C57BL/6) were dissected under 
microscope to obtain neural stem cells from the ventric-
ular zone (VZ) and sub-ventricular zone (SVZ) tissues. 
Details about isolation and culturing of mNSCs are pro-
vided in supplementary material.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://gusevlab.org/projects/fusion/
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
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Knockdown Experiments

The short hairpin RNAs (shRNAs) targeting mouse 
Tmem180 were designed using BLOCK-iT™ RNAi Designer 
(https://rnaidesigner.thermofisher.com/rnaiexpress/sort.do) 
(supplementary table 1). Detailed procedures were provided 
in supplementary methods.

Proliferation Assays of mNSCs

Proliferation assays (including EdU incorporation and 
CCK-8) were performed as previously described38 and 
detailed procedures were provided in supplementary 
methods.

Differentiation of mNSCs Into Neurons and 
Astrocyte Cells

The mNSCs cells were seeded onto the 24-well plates 
at a density of 2  × 105 cells/well (pre-coated with lam-
inin [SIGMA, Cat.No: L2020-1mg]) and cultured in 
proliferation medium. After one day, the proliferation 
medium was replaced with differentiation medium. 
Differentiation assays were performed as previously de-
scribed38 and detailed procedures were provided in sup-
plementary methods.

Immunofluorescence Staining

Detailed procedures about immunofluorescence staining 
are provided in supplementary material. The primary and 
secondary antibodies used in this study were provided in 
supplementary material.

Real-Time Quantitative PCR

RNA was extracted with TRIzol RNA Isolation 
Reagents (Life technologies, 15596018) according to the 
manufacturer’s instructions. Detailed information about 
procedures and analyses of qPCR are provided in the 
supplementary methods. Primers sequences are listed in 
supplementary table 1.

Transcriptome Analysis

Detailed procedures about transcriptome analysis (RNA 
sequencing) are provided in supplementary material.

Results

TWAS and SMR Integrative Analyses in EAS 
Identified TMEM180 as a Schizophrenia Risk Gene

To prioritize candidate genes whose expression alter-
ations may confer risk of schizophrenia, several inte-
grative analyses have been performed.18,22,23,25,27,31,32,39,40 
However, most of the integrative analyses were conducted 
in populations of European ancestry. In this study, we 
performed integrative analyses using genome-wide as-
sociations of schizophrenia (22 778 schizophrenia cases 
and 35  362 controls) and eQTL data (162 individuals) 
from populations of EAS ancestry.11,30 We first conducted 
a TWAS31 in EAS and identified 4 transcriptome-wide 
significant risk genes (including TMEM180, ACTR1A, 
SFXN2, and MAD1L1) for schizophrenia (corrected 
by Bonferroni multiple comparison testing) (table  1), 
and TMEM180 showed the most significant association 
(TWAS P  =  2.89  × 10–14). SNP rs2902544 showed sig-
nificant association with schizophrenia and TMEM180 
expression (figure  1a). Of note, functional annotation 
suggested that rs2902544 may be a functional variant 
(supplementary figure  1). We further performed an-
other integrative analysis (ie, SMR32) by using the same 
GWAS and eQTL data as the TWAS analysis. SMR in-
tegrative analysis identified 2 schizophrenia risk genes 
(SFXN2 and TMEM180) (corrected by Bonferroni mul-
tiple comparison testing) (table 2). Nevertheless, HEIDI 
(heterogeneity in dependent instruments) test32 showed 
that SFXN2 could not pass heterogeneity test (PHEIDI < 
0.05), suggesting that the association between SFXN2 
and schizophrenia might due to linkage or pleiotropic ef-
fect (rather than causal effect). Thus, the only significant 
risk gene identified by SMR is TMEM180 (P = 6.04 × 
10–5). Collectively, both TWAS and SMR integrative ana-
lyses supported that TMEM180 was significantly associ-
ated with schizophrenia.

Table 1. Transcriptome-Wide Significant Schizophrenia Risk Genes Identified by TWAS in EAS

Gene CHR Best.GWAS.IDa A1 A2 ORb eQTL IDc TWAS.Zd TWAS.P

TMEM180 10 rs4147157 A G 0.89 rs2902544 −7.603 2.89E-14
ACTR1A 10 rs4147157 A G 0.89 rs284860 −5.2973 1.18E-07
SFXN2 10 rs4147157 A G 0.89 rs2902548 5.0379 4.71E-07
MAD1L1 7 rs10239050 A G 1.07 rs1107592 4.647 3.37E-06

Note: aThe SNP that showed the most significant association with schizophrenia in this locus.
bOdds ratio is based on A1.
cThe SNP that showed the most significant association with gene expression in this locus.
dThe Z statistic reflects the association strength between this gene and schizophrenia. Z<0 suggests that this gene was predicted to be 
down-regulated in schizophrenia cases compared with controls, and vice versa. Transcriptome-wide significant (Bonferroni corrected  
P <0.05) gene is shown in bold.

https://rnaidesigner.thermofisher.com/rnaiexpress/sort.do
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
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Table 1. Transcriptome-Wide Significant Schizophrenia Risk Genes Identified by TWAS in EAS

Gene CHR Best.GWAS.IDa A1 A2 ORb eQTL IDc TWAS.Zd TWAS.P

TMEM180 10 rs4147157 A G 0.89 rs2902544 −7.603 2.89E-14
ACTR1A 10 rs4147157 A G 0.89 rs284860 −5.2973 1.18E-07
SFXN2 10 rs4147157 A G 0.89 rs2902548 5.0379 4.71E-07
MAD1L1 7 rs10239050 A G 1.07 rs1107592 4.647 3.37E-06

Note: aThe SNP that showed the most significant association with schizophrenia in this locus.
bOdds ratio is based on A1.
cThe SNP that showed the most significant association with gene expression in this locus.
dThe Z statistic reflects the association strength between this gene and schizophrenia. Z<0 suggests that this gene was predicted to be 
down-regulated in schizophrenia cases compared with controls, and vice versa. Transcriptome-wide significant (Bonferroni corrected  
P <0.05) gene is shown in bold.

Risk Allele of rs2902544 was Associated With Lower 
TMEM180 Expression

Our TWAS analysis showed that rs2902544 was simulta-
neously associated with schizophrenia (P = 3.45 × 10–13) 
and TMEM180 expression (P  =  2.88  × 10−10) in EAS 
(table  1), suggesting that genetic variation may confer 
schizophrenia risk by regulating TMEM180 mRNA ex-
pression. Further analysis showed that the risk allele 
(ie, C allele) of rs2902544 was associated with lower 
TMEM180 expression (figure  1a), implying that risk 
variants might contribute to schizophrenia risk through 
down-regulating TMEM180.

Down-Regulation of TMEM180 in Schizophrenia 
Cases Compared With Controls

As stated above, TWAS and eQTL analyses of rs2902544 
predicted down-regulation of TMEM180 in schizo-
phrenia cases compared with controls (table 1). We then 
examined TMEM180 mRNA expression changes be-
tween schizophrenia cases and controls using the expres-
sion data from Sun et al. (Chinese sample).35 Consistent 
with the prediction of integrative analyses, we found that 

TMEM180 was significantly down-regulated in the blood 
samples of schizophrenia cases compared with controls 
(P = 8.63 × 10–4) (figure 1b), with an effect size (Cohen’s 
d) of 1.22.

We further explored TMEM180 mRNA expression in 
brains of schizophrenia cases and controls using expres-
sion data from the PsychENCODE.41 Again, TMEM180 
was significantly down-regulated in the brains of schizo-
phrenia cases compared with controls (P = 1.87 × 10–5), 
with an effect size (Cohen’s d) of 0.906. These consistent 
results from different samples and tissues suggested 
that dysregulation of TMEM180 might play a role in 
schizophrenia.

Knockdown of Tmem180 Affected Proliferation of 
Mouse Neural Stem Cells

Although the pathophysiology of schizophrenia re-
mains largely unknown, multiple lines of evidence (in-
cluding genetic42 and functional studies27,43–45) support 
the neurodevelopmental hypothesis, which posits that 
schizophrenia is mainly attributed to abnormal brain 
development.46–50 To mimic the effect of TMEM180 
down-regulation on neurodevelopment, we used the 

Table 2. Schizophrenia Risk Genes Identified by SMR Integrative Analysis in EAS

Gene Chr Top SNP Top SNP_Chr A1 A2 ORa HEIDI_Pb SMR_P

SFXN2 10 rs2902548 10 T C 0.92 2.27E-03 2.52E-06
TMEM180 10 rs17114641 10 T G 1.10 8.22E-02 6.04E-05

Note: aOdds ratio is based on A1.
bHEIDI (heterogeneity in dependent instruments) test was used to distinguish pleiotropy from linkage. If a gene passes HEIDI test 
(P>0.05), suggesting that there is a single causal variant influencing both disease risk and gene expression. Thus, the expression change of 
this gene may have a role in disease susceptibility. Transcriptome-wide significant (Bonferroni corrected P <0.05) gene is shown in bold.

Fig. 1. Expression quantitative trait loci and TMEM180 expression analyses. (a) The schizophrenia risk allele of rs1902544 is associated 
with lower TMEM180 expression in EAS (effect size (beta) = 0.182). (b) TMEM180 expression was significantly down-regulated in 
schizophrenia cases compared with controls (with the effect size [Cohen’s d] of  1.22).
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mouse neural stem model, which was frequently used 
in studying the role of schizophrenia risk genes in 
neurodevelopment.27,43–45 We validated the identity of 
isolated mNSCs using well-characterized markers, in-
cluding PAX6, NESTIN and SOX2 (figures 2a–e). We de-
signed 2 shRNAs to knockdown Tmem180 expression in 
mNSCs and RT-qPCR showed that Tmem180 was signif-
icantly down-regulated by the shRNAs (figure 2f). Both 
EdU and CCK-8 assays showed that Tmem180 knock-
down promoted proliferation of mNSCs significantly 

(figures 2g–i), indicating that Tmem180 has a role in regu-
lating proliferation of NSCs.

Knockdown of Tmem180 Affected Differentiation of 
mNSCs Into Neuronal and Astrocyte Cells

In the early stage of neurodevelopment, the NSCs first 
undergo serial proliferation and self-renewal in the ven-
tricular zone (VZ) and sub-ventricular zone (SVZ) to 
generate numbers of  NSCs and neural progenitor cells.51 

Fig. 2. Tmem180 knockdown promotes proliferation of mNSCs significantly. (a–e) Immunofluorescence staining showed that the 
isolated mNSCs express 3 well-characterized markers for NSCs, including SOX2, PAX6, and NESTIN, indicating that the cells were 
NSCs. (f) Expression of Tmem180 in mNSCs was significantly knocked-down by the designed shRNAs. (g) EdU incorporation assay 
showed that EdU+ (red) cells were significantly increased in Tmem180 knocked-down cells compared with controls. DAPI+ was used 
to stain the nucleus (blue). (h) The quantification results of the EdU incorporation assay. (i) CCK-8 assay revealed that the Tmem180 
knockdown significantly promote proliferation of NSCs. Data showed at 3 time points, 24, 48 and 72 hours. Two-tailed Student’s 
t test was used to compare if  the difference was significant. n = 3 for f, n = 3 (EdU positive cells were counted from 6 independent 
immunostaining images for each sample) for g, n = 9 for i. Data are represented as mean ± SD. *P < .05; **P < .01; ***P < .001.
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With the progress of  development, these NSCs and neural 
progenitors migrate outside and differentiate into dif-
ferent types of  neural cells and astrocyte cells. To further 
explore the role of  TMEM180 in neurodevelopment, we 
next investigated the role of  TMEM180 in neural differen-
tiation. Compared with control NSCs, we found that the 
proportion of GFAP positive astrocytes cells (GFAP+) 
was significantly decreased in Tmem180 knockdown 
group (figures 3a and 3b). By contrast, the proportion of 
MAP2 positive neuronal cells (MAP2+) was significantly 
increased (figures  3c and 3d). We validated the impact 
of  Tmem180 knockdown on neural differentiation with 
RT-qPCR. Consistent with the immunostaining results, 
RT-qPCR showed that Tmem180 knockdown signifi-
cantly altered the expression of GFAP and MAP2, with 
the same effect direction as observed in immunostaining 
assays (figures 3f  and 3g). Collectively, these results dem-
onstrate the important role of  TMEM180 in regulating 
neural differentiation.

TMEM180 Regulated Schizophrenia-Associated 
Pathways

To further investigate the biological and signaling path-
ways regulated by TMEM180, we performed transcrip-
tome analysis. We conducted RNA-Seq to examine the 
impact of Tmem180 knockdown on global gene expres-
sion profiling in mNSCs. We identified 654 genes (supple-
mentary table 2) that were differentially expressed (fold 
change > 1.5 and adjusted P < .05) in Tmem180 knock-
down mNSCs (compared with controls) (figure  4a). 
We selected 5 genes (including Nptx1, Ywhah, Gabra2, 
Col26a1, and Slc6a9) (figure 4b) to validate the results of 
RNA-seq using RT-qPCR (figures 4c–g), and the selec-
tion criteria of these 5 genes were as follows: First, these 5 
genes were from the top 30 differentially expressed genes 
(based on RNA-seq). Second, these genes are abundantly 
expressed (https://www.proteinatlas.org/)52 (supplemen-
tary figure 2) and have pivotal roles in the human brain.52–65  
Detailed information about the roles of these genes in the 
central nervous system was provided in the supplemen-
tary methods. Taken together, these lines of evidence in-
dicated the important role of the potential target genes 
of TMEM180 in brain development and psychiatric dis-
orders, suggesting that TMEM180 may confer risk of 
schizophrenia through regulating these genes.

We next performed GO analysis to explore if  the 654 
differentially expressed genes were enriched in specific 
biological categories or signaling pathways. Our GO 
analysis showed that the differentially expressed genes 
were mainly enriched in biological processes associ-
ated with schizophrenia, including action potential,66 
learning or memory,67,68 cognition,69–71 synaptic trans-
mission, etc (figure  4h). In addition, KEGG pathway 
analysis showed that the dysregulated genes were signif-
icantly enriched in schizophrenia-associated signaling 

pathways, including ECM-receptor interaction,72 cAMP  
signaling pathway,73 glutamatergic synapse, synaptic 
vesicle cycle,74–77 GABAergic synapse,78,79 etc (figure  4i). 
Collectively, our transcriptome analysis showed that 
TMEM180 may contribute to schizophrenia by regu-
lating these biological processes and signaling pathways.

Discussion

In this study, we identified TMEM180 as a schizophrenia 
risk gene through integrating genome-wide associations and 
eQTL data from EAS. We provided convergent lines of evi-
dence that support dysregulation of TMEM180 might have 
a role in schizophrenia. First, our TWAS and SMR inte-
grative analyses suggested that TMEM180 is schizophrenia 
risk gene whose down-regulation may have a role in schizo-
phrenia. Of note, previous TWAS studies21,60 using GWAS 
associations and brain eQTL data of Europeans did not 
identify TMEM180 as a schizophrenia risk gene (supple-
mentary table 3), indicating the necessity and importance 
of performing integrative analysis using GWAS and eQTL 
data from non-European populations. Second, consistent 
with the prediction of integrative analyses, mRNA expres-
sion analysis showed that TMEM180 was significantly 
down-regulated in peripheral blood of schizophrenia cases 
compared with controls in EAS sample. Third, TMEM180 
also showed a significant down-regulation in brains of schiz-
ophrenia cases compared with controls in European sample 
from the PsychENCODE,22 further supporting the poten-
tial involvement of TMEM180 in schizophrenia. Fourth, 
we found that Tmem180 knockdown affected proliferation 
and differentiation of NSCs, indicating that Tmem180 is 
required for normal proliferation and differentiation of 
NSCs. These results also suggested that TMEM180 may 
contribute to susceptibility of schizophrenia by affecting 
neurodevelopment. Finally, transcriptome analysis demon-
strated that Tmem180 regulates schizophrenia-associated 
pathways, including pathways related to synaptic transmis-
sion, memory and cognition.

TMEM180 is also known as MFSD13A (Major 
Facilitator Superfamily Domain Containing13A) and it 
encodes a transmembrane protein which contains 12 trans-
membrane domains.80 Previous studies have showed that 
TMEM180 knockdown (with siRNAs) promotes prolifer-
ation of the human pancreatic cancer cells.81 In addition, 
TMEM180 is highly expressed in colorectal cancer cells80 
and it may be a new marker for colorectal cancer.82,83 To 
date, the exact function of TMEM180 is still unclear and 
we know little about the role of TMEM180 in brain and 
schizophrenia pathogenesis. Our transcriptome sequencing 
showed that synaptic transmission and neuronal related 
pathways were significantly affected by Tmem180 knock-
down, suggesting that TMEM180 may have a pivotal role 
in the brain. The potential roles of TMEM180 in the brain 
are discussed in the supplementary discussion and related 
data are provided in supplementary figures 3–5.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
https://www.proteinatlas.org/
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
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Recent integrative analyses have linked schizophrenia 
risk variants to genes,18,21,23,25,27,32,60 thus providing a 
starting point for further functional characterization and 

mechanism dissection. These integrative analyses not 
only translated the genetic associations into risk genes,24 
but also provided potential insights into schizophrenia 

Fig. 3. Tmem180 knockdown affects differentiation of mNSCs. (a) Representative immunofluorescence staining images for GFAP+ 
astrocyte cells (green) and DAPI+ (blue). (b) Quantification for the ratio of GFAP positive astrocyte cells in Tmem180 knockdown and 
controls mNSCs. The ratio of GFAP positive astrocyte cells was significantly decreased in Tmem180 knockdown group compared to 
control group, indicating that the differentiation of mNSCs into astrocyte cells were impaired. (c) Representative immunofluorescence 
staining images for MAP2+ neurons (green) and DAPI+ (blue). (d) Quantification for the ratio of MAP2 positive neurons in Tmem180 
knockdown and controls NSCs. The ratio of MAP2 positive astrocyte cells was significantly increased in Tmem180 knockdown group 
compared to control group, indicating that the differentiation of NSCs into neurons were enhanced. (f,g) RT-qPCR results showed that 
Tmem180 knockdown significantly affected the relative expression level of GFAP and MAP2. pLKO.1-EGFP was used as controls (ie, 
these cells were transfected with random shRNAs and EGFP). Two-tailed Student’s t test was used to compare if  the difference was 
significant. n = 3 (GFAP positive cells were counted from 8 independent immunostaining images for each sample) for a, n = 3 (MAP2 
positive cells were counted from 6 independent immunostaining images for each sample) for c. *P < .05; **P < .01.
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pathogenesis. As the genome-wide associations and 
eQTL data used for integrative analyses were primarily 
from populations of Europeans, there is a necessity to 
look at the other continental populations in considera-
tion of the population genetic heterogeneity. Fortunately, 
recent studies have begun to dissect the genetic architec-
ture of  schizophrenia in other populations, including 
populations of EAS,9,11 African and Latino ancestries.17 
These studies provided important biological insights 
into the genetic etiology of schizophrenia and are well 
complementary to the GWASs conducted in European 
populations. In this study, we reported the first integra-
tive analysis on schizophrenia using genome-wide as-
sociations and eQTL data of EAS. Our study identifies 
TMEM180 as a novel risk gene for schizophrenia and 

provides a complementary scheme to the integrative 
studies performed in European populations. Of note, 
the original study by Lam et al. suggested that ACTR1A 
might be the responsible gene at this locus as ACTR1A 
is the gene nearest the top association (the lead or index) 
variant at this locus.11 Our study highlights that the 
gene nearest the top association cannot be simply pre-
sumed to harbor the causal variations. The risk or causal 
variants may confer schizophrenia risk through regu-
lating expression of distal genes (rather than the nearest 
gene). Interestingly, we noticed that TMEM180 did not 
show significant association with schizophrenia in pre-
vious GWAS10 (supplementary figure  6a) and integra-
tive studies of  schizophrenia (supplementary tables  3 
and 4) (using European),21,22,25 suggesting the potential 

Fig. 4. Tmem180 regulates schizophrenia-associated biological processes and pathways. (a) Expression heatmap of all differentially 
expressed genes (n = 654) identified in Tmem180 knockdown NSCs compared with controls. (b) Heatmap plot of the top 30 differentially 
expressed genes. (c–g) qPCR validation of RNA-Seq results. Five genes (marked by red color in b) were selected for qPCR verification. 
All of the 5 genes that showed differential expression by RNA-Seq were validated by RT-qPCR, indicating the reliability of RNA-Seq. 
(h,i) GO and KEGG analyses of the differentially expressed genes. Pathways marked with red color were previously reported to be 
associated with schizophrenia. P values were calculated by Two-tailed Student’s t test was used for statistical test. n = 3 for c–g, *P < .05; 
**P < .01.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbab032#supplementary-data
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population specificity of  this risk gene. Finally, the fre-
quency of the risk allele (C) of  rs2902544 also showed 
differences in Europeans and East Asians (supplemen-
tary figure 7), implying differential power to detect this 
association across ancestries, and either random drift or 
possibly positive selection favoring the minor allele in 
out-of-Africa populations.

Our study also suggests ancestry-specific findings di-
verge and converge across modalities in schizophrenia. 
Detailed discussions on this are provided in the supple-
mentary discussion.

There are several limitations of  this study. First, the 
sample size of  schizophrenia GWAS included in this 
study was still relatively small compared to integrative 
studies performed in European,22,25 which may limit the 
identification of  more promising candidate risk genes 
for schizophrenia. Second, as no brain eQTL data 
was available for EAS, we used eQTL data from the 
lymphoblastoid cell lines (as a surrogate) for integra-
tive analysis. Considering that schizophrenia is a mental 
disorder that is mainly originated from abnormal brain 
development and function, it is ideal to use eQTL data 
from brain tissues to conduct integrative analysis. Using 
eQTL data from non-brain tissues for integrative ana-
lyses may miss important information. In fact, only a sig-
nificant gene (ie, TMEM180) was identified in our study. 
The relatively small sample size included in EAS GWAS 
and the using of  non-brain eQTL data may be the major 
reasons for the identification of  only one significant gene 
in our study. Further investigations with larger sample 
size and using of  brain eQTL data (of  EAS) will help to 
validate this result and to identify more risk genes. Third, 
though our integrative analyses suggested that genetic 
variants may confer schizophrenia risk by regulating 
TMEM180 expression, the functional risk variants (or 
causal variants) and how these functional variants reg-
ulate TMEM180 expression remain unknown. Finally, 
despite our study revealed that TMEM180 may have a 
role in neurodevelopment, currently we still do not know 
the exact role of  TMEM180 in brain development and 
schizophrenia. Further in vivo functional studies are 
needed to demonstrate how TMEM180 confer risk of 
schizophrenia.

In summary, we performed a schizophrenia integrative 
analysis using genetic associations and eQTL data from 
EAS. Our study identified TMEM180 as a novel schiz-
ophrenia risk gene whose expression alternation may 
have a role in schizophrenia. Further functional study 
will elucidate the role and mechanisms of TMEM180 in 
schizophrenia.

Supplementary Material

Supplementary material is available at Schizophrenia 
Bulletin online.
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