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Abstract: Miniaturized flexible microsupercapacitors (MSCs) that can be integrated into self-powered
sensing systems, detecting networks, and implantable devices have shown great potential to perfect
the stand-alone functional units owing to the robust security, continuously improved energy density,
inherence high power density, and long service life. This review summarizes the recent progress
made in the development of flexible MSCs and their application in integrated wearable electronics.
To meet requirements for the scalable fabrication, minimization design, and easy integration of the
flexible MSC, the typical assembled technologies consist of ink printing, photolithography, screen
printing, laser etching, etc., are provided. Then the guidelines regarding the electrochemical perfor-
mance improvement of the flexible MSC by materials design, devices construction, and electrolyte
optimization are considered. The integrated prototypes of flexible MSC-powered systems, such as
self-driven photodetection systems, wearable sweat monitoring units are also discussed. Finally, the
future challenges and perspectives of flexible MSC are envisioned.

Keywords: flexible; on-chip; energy storage; microsupercapacitor; integrated system

1. Introduction

Flexible on-chip microsupercapacitors (MSCs) with advantages of small size, low
weight, ease of handling in appearance, ultrahigh power density, and excellent lifespan
are of great importance in developing miniaturized, highly integrated, and wearable
electronics, where MSC serve the double duty of energy storage and an energy supply
unit [1–11]. More specifically, energy harvester devices like nanogenerators that convert
energy produced by human motion, walking, mechanical triggering to electrical energy,
photoelectrical devices that transform light to electrical energy, and thermoelectrical devices
that convert thermal to electrical power storage need an MSC to save the transformed
energy [12–20]. On the other hand, wearable energy consumption electronics such as
sensors, detectors, transistors, etc. require MSC to provide power [21–30]. As a bridge
between energy harvester and consumption devices, the optimization of MSC appears to
be particularly urgent [31–33].

Since the concept of intelligent wearable electronics was proposed, the on-chip MSC
with deformable properties has attracted extensive attentions [34–38]. Up to now, sev-
eral kinds of MSC devices have been reported, which can be classified with respect to
the electrodes, including carbon-based MSC represented by graphene, MXene, carbon
nanotube (CNT), transition/metal oxide, transition/metal sulfide, or conducting polymer
based MSC, hybrid materials based MSC [39–51]. Although the emergence of the hybrid
materials could improve the electrochemical performance and specific capacitance of the
on-chip MSC to a certain extent, the combinations of the two or three materials bring
the complex synthesis process, with not all of the combinations showing double or triple
performance enhancement [52–54]. Therefore, except for seeking the novel electrode mate-
rials combination, designing an adaptive method to change the structure of the electrode
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materials thus realizing the performance improvement of the electrode materials should
also be considered [55]. The electrolyte used in fabricating the flexible on-chip is usually
in a solid state or an all-solid state, which is well studied along with the development of
the electrode materials. Meantime, to realize the practical application of the on-chip MSC,
various fabrication technologies have been proposed, such as typical photolithography
process, direct laser scribing methods, ink printing procedure, etc.

In this review, we systematically summarize the recent efforts to promote the develop-
ment of the flexible on-chip MSC and its applications in smart, integrated, and wearable
electronics. Targeting the aforementioned problems of the electrochemical performance
improvements for a certain electrode material via structural design, we proposed three
solutions that contain composites synthesis, 3D architecture build, and in situ modification
materials, as shown in Figure 1 [56–66]. In each solution, detailed examples are given to
discuss the mechanism of the electro-chemical performance enhancements. In the follow-
ing parts, the fabrication technologies employed in assembling flexible on-chip MSC are
presented, which can be divided into mask, cut, and print methods. Next, based on the
MSC in practical application, and the protypes of a smart and integrated system, where
MSC served as energy storage in a self-charged system and is used as an energy supply
in multifunctional sensing units, are reviewed. At the end of this review, the challenges
and future perspectives are proposed for high-performance on-chip MSC and the smart
integrated system.
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Figure 1. An overview of the flexible on-chip MSCs and their application in smart integrated sys-
tem. Electrode materials design: Composites—the figure has been reproduced with permission
from Springer Nature [56]; 3D architecture—the figure has been reproduced with permission from
Wiley [57]; In situ treatment—the figure has been reproduced with permission from Springer Na-
ture [58]; Device fabrication technology: Mask, Photolithography—the figure has been reproduced
with permission from The Royal Society of Chemistry [59]; Screen printing—the figure has been
reproduced with permission from The Royal Society of Chemistry [60]; Cut, Mechanical scribing—the
figure has been reproduced with permission from Wiley [61]; Laser scribing—the figure has been
reproduced with permission from Springer Nature [62]; Print, Ink printing—the figure has been
reproduced with permission from Springer Nature [63] and Wiley [64]; Integration and application:
Self-charged MSC—the figure has been reproduced with permission from Wiley [65]; Integrated
system—the figure has been reproduced with permission from Wiley [66].
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2. Electrode Materials Design

In this section, we give a deep discussion of the electrode materials design towards
flexible on-chip MSC with high energy density. First, the basic formulas to calculate the
specific capacitance, energy density, and power density are provided. Then, composites
composed of two or three electrode materials and selection criteria of the various com-
ponents are listed. Next, a general method of constructing a 3D structure for electrode
materials to improve electrochemical performance is introduced. Finally, we will sum-
marize the surface modification to achieve high-performance MSC. The electrochemical
performances of the MSC with different electrodes are listed in Table 1.

Table 1. Summary of flexible MSCs with different electrode materials and their electrochemical
performances.

Electrodes Specific Capacitance Energy Density Power Density Ref.

PANI//Zn 250 µAh/cm2 0.25 mWh/cm2 0.99 mW/cm2 [2]
Active carbon 0.32 mF/cm2 0.3 µWh/cm2 66.5 µW/cm2 [3]
rGO/PEDOT 7.7 F/cm3 at 0.02 A/cm3 5 mWh/cm3 141 W/cm3 [4]

Co3O4/Pt 35.7 F/cm3 at 20 mV/s 3.17 mWh/cm3 47.4 W/cm3 [5]
rGO/MWCNT 49.35 F/cm3 at 20 mA/cm3 47 mWh/cm3 10 mW/cm3 [6]

rGO fiber 121 F/cm3 below 1 V/s 0.01 Wh/cm3 100 W/cm3 [7]
rGO 10.38 mF/cm2 1.08 mWh/cm3 83.5 mW/cm3 [32]

MoO3-x nanorod 41.7 mF/cm2 5.8 µWh/cm2 - [35]
carbon/Cu nanowire 7.43 F/cm3 at 0.17 mA/cm2 0.66 mWh/cm3 0.36 W/cm3 [41]

ZnO/rGO 3.9 F/cm3 0.43 mWh/cm3 0.13 mWh/cm3 [56]
Ti3C2Tx MXene/
PANI@MXene 1632 F/cm3 at 10 mV/s 50.6 Wh/L 127 kW/L [57]

NiFe2O4 2.23 F/cm3 at 100 mV/s 0.197 mWh/cm3 2.07 W/cm3 [59]
rGO 1.0 mF/cm3 at 5 mV/s 1.81 mWh/cm3 297 mW/cm3 [60]

ZnCo2O4 0.065 µWh/cm2 0.092 mW/cm2 [61]
Ti3C2Tx//Zn 662.53 F/cm3 0.02 mWh/cm2 0.50 mW/cm2 [62]

Ti3C2Tx 562 F/cm3 0.32 µWh/cm2 11.4 µW/cm2 [63]
rGO 2 mF/cm2 at 5 mV/s - - [64]

CNT/PANI 44.13 mF/cm2 0.004 mWh/cm2 0.07 mW/cm2 [67]
NoMoO4@NiS2/MoS2 970 F/g 26.8 Wh/kg 700 W/kg [68]

Ppy 47.42 mF/cm2 0.004 mWh/cm2 0.185 mW/cm2 [69]

2.1. Calculation Formulas of the On-Chip MSC

The specific capacitance of the on-chip MSC is obtained through cyclic voltammograms
(Cv) based on the following equation:

Cv =
1

SVd

∫ V

0
I dV, (1)

where Cv is the specific capacitance (F/cm3); d stands for volume (cm3) of finger electrodes,
S is the scan rate in cyclic voltammograms (V/s), V represents the potential window (V),
and I stands for current (A).

The energy density (E, in Wh/cm3) of the on-chip MSC is calculated from the equations:

E =
Cv×V2

2 × 3600
, (2)

where Cv is the specific capacitance (F/cm3).
The power density (P, in W/cm3) of the on-chip MSC is obtained from the equations:

P =
E × 3600

∆t
(3)

where ∆t represents the total discharge time (in seconds).
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2.2. Hybrid Electrode Materials

Composite electrode materials have attracted extensive research interest owing to
the advantages of the synergistic effect and optimized electrochemical properties [70,71].
In detail, carbon materials with electrical double-layer behavior possess excellent cycling
stabilities and robust rate properties, but suffer from the low specific capacitance, while,
conducting polymer, metal oxide, or sulfide based pseudo capacitors exhibit high spe-
cific capacitance but sustain poor cycling and rate stabilities [72–80]. As a result, the
composites combined with both the two kinds of electrode materials could exploit their
advantages to the full, thus achieving the flexible on-chip MSC with the possibility of prac-
tical application [81–84]. For example, Li et al. proposed a carbon nanotube@polyaniline
(PANI) hybrid materials for fabricating on-chip stretchable MSCs, which exhibit a large
areal capacitance of 44.13 mF/cm2 and offer a high power density of 0.07 mW/cm2 at an
area energy density of 0.004 mWh/cm2 [67]. Chen and co-workers reported a core-shell
structural NoMoO4@NiS2/MoS2 nanowire based electrode materials with a high specific
capacity of 970 F/g at a current density of 5 A/g, a high energy density of 26.8 Wh/kg
at a power density of 700 W/kg [68]. Jung et al. provide a reliable laser-induced ZnO
nanorod (NR)/reduced graphene oxide (rGO) -based flexible on-chip MSC, as shown in
Figure 2 [56]. Figure 2a,b shows the digital images of the interdigital electrode with ZnO
seeds/rGO and ZnO nanorods/rGO materials, respectively. ZnO seed was deposited
on rGO film by thermal decomposition of zinc acetate. Then ZnO seed/rGO complexes
were placed in the ZnO precursor solution for the hydrothermal growth of ZnO nanorods.
Figure 2c,d demonstrates the successfully deposited ZnO seeds and the formation of the
ZnO nanorods on the surface of rGO film. The CV curves of the fabricated MSC with differ-
ent widths of finger electrodes (350, 330, or 310 µm) at a scan rate of 100 mV/s are displayed
in Figure 2e. It reveals that 350-ZG MSC has a large average integral area, suggesting a
larger stack capacitance of the 350-ZG MSC, which is 3.9 F/cm3 based on galvanostatic
charge–discharge (GCD) measurements. The Nyquist plots in Figure 2f also suggest the
minimal resistance of the 350-ZG MSC. Figure 2g depicts the specific capacitance of the
MSC, revealing the high performance of the flexible MSC with wide finger electrodes. All
the examples demonstrate the design of composites is an effective strategy for improving
the electrochemical performance of the all-solid-state flexible on-chip MSC.
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Figure 2. ZnO/rGO composites based on-chip MSC. (a,b) Photograph of the interdigital elec-
trode with ZnO seeds/rGO and ZnO nanorods/rGO materials, respectively; (c) SEM image of the
ZnO/rGO finger electrode; (d) High-solution SEM image of the ZnO/rGO electrodes; (e) CV curves
of the ZnO/rGO based on-chip MSC; (f) Nyquist plots; (g) Specific capacitance of the fabricated MSC.
The figure has been reproduced with permission from Springer Nature [56].
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3D Architecture Electrodes

Almost all the electrode materials could transfer their morphology to 1D, 2D, or 3D
architectures through electrospinning technology or sacrificial template method without
the phase structure change [85–87]. Among them, constructing electrode materials into 3D
architectures avoids restacking, creates more porousness, and shortens the ion transport dis-
tance compared to 1D and 2D materials [55,88]. For instance, Liu et al. used NaCl as a pore-
forming agent and glucose as a carbon source to prepare an ultrathin 3D interconnected
nitrogen-doped carbon network (N-CN), which then acted as a template to in situ seleny-
lation salinization to synthesize the Co3Se4@N-CN (CSNC) electrodes [89]. The obtained
CSNC electrode materials exhibit excellent lithium storage capacity of 1313.5 mAh/g at the
current density of 0.1 A/g, much higher than the pure Co3Se4 nanoparticles, demonstrating
the feasibility of improving the electrochemical performance of certain electrode materials
by building 3D blocks. Except for the suggestion of the nanoparticles to 3D intercon-
nected structures, 2D materials that transfer to 3D architectures also have proved enhanced
electrochemical performance. Li and co-workers proposed a 3D porous Ti3C2Tx MXene
anode materials and 3D polyaniline@MXene cathode via template method [57]. Figure 3a
shows the schematic diagram of the synthesis process of the compressed PANI@M-Ti3C2Tx
electrode. The polystyrene (PS) spheres here were used as a template to make 2D Ti3C2Tx
materials into a 3D open structure, which became a flexible PS@Ti3C2Tx film by vacuum-
assisted filtration. The PS templates were removed after thermal annealing treatment
at 450 ◦C in argon, thus achieving a freestanding and flexible 3D microporous Ti3C2Tx
(3D M-Ti3C2Tx) anode. PANI@M-Ti3C2Tx cathode was prepared by a facile drop-and-dry
method, as displayed in Figure 3b, the elemental mapping images of the PANI@M-Ti3C2Tx
electrode are well consistent and within the framework of the corresponding SEM images.
Figure 3c presents a cross-sectional SEM image of compressed PANI@M-Ti3C2Tx electrode.
The compact PANI@M-Ti3C2Tx film compressed under 10 MPa can be seen from Figure 3c.
Figure 3d provides the CV curves of the PANI@M-Ti3C2Tx electrode, which delivers an
ultrahigh volumetric capacitance of 1632 F/cm3 at 10 mV/s and a superior rate capability
with 827 F/cm3 at 5000 mV/s. Asymmetric SCs were also fabricated with MXene anode
and PANI@MXene cathode, which exhibit a high energy density of 50.6 Wh/L and a re-
markable power density of 127 kW/L (Figure 3e). Figure 3f shows the large work functions
of 1.97 eV for PANI@Ti3C2(OH)2, which is much higher than the 1.61 eV for Ti3C2(OH)2,
indicating the higher ability to withstand electron loss and anodic oxidation of the prepared
PANI@M-Ti3C2Tx film.

2.3. In Situ Treatment

In situ treatment is also an effective method for improving the electrochemical perfor-
mance of the electrode materials [90–94]. Our group reported an in situ annealed flexible
Ti3C2Tx cathode based Zn-ion hybrid MSCs with enhanced rate and cycle stability [62].
After annealed treatment, the assembled flexible Zn-ion hybrid MSCs exhibit the maxi-
mum areal capacitance of 72.02 mF/cm2 (662.53 F/cm3) at a scan rate of 10 mV/s and
provide a power density of 0.50 mW/cm2 at an area energy density of 0.02 mWh/cm2.
More importantly, the MSC devices present ~80% value of their initial capacitance after
50,000 galvanostatic charge/discharge cycles, which is much higher than MSCs without
thermal treatment (54.7%, after 5000 cycles). The ultrastability of the in situ annealed
MSCs attribute to the removal of the surface oxygen-containing functional group and the
formation of the micropores in Ti3C2Tx electrode materials. Utilizing in situ treatment
of the MSC devices, cycling and rate stability could be improved, and the specific capac-
itance of the MSC devices also could be increased. For example, Chen and co-workers
also proposed an in situ selective surface engineering of GO MSC to improve its specific
capacitance [58]. In their work, the rGO based MSC was treated with a pyrrole monomer to
achieve selective and spontaneous anchoring of polypyrrole on the microelectrodes without
affecting interspaces between the finger electrodes. Figure 4a shows the homogeneous
adsorption of pyrrole on the surface of GO filaments owing to the π-π interaction. The
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oxygen functional groups on GO inducted the self-polymerization of the pyrrole monomer
and helped GO reduced to rGO. After this self-oxidation reduction (SOR) reaction, PPy
was selectively and accurately anchored on the graphene sheets (pGP), as displayed in
Figure 4b. Figure 4c presents the digital images of the fabricated flexible on-chip MSC. The
MSC was carbonized, the pGP was changed into NC/rGO. The fabricated MSCs derived
from GO, pGP-6 h, pGP-24 h, and pGP-1 week were denoted as MSC-rGO, MSC-6 h,
MSC-24 h, and MSC-1 week. The GCD curves in Figure 4d exhibit the capacitances of 13.6,
42.9, 95.3, and 128.4 mF/cm2, respectively. The interface-reinforced graphene scaffolds
demonstrated a considerably improved specific capacitance from 13.6 to 128.4 mF/cm2.
Figure 4e depicts the excellent cycling stabilities of the fabricated MSC with capacitance re-
tention of 100% even after 10,000 cycles, demonstrating the self-induced selective interface
engineering strategy towards high-performance flexible on-chip MSC.
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Figure 3. PANI@M-Ti3C2Tx electrode materials with 3D structure. (a) Schematic diagram showing
the synthesis process of the compressed PANI@M-Ti3C2Tx electrode; (b) SEM and corresponding ele-
mental mapping images of PANI@M-Ti3C2Tx electrode; (c) Cross-sectional SEM image of compressed
PANI@M-Ti3C2Tx electrode; (d) CV curves of the asymmetric M-Ti3C2Tx//PANI@M-Ti3C2Tx SC;
(e) Volumetric energy and power densities; (f) Work functions of the electrodes. The figure has been
reproduced with permission from Wiley [57].
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3. Device Fabrication Technology

After preparing the electrode materials, selecting a suitable technology becomes
important to realize the large-scale fabrication of the flexible on-chip MSC. In this section,
we summarize the manufacturing technology that allows the scalable preparation of flexible
on-chip MSC. The mask method is introduced, which means the necessary utilization of
a metal mask or lithography mask to fabricate MSC devices. Then cut rote contains
mechanical scribing, and laser direct writing method is provided. The ink printing method
is presented at the end of this section.

3.1. Mask
3.1.1. Photolithography

As a well-developed technology, the photolithography method could prepare metal
conductive electrodes with the patterned electrode, high resolution, and minimal size,
which is suitable for fabricating on-chip MSC [95]. Figure 5 shows the schematic illustration
of the photolithography process for manufacturing the flexible on-chip MSCs with NiFe2O4
hollow nanotubes electrodes [59]. In a typical procedure, the flexible PET substrate was
placed in plasma cleaner for 30 min to enhance the hydrophilicity and wettability. Then,
the NiFe2O4 hollow nanotubes electrodes were dispersed in ethanol and spread on the
PET substrate. Subsequently, 35 nm thick Ni film was sputtered on the top of the electrode
materials to form the current collector. Then, a conventional photolithographic process
was carried out. Next, the superfluous Ni was removed and then treated with air plasma.
Finally, after removing the resist, PVA/KOH gel electrolyte was spread on the integrated
electrodes of the MSCs. The obtained NiFe2O4 nanofiber electrodes based on-chip MSC
exhibit a specific capacitance of 2.23 F/cm3 at the scan rate of 100 mV/s, an energy density
of 0.197 mWh/cm3, and a power density of 2.07 W/cm3. It can be observed that the
fabricated MSC following this process always suffers from the low specific capacitance
because the active electrode materials were placed under the current collector; therefore, the
electrode materials that took part in the actual reaction are very limited. To overcome this
problem, we proposed an electrodeposition method to in situ synthesize PPy on the current
collect obtained via photolithography [96]. The designed MSC with concentric circles
structure shows a large areal capacitance of 47.42 mF/cm2 and provides a power density of
0.185 mW/cm2 at an area energy density of 0.004 mWh/cm2. It’s worth mentioning that the
photolithography method offers the possibility of scalable fabricating MSC array, whereas
MSC arrays with different series and parallel structures could be manufactured at the same
time. Still, the mask needs to be redesigned when we want to change the connection mode;
this reason and popular photolithographic techniques involving expensive equipment
together with complicated steps significantly increase the cost will prevent the development
of photolithography methods in fabricating flexible on-chip MSC.

3.1.2. Screen Printing

The screen printing techniques are simple and cost-effective. Shi et al. reported
an ultrahigh-voltage flexible MSC, based on in-series screen-printed rGO on the various
substrates [60].

Figure 6a illustrates the schematic diagram of the fabrication process [60]. At first, the
conductive ink needs to be prepared by mixing the rGO electrode materials, conducting
carbon black and poly(vinyl chloride-co-vinyl acetate) (P-VC/VAc) binder in dimethyl
mixed dibasic acid ester (DBE) solvent. The obtained ink exhibits outstanding shear-
thinning behavior, allowing for extrusion of the ink through screen meshes under shear
force and its quick solidification without shear force (Figure 6b). Figure 6c depicts the
photography of the fabricated MSC devices. After that, the various substrates including:
flexible PET, A4 paper, glass, or cloth, was put below the customized screen with patterned
meshes (mask), the ink was extruded through the screen and deposited on the substrate.
After removing the screen and drying the patterned rGO microelectrodes, PVA/H3PO4
gel electrolyte was dropped on the electrodes of the MSCs, and the all-solid-state rGO
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based MSC was finally fabricated. Different from the photolithographic technique, screen
printing techniques could be scalable for fast and low-cost production and provide complex
planar geometries on various substrates. The screen printing method has disadvantages,
such as a complex ink preparation process and waste of ink on the surface of the screen,
which also leads to the problematic reuse of the screen. The spraying coating method
could be seen as the upgraded technique of the screen printing, which doesn’t need to
prepare the viscous ink, and the mask could be used repeatedly for many times. Chu et al.
demonstrates the large scale fabrication of PANI based MSC array by employing the mask
assisted spray-coating method [97]. Gravure printing method is also considered as a
promising printing technology owing to its high throughput, optimal control of feature
size, and ability to realize large-area manufacturing MSC [98]. For instance, Xiao et al.
prepared a MoS2@S-rGO based interdigital MSC via gravure printing method, which can
be applied in a wide range of electrode materials [99].
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3.2. Cut
3.2.1. Mechanical Scribing

The mask-free mechanical scribing method has simplified the fabrication process
of the MSC devices. Recently, our group reported all-solid-state ZnCo2O4 nanowires



Micromachines 2021, 12, 1305 9 of 18

electrode based on-chip MSCs via the mechanical scribing approach [61], as shown in
Figure 7. Figure 7a shows the schematic illustration fabricating of flexible all-solid-state
on-chip MSCs based on ZnCo2O4 nanowires electrodes on PET substrate. First, the cleaned
PET substrate was put into a plasma cleaner with air flow to enhance hydrophilicity. After
that, conductive Ag nanowires were spin-coated on the PET substrate and dried at 60 ◦C
for 10 min. The ink electrode was prepared by mixing ZnCo2O4 nanowires (75 wt%)
and polyvinylidene fluoride (25 wt%) in the proper amount of N,N-dimethylformamide
solutions. The ink electrode was then spin-coated on the top of the Ag nanowires film
and dried at 80 ◦C for 5 h to remove the remaining organic solution. The mechanical
scribing system was designed to fabricate the all-solid-state on-chip MSCs, consisting of a
two-dimensional (X-Y axis) moving platform with high-precision guide rails for each axis,
a needle mounted vertically over the platform, and a control system. By pre-importing
a programmed pattern, on-chip MSCs can be manufactured as the movements of the
platform along the X-Y axis. The excess electrode materials were removed by the needle
mounted on the platform. Finally, the gel electrolyte of PVA/KOH was dropped on the
electrodes to get the final all-solid-state on-chip MSCs. This method allows the large scale
fabrication of MSC arrays. Figure 7b displays the digital images of the large scale on-chip
5 × 5 and 10 × 10 MSCs arrays, respectively.
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3.2.2. Laser Scribing

The laser direct writing method has demonstrated the universal adaptability, facil-
ity, and variable-area patterns with high-resolution, which have no requirement for the
solvents, the utilization of binder, additives, and the adjustment of the viscosity, surface
tension, and wettability of the materials to be processed [100–104]. Our group reported
on a Ti3C2Tx MXene based Zn-ion hybrid MSCs employing the laser direct writing ap-
proach [62]. Figure 8a displays the laser scribing process of the Ti3C2Tx MXene based
Zn-ion hybrid MSCs on the flexible substrate. The spin-coated large-sized Ti3C2Tx cur-
rent collector was cut by the laser according to the pre-designed pattern. Then, the Zn
anode was prepared via the electrochemical deposition method. Next, the small-sized
Ti3C2Tx cathode was coated on the top of the large-sized Ti3C2Tx current collector. Finally,
PVA/ZnCl2 gel electrolyte was spread on the devices. Figure 8b shows the digital photo of
the Ti3C2Tx suspension. The MSC arrays (4 in parallel) could be directly attached to the
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fingernail, indicating the small-size of the fabricated devices. The digital image of various
fine-patterned MXene electrodes, such as “USTB”, “CAS”, “Flextronics”, “Institute of semi-
conductor” words on a transparent PET substrate (size 3 × 3 cm) is presented in Figure 8c,
indicating the universal adaptability of the laser scribing method. A cartoon MSC, and
MSC with butterfly-shape, could be quickly and easily fabricated, and demonstrates the
possibility to design the MSC based on the wearable electric apparatus. The energy density
can be controlled by the series/parallel connections, as shown in Figure 8d. A digital timer
driven by the obtained single MSC under bending state and a flexible LED displayer of
the “TiC” logo lighted by the MSC arrays under different deformations suggest the great
potential application of the MSCs in integrated wearable electronics.
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3.3. Ink Printing

Ink printing method with printable inks is a promising way for scalable production
of flexible on-chip MSC [105–107]. Recently, Zhang et al. reported additive-free MXene
inks for fabricating MSCs via the extrusion printing and inkjet printing approach [63].
Figure 9a shows the schematic illustration of direct MXene printing using additive-free
inks. Figure 9b displays the additive-free MXene inks and the printed MSC devices in
series. The additive-free MXene inks possess a good viscosity of ~0.71 Pa s., allowing the
direct printing on the untreated plastic and paper substrates with high printing resolution
and spatial uniformity. The printed flexible MSCs deliver a high volumetric capacitance
up to 562 F/cm3 and an energy density of 0.32 µWh/cm2, demonstrating great potential
in scalable and integrated electronics. Similarly, Liu et al. developed the direct printing
method to fabricate exfoliated graphene (EG) based flexible on-chip MSCs [64]. The EG was
prepared by the electrochemical exfoliation process in a two-electrode system to expand
the graphite foil to EG. The prepared EG ink was dispersed in 2-propanol as EG ink with a
concentration of 0.8 mg/mL. To obtain EG based MSC, the EG/PH1000 hybrid ink was
used to print the designed pattern on paper or PET substrate. The fabricated devices
show a high area capacitance of 1080 µF/cm2 at a scan rate of 10 mV/s, and superior rate
stability with no obvious capacitance change when the scan rate was increased to 100 mV/s.
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Besides, ink-jet printing was also performed in work to show the potential of scale-up
production. The designed MSC arrays can be easily printed via a “home computer and
printer” using the prepared EG ink, as displayed in Figure 9c. Figure 9d demonstrates the
lighting test of the 4 MSC devices in-series, opening a new avenue to scalable fabrication of
high-performance printable, flexible on-chip MSC.
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4. Integration and Application

Since the self-charged MSCs by wireless charge circle, photoelectric conversion, and
nanogenerator have been insightfully summarized in our previous review, here, we only
focus on the novel thermal charged MSC devices in the Section 4.1. In Section 4.2, we
provide an MSC powered smart and integrated systems, like MSC powered photo detecting
system, multifunctional sensors driven by integrated SCs system.

4.1. Self-Charged MSC

All-solid-state flexible on-chip MSC has the advantages of small-size, variable struc-
tures, high safety, and comfortable experience, making them one of the best choices for
energy supply in highly integrated and low-power wearable electronic devices [108,109].
To meet the new requirements of wearable electronic devices such as long-term indepen-
dent operation, the energy unit needs to satisfy the self-charging function, thus extending
the life of the whole device and broadening the application field. While research has
suggested that nanogenerator, solar cells can be integrated with MSC to complete a full
energy circulation from acquisition to storage and application, energy acquisition units
not only suffer from low efficiency, but also introduce many electronic components in the
process of integration, such as AC to DC circuit in generator, which is challenging to realize
high safety and comfortable experience [110–113]. Therefore, it is of great significance to
develop all-solid flexible self-charging micro-capacitors. Yu et al. developed a thermally
chargeable solid-state SC [114], generating a voltage from a temperature gradient and
storing electrical energy in SC like conventional thermoelectrics. Figure 10a shows the
working mechanism of thermally chargeable SC. When a temperature gradient is formed
between two electrodes, the protons at the hot electrode will migrate to the cold electrode
by the Soret effect. Thermodiffusion of protons leads to electrochemical reactions at the two
electrodes, when electrons are transferred from the hot side to the cold side by connecting
the two electrodes with a load resistor. When the temperature gradient is removed, and
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the load resistor is disengaged, the protons are randomly distributed [115]. Despite the ion
movement, the charges on the bottom electrode remain, completing a charged state of the
SC without a temperature difference. Figure 10b depicts the thermally charging behaviors,
which can be seen that the SC presents a 0.04 V with ∆T of 5.3 K. The charge-discharge
profiles in Figure 10c demonstrate that when a temperature gradient is formed, the SC
will spontaneously charge. The thermally chargeable SC generate 38 mV with a large
areal capacitance (1200 F/m2), paving the way for the future development of self-charged
flexible on-chip MSCs.
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4.2. Integrated System

The development of the Internet of Things (IoT) and big data has demanded more
from portable, smart and integrated devices, which require a small-sized energy power unit
to help various sensors realize the continuously monitoring of health or the environment.
In 2017, our group reported MSCs integrated gas sensing system [69], which contains
a Ppy film based circular MSC arrays as energy supply, MWCNT/PANI gas sensor as
functionalized units, PCB as signal processing component, Bluetooth as data transmission
module, and a phone as an analysis/display terminal, as shown in Figure 11a. The MSC
exhibit a volumetric capacitance of 47.42 mF/cm2 and a power density of 0.185 mWh/cm2.
The gas sensor shows a quick response time of 13 s and a recovery time of 4.5 s at room
temperature. This wearable system successfully realized the detection and information
display of ethanol gas with an unknown concentration (Figure 11b), suggesting its wide
application in personalized monitoring drunken driving or detection of ethanol gas in
industry. In the following work, we designed a wearable self-powered sweat monitoring
system [116]. NiCo2O4 based MSCs were used to power the NiCo2O4/chitosan based
glucose sensor, ion selective membrane based [Na+] and [K+] sensors. This smart system
can easily and accurately realize the real-time monitoring of perspiration displayed on the
individual cellphone to assess personal physiological state by Wi-Fi.
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Figure 11. (a) Picture of a subject wearing the individual MSC array-gas sensor-analysis unit; (b) Real-
time C2H5OH concentration analysis/display; The figure has been reproduced with permission
from Elsevier [69]; (c) Photography and circuit diagram of the multifunctional integrated system;
(d) Digital image of the prepared integrated devices; (e) The pressure sensor behavior; (f) The
gas sensor behavior; (g) The photo response of the devices. The figure has been reproduced with
permission from Wiley [66].

Kim and co-workers reported a body-attached and multisensors integrated system [66],
as shown in Figure 11c. The multifunctional integrated system consists of a radio frequency
(RF) power receiver, an MSC array, strain sensor, and UV/NO2 gas sensor. The MSC
could be charged wirelessly, which shows a high volumetric capacitance of 4.7 F/cm3, and
an energy density of 1.5 mWh/cm3 at a power density of 12.6 W/cm3. The integrated
device was directly attached to the neck of a tester (Figure 11d), indicating its wearability.
Figure 11e depicts the motion change curves measured by fragmentized GO foam strain
sensor. The GO based strain sensor also could realize the detection of repeated body
motion, voice, and swallowing of saliva. The MWNT/SnO2 NWs based gas sensor and
photodetector (Figure 11f,g) have an excellent response to the NO2 gas and UV light. The
multifunctional integrated system demonstrated a great potential for practical applications
in wearable electronics.

5. Conclusions

This review summarizes the recent progress in flexible on-chip MSCs and their appli-
cation in smart, integrated, and wearable electronics. Various design methods, including
composites synthesis, 3D architecture build, and in situ modification materials, have been
developed for improving the electrochemical performance of flexible MSC devices. The
fabrication technologies used in manufacturing flexible on-chip MSC are presented. Then,
for the practical application, the MSC-based integrated system is introduced.

Although considerable progress in flexible on-chip MSC has been achieved, there
are also enormous challenges that remain for future practical applications. The existing
problems and future directions are as follows:

1. The electrochemical performance with high energy density still requires to be im-
proved. Many of the composites electrode materials have been developed to fabricate
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high-performance flexible MSC devices, but the guideline to reveal the selection basis
of the electrode materials in composites is rarely available. More attention should be
focused on the establishment of a selective standard.

2. Although constructing 3D architecture could improve the electrochemical perfor-
mance, the pore morphology and size control needs to be considered in further work.
The template used to build 3D architecture are expensive and the procedures are
complicated. More facile methods and template-free synthesis processes should be
developed to get scalable electrode materials with 3D architecture.

3. The exploration of novel technologies may lead to a new achievement in the field of
large scale and low-cost fabrication of flexible on-chip MSC. The MSC devices with
natures of self-healing, biodegradability, and biocompatibility are expected in the
implantable self-powered medical devices and health monitoring devices.

4. For the self-powered systems integrated with functional sensors, the thermal charged
MSC could simplify the structure of the integrated system and reduce the energy
lost in the energy transformation. Thermal charged on-chip MSC will become an
important future direction for direct charging the MSC using the temperature gradient
between the human body and the environment.
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