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To the Editor:

Whole genome sequencing (WGS) of neoplasms not only
offers a comprehensive genome-wide detection of gene
fusions/other structural variants (SVs), gene mutations, and
copy number abnormalities (CNAs) but also provides
information on acquired mutational profiles, including
localized hypermutations (kataegis) and single base sub-
stitution (SBS) mutational signatures. The latter are recur-
ring trinucleotide patterns of somatic single nucleotide
variants (SNVs) and their flanking nucleotides that are, in
some instances, associated with the etiology or pathogenesis
of neoplastic disorders, for example C>T transitions in UV-
associated melanoma, C>A transversions in smoking-
induced lung cancer, and C>T transitions and C>G trans-
versions caused by overactive APOBEC enzymes [1, 2]. In
addition, WGS allows detection of variants in non-coding
regulatory elements (REs), such as enhancers and pro-
moters, resulting in de-regulated gene transcription [3].
However, the few WGS studies of pediatric acute myeloid
leukemia (AML) reported to date have not ascertained SBS
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mutational signatures or variants in REs [4-6]. We per-
formed WGS on 20 pediatric AML cases (Supplementary
Information and Supplementary Fig. S1), focusing on SBS
profiles, variants in REs, and novel gene fusions and
mutations.

Apart from confirming all gene fusions detected in
clinical routine, the SV analysis revealed three novel in-
frame fusions: PLEKHAS5-ADAMTS20, RABIIFIP2-
NEURIA, and TCF3-HOXB9 (Supplementary Information,
Supplementary Tables S1 and S2, and Supplementary
Figs. S2 and S3). The TCF3-HOXB9 fusion recombines two
transcription factor genes that are important for differ-
entiation, such as lymphopoiesis, and proliferation and that
are expressed in bone marrow (BM) and lymph nodes (LNs)
(Supplementary Table S2). In addition, TCF3 is a partner in
several other fusion genes in, e.g., acute lymphoblastic
leukemia (ALL). The PLEKHA5-ADAMTS20 fusion
involves two genes that are often fused to other genes in,
mainly, epithelial malignancies but that are also normally
expressed in BM and LNs. (Supplementary Table S2).
RABIIFIP2-NEURLA rearranges RAB1IFIP2, expressed in
BM and LNs, with the mitotic gene NEURL4, which is
fused to, for example, MSI2 in malignant melanoma (sup-
plementary Table 2). An XPOI-TNRCIS8 fusion, previously
reported in a single case of ALL [7], was also identified. In
total, 13 (65%) of the 20 AMLs harbored WGS-identified
fusion genes (Supplementary Table S1). Although we
cannot exclude the possibility that the novel fusions were
merely byproducts of the genetic instability present in many
tumor types—such “passenger fusions” are commonly
identified by various types of massively parallel sequencing
[8]—we consider this unlikely. First, all gene partners in the
novel fusions, except RABIIFIP2, have previously been
reported to be rearranged with other genes in human
malignancies (Supplementary Table S2; https://mitelmanda
tabase.isb-cgc.org/); this increases the likelihood that they
are pathogenetically important. Second, the fact that the
fusion genes were identified by WGS clearly shows that
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they existed on the DNA level and, hence, were not
transcription-induced [8, 9].

A total of 34 CNAs (24 losses and 10 gains; median 1.5
CNAs/case) and two uniparental isodisomies were detected;
none of the cases displayed chromothripsis (Supplementary
Information and Supplementary Table S3). The frequencies
of imbalances did not differ between cases with or without
(w/wo) fusion genes (P =0.3). Of the 10 920 somatic
variants identified (Supplementary Table S1), 10,492 (96%)
were SNVs and 428 (4%) small insertions/deletions
(indels). There were between 73 and 1 198 SNVs/indels per
case (median 502/case), corresponding to 0.024-0.386
SNVs/indels per Mb. This low frequency of SNVs/indels
agrees well with a previous study showing that pediatric
AMLs harbor fewer mutations than other childhood cancers
[10]. Furthermore, the rainfall plot analyses revealed
kataegic regions in only two cases (Supplementary Fig. S4).
The most common type of SNV was a C>T transition
(48%), followed by C>A transversions (17%), T>C transi-
tions (15%), T>G (7%), T>A (7%), and C>G (6%) trans-
versions (Fig. 1). All transitions and transversions, except
C>A, increased significantly with age (Supplementary
Fig. S5), as expected considering that many acquired SNVs
are known to occur in a clockwise manner [11]. Neither the
total mutational burden nor the different types of substitu-
tion differed significantly between cases w/wo fusion genes
(data not shown).

The SBS mutational signature analysis revealed that
signature 1 (SBS1) was the most common one, detected in
all 20 AMLs with relative contributions of 15-34% per case
(median 25%; Fig. 1). It is associated with a predominance
of C>T transitions resulting from endogenous, spontaneous
deamination of 5-methylcytosines and increasing by age
[1]. The second most frequent signature was SBS18, found
in 15 of the AMLs (median relative contribution of 8.2%),
which is characterized by C>A transversions and possibly
associated with damage caused by reactive oxygen species
(ROS) (https://cancer.sanger.ac.uk/cosmic/signatures/SBS/
SBS18.tt). The SBS39, SBS37, and SBS32 signatures
were detected in 18, 15, and 13 of the cases, with median
values of relative contributions of 4.0%, 3.9%, and 3.2%,
respectively. The etiologies of SBS37 and SBS39 are
unknown, whereas SBS32 has been associated with prior
treatment with azathioprine (https://cancer.sanger.ac.uk/
cosmic/signatures/SBS). In the hierarchical cluster analysis
of the above-mentioned signatures, the RUNXI-RUNXTI-
positive cases clustered together in a separate branch, most
likely because of the high proportions of SBS18 signatures/
C>A transversions in these cases (Supplementary Fig. S6).
Interestingly, frequent C>A transversions in RUNXI-
RUNXT1-positive cases have previously been reported [4]
and, although SBS mutational profiling was not performed
in that study, it supports the association between C>A
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transversions, SBS18, and t(8;21) AML identified herein. In
order to validate the association between RUNXI-
RUNXITI, C>A transversions, and SBS18, we utilized the
TCGA dataset [12]; however, it should be stressed that this
is based on whole exome sequencing data and hence is
much less informative than WGS data with regard to
number of SNVs. First, we compared the frequencies of the
different SBS types in RUNXI-RUNXITI-positive and
-negative cases in our cohort and in the TCGA dataset. As
seen in Supplementary Table S4, a relatively high frequency
of C>A transversions was observed in the RUNXI-
RUNXTI-positive cases also in the TCGA cohort. Further-
more, the SBS18 signature was observed in the RUNXI-
RUNXITI-positive group in the TCGA dataset; in contrast,
no SBSI8 signature was identified in the RUNXI-
RUNXITI-negative subgroups (Supplementary Table S5).
Although based on whole exome sequencing data, the
TCGA cohort thus provides some support for the associa-
tion between C>A transversions, SBS18, and t(8;21)
in AML.

Comparing the SNVs/indels found at diagnosis and
relapse of cases 1 and 2 revealed that 51% (case 1) and 33%
(case 2) of the SNVs/indels at relapse were identical to
those detected at diagnosis; the other SNVs/indels were
either novel or lost at relapse (Supplementary Fig. S7).
Interestingly, the SBS mutational signatures were similar at
diagnosis and relapse (data no shown), showing that the
induction and consolidation therapies did not result in dif-
ferent signatures at relapse.

Of the 10,920 SNVs/indels, 123 (1.1%) occurred within
coding genes (Supplementary Table S6) and 110 of these
could be confirmed by deep sequencing, whole exome
sequencing, or Sanger sequencing. Eighty-nine of the ver-
ified SNVs/indels in 84 different genes were considered
pathogenic, either by default by being truncating or by
being classified as such by SIFT and/or PolyPhen. Gene
ontology data on molecular functions were available for 43
of the 84 genes: the most frequent functions were tran-
scriptional regulation (67%) and metal ion binding (67%)
(Fig. 2 and Supplementary Fig. S8). Apart from genes
previously reported to be mutated in pediatric AML, e.g.,
DNMT3A, GATA2, JAK3, NCORI, and NOTCHI [4, 13],
we identified pathogenic SNVs/indels in 33 genes (Sup-
plementary Table S6) previously not implicated in AML,
such as RASL1IA (RAS signaling), ATPB5 (mitochondrial
metabolism), and ASCC3, MACF1, USF2, ZFAT, and
ZNF251 (transcriptional regulation).

The analysis of the 10,920 somatic SNVs/indels revealed
that 133 (1.2%) of them occurred in REs, mainly enhancers
(41%) and promoters (26%) (Supplementary Information
and Supplementary Table S7). The potential targets of the
RE variants comprised 656 targets—506 (77%) genes and
150 (23%) ncRNAs. Only six genes and one ncRNA were
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Fig. 1 Overview of the transition and transversion types and the
single base substitution (SBS) mutational signatures in the pedia-
tric acute myeloid leukemias cases. Left panel: the distribution of the
six different transition and transversion types per case. Middle panel:

heat map showing the distribution of the SBS signatures in each case.
Right panel: The frequencies of the five overall most common sig-
natures (SBS1, SBS18, SBS32, SBS37, and SBS39) per case.
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Fig. 2 Overview of gene ontology (GO)-annotated molecular
functions of the 43 genes with pathogenic variants. A-N indicate
different GO functions: A metal ion binding; B nucleotide binding;
C metal ion and nucleotide binding; D chromatin binding; E metal ion
and chromatin binding; F chromatin and polymerase II activating
transcription factor binding; G metal ion, chromatin/DNA binding, and
transcription activator; H chromatin/DNA binding and transcription
activator; I metal ion, DNA binding, and transcription activator;
J metal ion, DNA and RNA polymerase II activating transcription
factor binding, and transcription activator; K metal ion binding and
helicase activity; L helicase activity; M metal ion binding and cytos-
keletal protein binding; N cytoskeletal protein binding.
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recurrently targeted (Supplementary Table S7), suggesting
that the RE variants did not affect specific genes/pathways.
In conclusion, the present WGS analysis of pediatric
AML identified both known and novel fusion genes
(PLEKHA5-ADAMTS20, RABI1FIP2-NEURILA, and TCF3-
HOXBY9) and revealed relatively few CNAs and SNAs/
indels as compared with other malignancies. Furthermore,
regions with kataegis were rare and there were no signs of
chromothripsis. Thus, childhood AML is characterized by a
low degree of genomic complexity and mutational burden.
Of the acquired variants detected, only a minority targeted
REs (~1%) and coding genes (~1%). However, a large
proportion (39%) of the coding genes had previously not
been implicated in AML. Although fusion genes are con-
sidered strong driver mutations, requiring few additional
hits for generating overt leukemia [14], this was not
reflected by differences in CNAs, SNVs/indels, overall
genomic complexity, functions of the mutated genes, or
SBS mutational signatures between fusion-positive and
-negative cases. However, RUNXI-RUNXTI-positive cases
were for the first time associated with a higher prevalence of
the ROS-associated SBS18 signature, likely due to the high
frequency of C>A transversions in this AML subtype.
Although the correlation between SBS18 and t(8;21) should
be considered preliminary—additional studies are needed to
confirm or refute this—the present finding indicates that
DNA damage caused by ROS [14, 15] may be of particular
importance in RUNXI-RUNXTI-positive AML.

Data availability

The dataset generated during the current study fall under the
GDPR regulations for sharing of personal data and will
therefore be made available in the EGA-SE depository upon
its completion. Until then, the data are available from the
corresponding author upon request through the following
DOLI: https://figshare.com/s/5alca3f39611c39bfaae (WGS
dataset). Supplementary information is available at
Leukemia’s website.
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