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Microscale combinatorial stimulation of humanmyeloid
cells reveals inflammatory priming by viral ligands
Miguel Reyes1,2*†, Samantha M. Leff1,2, Matteo Gentili1, Nir Hacohen1,3*, Paul C. Blainey1,2,4*

Cells sense a wide variety of signals and respond by adopting complex transcriptional states. Most single-cell
profiling is carried out today at cellular baseline, blind to cells’ potential spectrum of functional responses. Ex-
ploring the space of cellular responses experimentally requires access to a large combinatorial perturbation
space. Single-cell genomics coupled with multiplexing techniques provide a useful tool for characterizing cell
states across several experimental conditions. However, current multiplexing strategies require programmatic
handling of many samples in macroscale arrayed formats, precluding their application in large-scale combina-
torial analysis. Here, we introduce StimDrop, a method that combines antibody-based cell barcoding with par-
allel droplet processing to automatically formulate cell population × stimulus combinations in a microfluidic
device. We applied StimDrop to profile the effects of 512 sequential stimulation conditions on human dendritic
cells. Our results demonstrate that priming with viral ligands potentiates hyperinflammatory responses to a
second stimulus, and show transcriptional signatures consistent with this phenomenon in myeloid cells of pa-
tients with severe COVID-19.
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INTRODUCTION
Single-cell RNA sequencing (scRNA-seq) has been widely adopted
as a profiling tool in biology and translational medicine, with
studies routinely analyzing thousands of cells (1). Most studies
thus far have focused on cataloging cells in different tissues across
health and disease (2–4), followed by clustering or matrix decom-
position to identify cell states and gene programs. While useful in
identifying disease-associated states and functional programs, data
from observational studies seldom provide mechanistic insight into
which specific factors are required to induce the observed responses.
Bottom-up approaches, wherein cells at baseline are exposed to
various environmental triggers to recapitulate disease-associated
states, provide a way to address this question. However, finding
the appropriate combination of factors for a given cell state is a dif-
ficult challenge as cells are exposed to complex milieus in vivo.
Innate immune cells, such as macrophages and dendritic cells,

are evolved to sense a wide variety of pathogenic and endogenous
signals (5, 6). They respond by coordinating an inflammatory or an
antiviral response, which are primarily driven by the nuclear factor
κB (NFκB) and interferon regulatory factor (IRF) pathways, respec-
tively (7). These transcriptional programs are often up-regulated in
human diseases (8–12), but the specific combination of factors that
induce these changes is difficult to determine. Individual ligands are
sensed by different receptors but may converge toward the same
downstream signaling pathway, and any combination of ligands
may contribute to the overall response (13). A number of studies
(14–16) have also shown that sequential exposure of myeloid cells

to different combinations of pathogen-related ligands can result in
history-dependent functional responses.
Profiling the response of myeloid cells to combinations of

immune stimuli can provide clues about how disease-associated
myeloid states are induced and improve our understanding of
host responses in diseases with complex triggers (17, 18).
However, a systematic analysis of combinations of primary and sec-
ondary stimulations (hereinafter referred to as “prime” and “chal-
lenge” treatments, respectively) has not been performed because
of the experimental complexity and the large quantities of cells
and reagents required to test a wide array of ligand combinations
(19–22). To address this problem, we developed a technology that
enables systematic combinatorial testing of mammalian cell culture
conditions using droplet microfluidics. We previously developed a
drug discovery platform that allows for high-throughput construc-
tion of pairwise combinations for bacterial growth assays (23). Here,
we developed a new workflow on this platform to perform multi-
plexed stimulation of mammalian cells in droplets and recover
the cells for molecular profiling (“StimDrop”; Fig. 1A). StimDrop
enables automated assembly and labeling of cells in pairwise condi-
tions with parsimonious utilization of samples and reagents, and
exploits the high cellular throughput of scRNA-seq to read out re-
sponses across awide array of conditions. Using StimDrop, we dem-
onstrate that human myeloid cells primed with viral ligands have
sustained expression of antiviral genes over several days, which in-
creases their inflammatory response to secondary challenge.

RESULTS
Development and validation of StimDrop
To perform StimDrop, immune cell populations or stimuli are first
emulsified with oligonucleotide-conjugated antibodies (24) to
encode the identities of different cell populations and challenge
stimuli, respectively. Droplets are then pooled and loaded in a mi-
crowell array where pairs assemble spontaneously en masse in an
arrayed format. Adjacent droplets are subsequently merged, and
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the chip is incubated to simultaneously stimulate and additionally
barcode the cell populations according to challenge stimuli expo-
sure. The cells are then released from the chip and profiled using
a commercial high-throughput scRNA-seq platform. The barcodes
are sequenced alongside mRNAs using a previously established
library construction protocol (24), and dual barcodes are used to
identify the sample from which each cell originated and the chal-
lenge stimulus each received in the microfluidic chip. In initial ex-
periments, we noted no significant change in cell viability for
peripheral blood mononuclear cells (PBMCs) from healthy
donors after droplet merging and incubation over time (fig. S1A).
Furthermore, we were able to modulate the number of cells that are
encapsulated in each 1-nL droplet from less than 1 to more than 10
by changing the initial concentration of cells that are emulsified to
adjust cellular throughput and desired influence of paracrine signal-
ing among cells (fig. S1B). The data presented here were collected
from emulsions containing an average of about five cells per droplet.
To determine the feasibility of our barcoding approach, we first

tested in-droplet antibody labeling using fluorophore-conjugated
antibodies. We emulsified PBMCs, fluorescein isothiocyanate
(FITC)–CD45, and phycoerythrin (PE)–CD45 antibodies sepa-
rately and pooled the emulsions in a 2:1:1 ratio before loading the
microwell array. Upon incubation, we observed labeling of the cells
in droplets after 30 min, as evidenced by the emergence of puncta
with high PE and FITC signals in pairs of droplets that contain both
cells and the corresponding fluorescent antibody (fig. S1C). To

quantitatively assess the fraction of cells that are labeled, we released
the cells from the microwell device and measured cellular fluores-
cence via flow cytometry (fig. S1D). The fractions of unlabeled, PE-
positive, and FITC-positive cells are approximately 2:1:1, as expect-
ed from random pairwise assembly of our initial droplet popula-
tions. A small fraction of cells (7.5%) are labeled with both PE
and FITC antibodies, which could be attributed to loading of
wells with >2 droplets, or limited cross-labeling of the cells
during the release protocol. Next, we performed a pilot combinato-
rial labeling experiment by emulsifying PBMCs from eight individ-
ual donors with unique donor-specific hashtag antibodies (hashtag
A). In addition, we emulsified six unique hashtag B antibodies sep-
arately as stimulus droplets. Both PBMC and stimulus droplets were
pooled and loaded in the microwell array, and the chip was incubat-
ed for 4 hours at 37°C before releasing the cells for scRNA-seq. T-
distributed stochastic neighbor embedding (tSNE) of the cells based
on hashtag counts showed 48 distinct clusters corresponding to
each PBMC donor and stimulus pair (Fig. 1B). Sample assignments
from the hashtag counts show high concordance with genotype-
based identification (area under the receiver operating characteristic
> 0.94; Fig. 1C), demonstrating the accuracy of our barcoding
strategy.
Next, we assessed the effect of the StimDrop workflow on the

functional response of human myeloid cells. We used human
monocyte-derived dendritic cells (MDDCs) as a model system
due to their compatibility with suspension culture. We used bulk

Fig. 1. StimDrop enables systematic combinatorial analysis ofmammalian cell culture conditions. (A) Schematic of the StimDropworkflow. (B) Hashtag-based tSNE
projection of cells from a pilot 8 × 6 StimDrop experiment. tSNE coordinates are calculated on the basis of normalized, log-transformed hashtag counts, and cells are
labeled on the basis of donor hashtag (A, left) and stimulus hashtag (B, right) assignments. (C) Receiver operating characteristic (ROC) curves for cell assignment–based
hashtag counts from StimDrop. Cell assignments based on genotypes were treated as the true label for each cell. (D) Scatterplots showing the logCPM (counts permillion,
left) or log2FC (fold change, right) of each gene after treatment of MDDCs with Pam3CSK4 in a 96-well plate (x axis) or through StimDrop (y axis). Genes with false
discovery rate (FDR) < 0.01 are highlighted in red, and the top 10 genes with the highest fold-change values are shown. n = 4 replicates were performed for each con-
dition. (E) Venn diagram showing overlap of differentially expressed genes (FDR < 0.01, edgeR exact test) between Pam3CSK4-treated MDDCs in a plate or through
StimDrop. Top 10 genes with the highest fold changes in the intersection or set differences are indicated.
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RNA-seq to profile the transcriptional response of MDDCs to a
Toll-like receptor (TLR) ligand, Pam3CSK4, using StimDrop and
a conventional plate-based assay. Both expression levels and fold
change of genes upon stimulation of MDDCs correlated strongly
between StimDrop and the standard plate-based assay (Pearson
r = 0.89 and 0.86, respectively; Fig. 1D). Several key inflammatory
genes that have the highest fold changes were both detected in the
plate-based assay and StimDrop, although more genes were signifi-
cantly up-regulated in the plate-based assay, perhaps due to techni-
cal effects of the StimDrop workflow on MDDCs (Fig. 1E and fig.
S2A). To address this question, we systematically assessed the re-
sponse of MDDCs in various incubation conditions related to Stim-
Drop. We found that incubation of MDDCs with hashtag
antibodies or fluorocarbon oil does not substantially alter their tran-
scriptional response, but emulsification of the cell suspension does
(fig. S2B). Emulsification and incubation of MDDCs in nanoliter
droplets result in up-regulation of inflammation-associated genes,
including the tumor necrosis factor α (TNFα) and NFκB signaling
pathways, perhaps due to the induction of a stress response in
MDDCs (fig. S2, C and D). This response, however, was substan-
tially weaker (fourfold) when compared with the response of
MDDCs to TLR stimulation with Pam3CSK4 (fig. S2, E and F).
These results demonstrate that StimDrop retains ample dynamic
range to effectively capture the response of MDDCs to TLR stimu-
lation despite some effects of encapsulation and droplet incubation
on their transcriptional profile.

Analysis of prime and challenge combinations with
StimDrop
To perform a combinatorial serial stimulation experiment on
MDDCs with StimDrop, we first generated custom hashtag anti-
bodies to secure the 72 (64 × 8) barcodes needed for this experiment
(Materials and Methods and fig. S3). Next, we profiled the response
of CD14+ monocytes to immune stimuli spanning the diverse
classes of innate immune receptors (TLRs, nucleotide oligomeriza-
tion domain-like receptors, DNA sensors, RNA sensors, C-type
lectin receptors, and inflammasomes). From the resulting profiles,
we derived a set of prestimulation ligands and appropriate concen-
tration ranges (Materials and Methods, fig. S4, and table S1).
We performed an initial StimDrop experiment examining the

effect of 64 priming conditions (21 unique immune ligands with
three concentrations and one untreated control) on the response
of MDDCs to eight subsequent challenge ligands introduced 5
days after priming (Fig. 2A). Using a targeted panel of immune-
related genes, we measured the transcriptional profiles of MDDCs
4 hours after challenge, sampling a median of 15 cells for each prime
× challenge pair (Materials and Methods and fig. S5). By applying
consensus nonnegative matrix factorization (cNMF) (25) on the re-
sulting data, we found multiple gene programs expressed by
MDDCs. Of these programs, two correspond to inflammatory
and antiviral responses of myeloid cells, which strongly vary in re-
sponse to stimulus (Fig. 2, B and C, and fig. S6, A and B). In the
absence of priming, MDDCs showed increased usage of the inflam-
matory module upon incubation with the seven challenge ligands
we tested (Fig. 2D).
We found that cells primed with nucleic acid/viral ligands

[transfected double-stranded RNA, poly(I:C), poly(dA:dT), and
hpRNA] have increased expression of the antiviral program after
challenge, even with challenges that otherwise activate the

inflammatory program (Fig. 2, D and E). This effect is observed
across all challenge conditions, and the magnitude is dependent
on both the dose and identity of the priming ligand (Fig. 2F). To
validate this finding, we performed a StimDrop experiment on
two independent donors with a limited set of priming conditions
(fig. S7, A to C). We found a similar set of gene programs corre-
sponding to inflammatory and antiviral responses, although two
distinct antiviral programs were detected by cNMF in the validation
experiment (fig. S7, D and E). Similar to our initial results, we found
that priming with poly(I:C) and poly(dA:dT) resulted in a dose-de-
pendent increase in expression of antiviral programs in monocytes
independent of challenge (fig. S7, F and G). These results suggest
that stimulation of monocytes with viral ligands results in sustained
expression of antiviral genes, which can last for at least 6 days inde-
pendent of later challenges with other ligands.

Sustained expression of antiviral genes and chromatin
remodeling in primed cells
To validate the priming effect we observed in our StimDrop exper-
iments, we profiled the transcriptional response of poly(dA:dT)-
and phosphate-buffered saline (PBS)–primed cells over time
(Fig. 3, A and B). We found that treatment of monocytes with
poly(dA:dT) results in a strong acute transcriptional response, as
evidenced by the large number of differentially expressed genes
between primed and unprimed cells at 8 hours (fig. S8A).
Priming with poly(dA:dT) increases both inflammatory and antivi-
ral gene programs initially; however, the antiviral program remains
up-regulated for several days after priming (Fig. 3C). After 6 days,
several interferon (IFN)–related genes are still differentially ex-
pressed between primed and unprimed cells (fig. S8B). These
results support the findings from our initial StimDrop experiment
that treatment with a viral ligand results in sustained expression of
an antiviral gene program.
We hypothesized that the durable up-regulation of the antiviral

gene program could be attributed to chromatin remodeling.
Poly(dA:dT)-primed cells show marked differences in accessible
chromatin when compared with nontreated controls (Fig. 3D).
Analysis of open chromatin peaks shows increased accessibility of
genomic loci with IRF and signal transducer and activator of tran-
scription (STAT) motifs (Fig. 3E) and increased promoter accessi-
bility of antiviral genes, which also correlates with increased
expression (Fig. 3F). Of note, TNF, a gene that is common to the
inflammatory and antiviral gene programs detected in the Stim-
Drop experiment, shows a peak with a marked increase in accessi-
bility near its promoter region, although neither the IRF nor STAT
motif is detectable within this peak (Fig. 3G).
We also examined other phenotypic effects of poly(dA:dT) by

measuring cell numbers, viability, activation of caspase-1, and
levels of surface markers in MDDCs after priming. We found no
substantial difference in cell numbers or viability between primed
and unprimed cells (fig. S8, C and D) but noted an increase in the
fraction of cells with active caspase-1 4 days after priming (fig. S8E).
This result is expected because poly(dA:dT) has been shown to ac-
tivate the AIM2 inflammasome in myeloid cells (26). In addition,
priming with poly(dA:dT) does not result in substantial changes
in TLR4 or CD14 expression after 6 days of culture (fig. S8, F and
G). We did observe a reduction in the expression of CD209, a
marker specific to MDDC differentiation with granulocyte-macro-
phage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-
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4) (27, 28). Analysis of published transcriptional data of human
dendritic cells (29) also shows that signatures of priming are en-
riched in the DC4 cluster (fig. S8H). These results suggest that
priming may have an effect on the polarization and differentiation
of MDDCs, in addition to inducing sustained antiviral gene
expression.

Increased inflammatory responses to secondary challenge
in primed cells
We examined the functional effect of viral ligand priming on
MDDCs after secondary challenge by staining for intracellular
TNFα, IL-1β, and ISG15 after challenge (Fig. 4, A and B). As expect-
ed from our transcriptional findings, a high fraction of cells are pos-
itive for ISG15 after priming with poly(I:C) or poly(dA:dT),
independent of challenge (Fig. 4B). Unexpectedly, we found that
priming with poly(dA:dT) substantially increases the fraction of
TNFα- and IL-1β–positive cells after challenge with TLR ligands,
and a similar but weaker effect is also observed in poly(I:C)-
primed cells after lipopolysaccharide (LPS) and R848 challenge
(Fig. 4B). The increase in fraction of TNFα+ cells is only detectable
5 days after priming with poly(dA:dT), suggesting a delayed effect of

priming on increasing inflammatory responses (fig. S8I). In addi-
tion, we saw that the degree of increase in TNFα expression is pro-
portional to the increase in ISG15 expression across donors and
priming conditions, demonstrating a link between the degree of an-
tiviral program induction and the subsequent increase in inflamma-
tory responses (Fig. 4C). Priming with recombinant IFNβ, but not
IFNγ, also results in an increase in the fraction TNFα+ cells after
LPS challenge, suggesting that the priming effect may be due to ac-
tivation of the IRF pathway (fig. S8J). We performed similar exper-
iments in both monocyte-derived macrophages and MDDCs
primed with varying concentrations of poly(dA:dT) and found a
dose-dependent increase in the fraction of TNFα+ cells for all chal-
lenge conditions (Fig. 4D). Although we did not find significant in-
creases in the expression of TNF and IL1B transcripts in primed
cells in our StimDrop experiment, these results show that priming
with viral ligands enhances inflammatory responses to subsequent
TLR challenge at the protein level.
Transcriptional responses in our StimDrop experiments were

read out with a targeted panel of immune genes, limiting our capac-
ity to find potential mechanisms behind increased inflammatory re-
sponses in primed cells. To characterize the transcriptional

Fig. 2. Analysis of prime and challenge combinations using StimDrop identifies stable antiviral responses. (A) Schematic of the StimDrop experiment analyzing
prime × challenge combinations in human MDDCs. (B) Uniform manifold approximation (UMAP) embedding of dendritic cells from the primary StimDrop experiment
(n = 8570 cells). Cells are colored by usage of the inflammatory (left) and antiviral (right) gene programs. (C) Venn diagram of the top 100 genes with the highest loadings
in each program (left, inflammatory; right, antiviral). (D and E) Heatmap showing the mean usage value of the inflammatory (D) and antiviral (E) gene program for each
pair of prime and challenge conditions. (F) Relative usage of the inflammatory (blue) and antiviral (red) gene programs for each priming condition in the primary Stim-
Drop experiment. Usage values are averaged across all challenge conditions and normalized to the PBS priming condition. Error bars indicate the 95% confidence interval
of the mean.
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signatures of sequential stimulation more deeply, we performed
whole-transcriptome scRNA-seq on MDDCs with or without
priming and challenge (fig. S9). Similar to our StimDrop experi-
mental results, we found no substantial difference in the usage of
the inflammatory gene program or expression of TNF and IL1B
in primed versus unprimed cells after challenge with LPS (fig. S9,
C to E). However, by performing differential expression analysis
between PBS- and LPS-challenged cells for each priming condition,
we found differences in the number of genes that are up- or down-
regulated and the regulatory effect magnitudes (Fig. 4E). A number
of IFN-associated genes, for example, are up-regulated in unprimed
cells but are down-regulated in poly(dA:dT)-primed cells, and a
higher number of genes are differentially expressed in unprimed
cells compared with primed cells (Fig. 4F). These differences
could perhaps be attributed to the already increased expression of
antiviral genes in poly(dA:dT)-primed cells even in the absence of
challenge. In addition to these differences, we found a limited
number of genes that are uniquely up-regulated in poly(dA:dT)-
primed cells after LPS challenge (Fig. 4F). Among these are
KDM6B and DOT1L, which have both been previously shown to
modulate proinflammatory responses in macrophages (30–32).
This analysis suggests that up-regulation of a unique set of genes
could result in enhanced production of TNFα- and IL-1β proteins
even without further increases in TNF and IL1B transcript

expression. Furthermore, up-regulation of these genes in myeloid
cells may indicate the response of primed cells to challenge.

Analysis of viral priming signatures in severe COVID-19
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in-
fection activates antiviral gene programs in myeloid cells (33, 34),
and severe cases of coronavirus disease 2019 (COVID-19) are typ-
ically associated with hyperinflammation (35). Among patients with
SARS-CoV-2 infection, those with severe disease have higher levels
of circulating inflammatory cytokines (36–38) and increased ex-
pression of inflammatory genes in airway myeloid cells (39–42). A
number of studies (43–45) have proposed that severe cases of SARS-
CoV-2 infection might result from coinfection with bacterial path-
ogens, as evidenced by the increased levels of endotoxin and bacte-
rial DNA observed in patients’ blood. Given these findings, we
hypothesized that transcriptional signatures of viral priming and
subsequent challenge can be detected in myeloid cells from patients
with COVID-19.
To test this hypothesis, we performed a meta-analysis of three

scRNA-seq datasets (39, 40, 46) with cells from bronchoalveolar
lavage (BAL) fluid of patients with COVID-19 (Fig. 5A). We per-
formed cNMF on myeloid cells from each dataset and found four
common gene modules, including the inflammatory and antiviral
programs, in all three datasets (Fig. 5B and fig. S10). We found
that usage of the antiviral gene program is similar between mild

Fig. 3. Sustained expression of antiviral genes and chromatin remodeling in viral ligand–primed MDDCs. (A and B) Principal components analysis (PCA) plots of
the transcriptional profiles measured by bulk RNA-seq of PBS and poly(dA:dT)-primed MDDCs. Points are colored by prestimulation (A) or time point (B). RNA-seq ex-
periments were performed on two donors with two technical replicates each. (C) Relative expression of the inflammatory (left) and antiviral programs (right) in primed
(orange) or unprimed (blue) MDDCs over time. Expression scores are calculated by taking the average expression of the top 50 genes for eachmodule, subtractedwith the
average expression of a randomly sampled reference set of 50 genes. (D) PCA plot of the chromatin accessibility profiles measured by ATAC-seq of PBS and poly(dA:dT)-
primed MDDCs on day 6. ATAC-seq experiments were performed on three donors with two technical replicates each. (E) Volcano plot showing differential motif acces-
sibility between poly(dA:dT)- and PBS-primed cells. Transcription factors with significantly enriched motifs are indicated in red (P < 0.1). (F) Differential promoter acces-
sibility (x axis) and expression (y axis) of the top 100 genes of the inflammatory and antiviral gene programs. (G) Genome tracks of the ATAC-seq data for TNF and ISG15.
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and severe cases of COVID-19 but is substantially higher when
comparing COVID-19 with healthy controls and non–COVID-19
pneumonia (Fig. 5C). Usage of the inflammatory gene program,
on the other hand, is significantly higher in severe versus mild
COVID-19. Of note, expression of both KDM6B and DOT1L in
myeloid cells is also higher in severe COVID-19 when compared
with mild cases and healthy controls (Fig. 5D). A similar increase
is observed in comparing COVID-19 versus non–COVID-19 pneu-
monia for DOT1L but not KDM6B. Expression of DOT1L is also
positively correlated with increased usage of the inflammatory
gene program across all datasets (Fig. 5E). On the basis of our pre-
vious findings, the concomitant increases in inflammatory program
usage and DOT1L expression in severe COVID-19 could signify the
response of viral ligand–primed myeloid cells to a secondary
challenge.

To further explore these signatures in a large cohort of COVID
patients, we analyzed the expression of the antiviral and inflamma-
tory programs and DOT1L in bulk RNA-seq profiles of BAL cells
from 299 patients (39). As expected, among patients with pneumo-
nia, antiviral program usage is higher in COVID-19 patients, while
inflammatory program usage is similar (Fig. 5F). Of note, COVID-
19 patients later in their disease course (>7 days from intubation)
have higher DOT1L expression than patients with non–SARS-
CoV-2 pneumonia. In addition, among patients with COVID-19,
those with superinfections (bacterial and/or fungal infection in ad-
dition to SARS-CoV-2; 24 of 68 patients) have increased usage of
the inflammatory gene program (Fig. 5G). These patterns are
likely driven by myeloid cells given that the majority of cells in
BAL from scRNA-seq data in the same study are macrophages
(61.7 ± 14.5%). These associations are consistent with the model

Fig. 4. Increased inflammatory response of primed MDDCs to secondary challenge. (A) Representative plots of TNFα intracellular cytokine staining of PBS and
poly(dA:dT)-primed MDDCs with or without LPS challenge. (B) Fraction of TNFα (left), IL-1β (middle), and ISG15 (right) among cells from the indicated prime [transfected
poly(dA:dT) or poly(I:C) (1 μg/ml)] and challenge conditions [LPS (100 ng/ml), Pam3CSK4 (1 μg/ml), or R848 (1 μg/ml)] measured by intracellular cytokine staining. Ex-
periments were performed in three donors with three replicates for each condition. Boxes show themedian and interquartile range (IQR) for each condition, withwhiskers
extending to 1.5 IQR in either direction from the top or bottom quartile. (C) Scatterplot showing the fold change in ISG15 mean fluorescence intensity (MFI; x axis) and
TNFα (y axis) across donors. Line and shadow indicate linear regression fit and 95% confidence interval, respectively. Significance of the correlation (Pearson r) was
calculated with a two-sided permutation test. (D) Fraction of TNFα-positive cells after challenge with the indicated stimuli. Colors indicate the concentration of
poly(dA:dT) used for priming. Experiments were performed on three donors with three replicates each. (E) Scatterplot shows the fold change (FC) for each gene after
challenge with LPS of PBS-primed (x axis) or poly(dA:dT)-primed MDDCs. Top 10 genes with the highest fold change in the bottom right quadrant are labeled. (F) Venn
diagram (middle) showing overlap of differentially expressed genes (FDR < 0.01, Wilcoxon rank sum test) between PBS-primed (x axis) and poly(dA:dT)-primed MDDCs
after LPS challenge. The top 10 genes with the highest fold changes in the set differences are indicated, and their average expression across the different prime and
challenge conditions is shown in the heatmaps (left and right).
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Fig. 5. Signatures of sequential viral priming and secondary challenge in severe COVID-19. (A) Analysis scheme for three BAL scRNA-seq datasets from cohorts of
COVID-19 patients. (B) Correlation matrix of the gene loadings (z scores) for the myeloid gene expression programs across the three BAL scRNA-seq datasets. Gene
expression modules were derived in an unbiased manner from each dataset using cNMF. The common modules corresponding to the inflammatory and antiviral pro-
grams, and the top 10 genes with the highest loadings in each, are indicated. (C) Mean usage (log) of the antiviral (left) and inflammatory (right) gene expression pro-
grams in myeloid cells from each patient across patient groups for each dataset. (D) Mean expression of KDM6B (left) and DOT1L (right) in myeloid cells from each patient
across patient groups for each dataset. (E) Scatterplot showing mean DOT1L expression (x axis) and inflammatory module usage (y axis) across patients in each dataset.
Line and shadow indicate linear regression fit and 95% confidence interval, respectively, and significance of the correlations (Pearson r) was calculated with a two-sided
permutation test. (F) Mean program score of the antiviral (left) and inflammatory (middle) gene expression programs and mean DOT1L expression (right) in BAL tran-
scriptional profiles for each patient across the indicated cohorts and time points. (G) Mean program score of the inflammatory gene expression program in patients with
COVID-19 only or superinfection. For all boxplots (C, D, F, and G), boxes show the median and IQR for each patient cohort, with whiskers extending to 1.5 IQR in either
direction from the top or bottom quartile. Significance values (P) were calculated with a Wilcoxon rank sum test. M-COV, mild COVID-19; S-COV, severe COVID-19.
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that secondary stimulation (from either bacterial ligands or endog-
enous damage–associated proteins) following the initial viral infec-
tion contributes to inflammation associated with severe COVID-19.

DISCUSSION
Our findings highlight the need for systematic analysis of cellular
responses to complex stimuli and the inadequacy of baseline molec-
ular profiling to explain important cellular responses in disease.
Technologies enabling facile large-scale stimulation experiments
like StimDrop are needed to advance our understanding of immu-
nological phenomena, such as the effect of sequential stimulation
on myeloid cells. Through StimDrop, we found that priming with
viral ligands induces sustained expression of antiviral genes in
MDDCs and macrophages, increasing their inflammatory response
to secondary challenge. We also show that among patients with
COVID-19, signatures of sequential priming and challenge can be
detected in patients with severe illness.
Bacterial coinfection has long been known to play a key role in

severe cases of viral disease such as influenza (17). Previous studies
in vivo have demonstrated that coinfection or sequential infection
with viruses and bacteria result in hyperinflammatory responses
(47, 48). Our results align with these findings and further suggest
a long-term effect of antiviral priming on the induction of hyper-
inflammatory responses. Our StimDrop and in vitro experiments
with human cells demonstrate that this phenotype is still detectable
multiple days after the initial stimulation. Given these findings, we
hypothesize that sustained activation of an antiviral response fol-
lowed by an inflammatory response to additional pathogen or
damage-associated ligands may contribute to exacerbated inflam-
matory pathology in severe COVID-19. This is supported by a
recent study suggesting that gut microbiome dysbiosis and translo-
cation are associated with disease severity in patients with SARS-
CoV-2 (49). Additional analysis of samples from patients are
needed to determine whether similar signatures can be detected
in other viral infections, including influenza. Further studies are
also needed to dissect the mechanism through which viral ligands
prime myeloid cells in this system and to determine whether mod-
ulating related pathways can reduce the inflammatory burden of
viral disease.
Our study demonstrates the utility of parallel droplet assembly in

exploring a large space of experimental conditions withmammalian
cells. This platform can be further extended to higher-order combi-
nations, which we have previously demonstrated for microbial
culture (50). In addition, parsimonious use of cells in emulsions
could allow the application of multiplexed stimulations to limited
samples from primary tissues or clinical specimens and experiments
exploring large combinatorial stimulation spaces. Arrayed control
of both cell identity and density in droplets could further enable
the study of cell-cell interactions. At present, the StimDrop work-
flow can be readily applied to various suspension cell types and
stimulation conditions, but further development is needed to
enable manipulation of adherent cells. Our technical validation ex-
periments also indicate that the droplet encapsulation of dendritic
cells induces a detectable stress response. Cell encapsulation condi-
tions, such as cell density, droplet encapsulation pressure, or
medium/surfactant composition, may be further optimized to ame-
liorate this effect, especially in sensitive and difficult to culture cell
types (51). In light of the increasing throughput of scRNA-seq and

continued development of cellular labeling strategies (52–55), our
technology is poised to become a useful tool for pairing combina-
torial perturbation experiments with single-cell transcriptional
readouts and for identifying sets of factors that induce disease-asso-
ciated transcriptional states.

MATERIALS AND METHODS
Blood monocyte isolation, differentiation, and stimulation
PBMCs were isolated from leukocyte reduction collars obtained
from healthy donors. Leukocyte reduction collars were obtained
from discarded clinical samples through the Crimson Core at the
Brigham and Women’s Hospital (Boston, MA) with anonymized
donor information (https://crimson-core.partners.org/). Research
on the samples was approved by Institutional Review Boards at
the Broad Institute of MIT and Harvard and Brigham and
Women’s Hospital. Concentrated blood containing leukocytes
was diluted 1:1 with 1× PBS, layered on top of Ficoll-Paque Plus
(GE Healthcare), and centrifuged at 1200g for 20 min at 20°C.
The PBMC layer was retrieved, resuspended in RPMI 1640
(Gibco), and centrifuged again at 400g for 8 min. CD14+ monocytes
were enriched with the CD14 Microbeads (Miltenyi Biotec). Isolat-
ed CD14+ cells were validated using flow cytometry (CD14-FITC,
clone M5E2, BioLegend) to be of >90% purity.
Monocytes were cultured in RPMI 1640 supplemented with 10%

heat-inactivated fetal bovine serum (FBS; Gibco) at 37°C. For den-
dritic cell differentiation, 50 ng/mL GM-CSF and IL-4 (PeproTech)
were added to the medium. For macrophage differentiation, 50 ng/
mL GM-CSF or M-CSF (PeproTech) was added. Cytokines were re-
plenished every 2 to 3 days of culture.
For sequential stimulation experiments, cells were incubated

with the indicated priming ligand for 16 hours immediately after
isolation. The cells were then washed with PBS, resuspended in
fresh medium, and cultured for another 5 days without pathogen
ligand stimulation. On day 6, the cells were restimulated with the
indicated challenge ligand. Cells were challenged for 4 and
6 hours for RNA-seq and intracellular cytokine staining experi-
ments, respectively.

Microfluidic device fabrication
The microfluidic device was fabricated using a previously published
protocol (23). Briefly, 100- to 120-μm features (array of two circles
with a diameter of 150 μm, set at 10% overlap; spaced 50 μm apart)
were patterned on silicon wafer molds by ultraviolet exposure (OAI
206 Mask Aligner) of SU8-2050 photoresist (Microchem). Chips
were fabricated by soft lithography from polydimethylsiloxane
(PDMS; Dow Corning Sylgard) and coated with 1.5-μm parylene
C (Paratronix).

StimDrop: Chip operation and cell extraction
Device setup was performed using a previously published protocol
(23) with minor modifications. To minimize technical artifacts
from the workflow, steps involving the handling of live cells were
performed at 4°C. Briefly, 20 μl of each input (either cell suspen-
sions or stimuli) was pipetted into a Bio-Rad QX200 cartridge,
using fluorocarbon oil [3M Novec 7500 + 0.5% (w/w) RAN
Biotech 008-FluoroSurfactant] as the continuous phase. The Bio-
Rad QX200 instrument was used to emulsify inputs into 1-nl drop-
lets. Cells were emulsified at 5 M/ml cell suspensions to achieve an
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average of five cells per droplet. After emulsifying all cell and stim-
ulus suspensions, cell and stimulus droplets were each pooled sep-
arately and then combined to achieve a 1:1 ratio of cells to stimuli.
To prepare for loading, the PDMS chip was mounted on a

custom-designed acrylic loader such that the chip was suspended
~500 μm above a glass slide. The PDMS chip was then washed by
pipetting 5 ml of fluorocarbon oil without surfactant into the flow
space between the chip and glass slide. After draining the oil from
the acrylic loader, 200 μl of the pooled emulsion was injected into
the flow space. The loader was tilted to move the emulsion through
the flow space and allow the aqueous droplets to load onto the mi-
crowells. After loading, the chip was washed 3× with 5 ml of fluo-
rocarbon oil without surfactant to remove excess droplets. The chip
was then carefully removed from the acrylic loader and sealed using
a Microseal B film (Bio-Rad). To merge the pairs of droplets in each
microwell, a sheet of laboratory tissue wiper (Kimtech) was gently
pressed onto the surface of the Microseal B film. The chip was in-
spected using a stereomicroscope to ensure that >95% of droplet
pairs have been merged. The chip was transferred (seal-side
down) to a 10-cm culture dish and submerged in PBS. The dish
was then transferred to a 37°C 5% CO2 incubator for 4 to 6 hours.
After incubation, the chip was removed from the dish and wiped

to remove any excess PBS. The film seal was then gently removed
from the surface of the chip. To extract the cells from the chip,
5 ml of cold medium (RPMI 1640 supplemented with 10% FBS,
Gibco) was pipetted over the chip to dislodge the cell-containing
droplets from the microwells. The runoff containing the cells was
collected in a 25-ml reservoir. This process was repeated until
>90% of the wells have been emptied (confirmed by inspection
under a stereomicroscope). The medium containing cells was
then transferred to a 15-ml tube and spun down at 100g for 1
min to pellet any residual oil. The aqueous layer was then collected
and spun down at 300g for 5 min, and the cell pellet was resuspend-
ed at 1000 cells/μl in cold medium for scRNA-seq.

Flow cytometry and intracellular cytokine staining
The following fluorescent antibodies were used in this study: CD45-
PE (clone 2D1), CD45-FITC (clone 2D1), CD14-FITC (clone
M5E2), CD209-PE (clone DCS-8C1), CD86-PE (clone IT2.2),
CD169-APC (allophycocyanin) (clone 7-239), and CD284-PE
(clone HTA125). After staining, cells were resuspended in fluores-
cence-activated cell sorting (FACS) buffer with 2% CountBright
beads (Invitrogen) and 4′,6-diamidino-2-phenylindole (DAPI)
(0.1 μg/ml) to allow determination of absolute counts and live
cells during analysis. Intracellular staining was performed using a
Cytofix/Cytoperm kit (BD Biosciences), following the manufactur-
er’s protocol. Cells were stained with PE-TNF (clone MAb11, BioL-
egend), AF488-ISG15 (clone 851701, R&D Systems), and AF647-
IL1B (clone JK1B-1, BioLegend) with a 1:100 dilution. Caspase-1
activity in live cells was assessed using the FAM-FLICA Caspase-1
Assay Kit (Immunochemistry Technologies), following the manu-
facturer’s protocol. Flow cytometry data were acquired on Cytoflex
LX (Beckman Coulter) and analyzed using FlowJo v10.1.

Ligand selection
Immune ligands were obtained from InvivoGen and resuspended to
stock solutions as specified by the manufacturer. To determine a set
of prestimulation conditions for the StimDrop experiment, we first
tested 24 different immune ligands at four concentrations (10-fold

dilutions) covering a diverse set of innate immune receptors. We
measured viability, cell counts, expression of CD169 and CD86,
and bulk RNA-seq profiles after 16 hours of incubation with each
condition. We selected the highest concentrations where the mono-
cytes have >85% viability and >40,000 counts and have a significant
change in CD86 or CD169 or have more than 10 differentially ex-
pressed genes when compared with the unstimulated control. For
the StimDrop experiment, three concentrations (either 10-fold or
4-fold dilutions) were selected for each ligand. The conditions
tested and used for the StimDrop experiment are detailed in
table S1.

Custom hashtag antibody conjugation
Oligonucleotides were conjugated to CD45 antibodies (clone HI30,
BioLegend) using the Thunder-Link PLUS Antibody Conjugation
Kit (Novus Biologicals) with minor modifications. Amine-modified
oligos were obtained from Integrated DNA Technologies with the
following sequence: /5AmMC6/GTGACTGGAGTTCA-
GACGTGTGCTCTTCCGATCT-[15 bp barcode]-B[A20]A*A*A.
Oligos were resuspended at 200 μMwithWash Buffer from the con-
jugation kit. Each oligo solution was added 1:1 with an Oligo Acti-
vation Reagent resuspended in Wash Buffer and incubated at room
temperature for 30 min. The Antibody Activation Reagent was re-
suspended directly in 1 mg/ml of the anti-CD45 antibody solution.
Both the activated oligos and antibodies were desalted using Zeba
7KMWCO columns (Thermo Fisher Scientific) and eluted inWash
Buffer. Activated oligos and antibodies were conjugated by incubat-
ing the solutions 1:1 for 1 hour at room temperature. The products
were kept at 4°C and used within 1 month.

Bulk RNA-seq and data analysis
Bulk RNA-seq was performed using Smart-Seq2 (56) with minor
modifications, as described previously (9), using 1000 to 5000
cells as input. All RNA-seq libraries were sequenced with 38 × 38
paired-end reads using NextSeq (Illumina). RNA-seq libraries
were sequenced to a depth of >2 million reads per sample. STAR
was used to align sequencing reads to the UCSC hg19 transcrip-
tome, and RSEM was used to generate an expression matrix for
all samples. Both raw count and transcripts per million data were
analyzed using edgeR and custom Python scripts. Gene set enrich-
ment analysis was performed using enrichR (57).

scRNA-seq and data analysis
scRNA-seq was performed as previously described (8, 9). Cells were
loaded on the Chromium platform using the 3′ v2 profiling chem-
istry (10X Genomics). For StimDrop experiments, gene expression
libraries were enriched for immune transcripts with the Target Hy-
bridization Kit and the Human Immunology Gene Panel (10X Ge-
nomics). Gene expression and hashtag libraries were sequenced to a
depth of ~10,000 and ~2000 reads per cell, respectively, on NextSeq
550 (Illumina). The data were aligned to the GRCh38 reference
genome using cellranger v3.1 (10X Genomics). Single-cell data
analysis was performed using scanpy (58) with the same preprocess-
ing and filtering parameters described in a previous publication (9).
Hashtag assignment and doublet removal were performed using
demuxEM (59) and compared with genotype-based classifications
from souporcell (60), both using default parameters.
cNMF analysis was performed as detailed in a previous publica-

tion (25). Briefly, highly variable genes from the primary StimDrop
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gene expression data were first selected to filter the gene expression
matrix. NMF was then performed with k = 5 to 25 (10 iterations for
each k). The number of modules (k) for downstream analysis was
selected on the basis of biological interpretability of the modules
and stability of the cNMF solution. To ensure that no modules
from technical artifacts were analyzed, only gene programs with
mean usage > 5 across cells were included for further analysis. To
obtain a score for the inflammatory activation gene module in the
corresponding bulk RNA-seq experiment, the average expression of
top 20 genes from the modules was calculated and subtracted by the
average expression of a randomly sampled set of 150 reference
genes (61).

ATAC-seq and data analysis
Assay for transposase-accessible chromain with sequencing (ATAC-
seq) was performed on 50,000 cells as described in a published pro-
tocol (62). Libraries were sequenced on NextSeq (Illumina) with 38
× 38 paired-end reads and at least 10 million reads per sample. Se-
quencing data were aligned using the ENCODE Project ATAC-seq
pipeline (https://encodeproject.org/pages/pipelines/) and further
analyzed using custom scripts. To generate a peak count matrix,
we first identified a consensus peak set using themultiinter function
and analyzed the number of counts for each sample using the func-
tion coverageBed from bedtools v2. Transcription factor activity was
quantified using motif-displacement scores (63, 64). Differential
peak analysis was performed using edgeR, using the peak count
matrix as input. The nearest genes for each were analyzed using
the annotatePeaks function in HOMER v4.1 (65).

Supplementary Materials
This PDF file includes:
Figs. S1 to S10
Legend for table S1
Legends for data files S1 and S2

Other Supplementary Material for this
manuscript includes the following:
Table S1
Data files S1 and S2

View/request a protocol for this paper from Bio-protocol.
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