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Abstract

Background: Separation from mechanical ventilation is a difficult task, whereas conventional predictive indices
have not been proven accurate enough, so far. A few studies have explored changes of breathing pattern
variability for weaning outcome prediction, with conflicting results. In this study, we tried to assess respiratory
complexity during weaning trials, using different non-linear methods derived from theory of complex systems, in a
cohort of surgical critically ill patients.

Results: Thirty two patients were enrolled in the study. There were 22 who passed and 10 who failed a weaning
trial. Tidal volume and mean inspiratory flow were analyzed for 10 minutes during two phases: 1. pressure support
(PS) ventilation (15-20 cm H2O) and 2. weaning trials with PS: 5 cm H2O. Sample entropy (SampEn), detrended
fluctuation analysis (DFA) exponent, fractal dimension (FD) and largest lyapunov exponents (LLE) of the two
respiratory parameters were computed in all patients and during the two phases of PS. Weaning failure patients
exhibited significantly decreased respiratory pattern complexity, reflected in reduced sample entropy and lyapunov
exponents and increased DFA exponents of respiratory flow time series, compared to weaning success subjects
(p < 0.001). In addition, their changes were opposite between the two phases of the weaning trials. A new model
including rapid shallow breathing index (RSBI), its product with airway occlusion pressure at 0.1 sec (P0.1), SampEn
and LLE predicted better weaning outcome compared with RSBI, P0.1 and RSBI* P0.1 (conventional model, R2 =
0.874 vs 0.643, p < 0.001). Areas under the curve were 0.916 vs 0.831, respectively (p < 0.05).

Conclusions: We suggest that complexity analysis of respiratory signals can assess inherent breathing pattern
dynamics and has increased prognostic impact upon weaning outcome in surgical patients.

Background
Several indices have been studied for estimation of
weaning readiness [1-4]. However, their prognostic value
has demonstrated modest accuracy so far, whereas two
consensus conferences on weaning did not recommend
their routine application in clinical practice and pro-
posed decision-making based on clinical criteria of
improvement [3,5].
Recognition that physiologic time series contain hidden

information related to an extraordinary complexity that
characterizes physiologic systems, has led to the

investigation of new techniques from statistical physics
for the study of living organisms [6]. Through those tech-
niques different ‘physiomarkers’ can be estimated, which
include variability and complexity indices of different
biological signals. Only a few studies have explored
indices derived from breathing pattern variability analysis
for the estimation of weaning readiness [7-10]. However,
different weaning protocols were implemented in hetero-
geneous groups of patients, using only one and different
from each other method for the assessment of breathing
dynamics, with conflicting results.
In particular, one study that included medical patients

found increased variability and complexity of various
ventilatory parameters in those with weaning failure.
Two other studies recruited subjects who underwent
cardiac and abdominal surgery and found contradictory
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results in terms of respiratory complexity during wean-
ing trials. Finally, another research group studied a
mixed group of patients and showed increased respira-
tory variability in those who managed to separate from
the ventilator. In conclusion, none of the above studies
used a combination of different methods for the assess-
ment of complex dynamics of respiratory signals; some-
thing that could have increased diagnostic accuracy of
such approach.
Variability analysis is not only observing over a longer

period of time but much more watching from a different
perspective (i.e., how much and why the values are deriv-
ing from the mean) [11]. Moreover, it can provide con-
tinuous and real time information at any point of the
different weaning phases. Coefficients of variation (CVs),
spectral and autocorrelation analyses of different respira-
tory signals are called linear methods and have been
implemented for assessing breathing pattern variability
and predicting weaning readiness in different groups of
mechanically ventilated patients. However, their applica-
tion supposes stationary time series behaviour, meaning
stability of statistical properties of signals along time [11].
Furthermore, they present insensitivity to the orderliness
of data and lack the ability of describing system inherent
dynamics. For instance, a time series can be very variable
but not very complex (oscillation). Conversely, a time
series can be less variable but highly complex. For the
above reasons, nonlinear methods may better describe
nonstationary and nonlinear (continuous and often
unpredictable cross-talk between systems’ components)
properties of a signal [6,11,12].
In the present study and contrary to those that were

mentioned previously, we tried to investigate respiratory
pattern dynamics using a ‘toolkit’ of nonlinear methods,
in a homogeneous group of surgical critically ill patients
during weaning from mechanical ventilation. We wanted
to test the hypothesis that reduced respiratory complex-
ity might discriminate weaning failure or success groups.
In addition, we examined whether these domains of
measurements and their change during weaning trials
can predict weaning outcome and therefore identify a
unique value of such analysis.

Methods
Setting and studying population
This study was performed in a mixed 12-bed Intensive
Care Unit (ICU) in the University hospital of Alexan-
droupolis, Greece, after approval by local Scientific and
Ethics Committee. A total of 32 consecutive patients
admitted to the ICU from September 2009 to February
2010 who underwent major abdominal surgery [sched-
uled 18 (56%), urgent 14 (44%)], with a mean Acute
Physiology and Chronic Health Evaluation (APACHE) II
score upon admission 18.3 (standard deviation: 6.7),

were enrolled. There were 25 men and 7 women, with a
mean age of 66.4 (SD: 7.9) years.
The whole studying population was divided into suc-

cessful (S, n = 22) and unsuccessful (U, n = 10) groups
according to the weaning outcome. Briefly, the two
groups included those who were successfully or unsuc-
cessfully extubated and remained free from invasive or
non-invasive ventilation for over 48 hours, respectively.
All patients enrolled in the study received mechanical
ventilation (model Evita 2 Dura, Dräger, Germany) for
at least 48 hours and when they met the recommended
weaning criteria [3], they underwent their first sponta-
neous breathing trial (SBT) using low pressure support
ventilation (PSV) [4]. Those with cardiac arrhythmias,
neurological diseases or pre-medication with cardio-
vascular drugs were excluded from the study. More-
over, none from our patients suffered from chronic
obstructive pulmonary disease (COPD), minimizing
possible effects of chronic hypercapnia on the respira-
tory centers control.

Weaning protocol
All patients were under synchronized intermittent
mechanical ventilation (SIMV) before the weaning trials,
whereas none of them required administration of neuro-
muscular blocking agents. Patients were ventilated with
pressure support (PS) mode for 30 minutes, whereas the
pressure level setting was between 15 and 20 cm H2O to
maintain a tidal volume (VT) of approximately 8-10 ml/
Kg (stage 1, high support-H). Positive end-expiratory
pressure (PEEP) was 5 cm H2O, fraction of inspired oxy-
gen concentration was 40% and pressure triggering sensi-
tivity was set on -2 cm H2O. Sedatives and opioid
analgesics were discontinued in all patients, 24 hours
prior to the study, whereas non-steroid anti-inflamma-
tory agents were used occasionally as pain relievers. At
the end of this stage, minute ventilation (MV), respira-
tory rate (RR), VT, heart rate (HR) and blood gases were
measured in all patients and since they met the weaning
criteria, the ventilator mode was switched to 5 cm H2O
PS plus 5 cm H2O PEEP and the other settings remained
the same (stage 2, low support-L) for other 30 minutes.
When patients completed the 30-min SBT with low PS
they were either extubated and considered as weaning
success group or were reconnected to the ventilator and
considered as weaning failure group (2 of them required
reinstitution of mechanical ventilation within 24 hours
after extubation and 8 after the performance of weaning
trials) [3]. All subjects were kept in semisitting position
and left undisturbed throughout the study.

Respiratory signals acquisition
Data on tidal volume, respiratory rate, minute ventila-
tion and instantaneous ventilatory flow were extracted
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from the ventilator via a RS232 interface connected to a
computer with a Medibus cable, using the software
VentViewR 2.n (Dräger Medical AG & Co, Lübeck,
Germany). The signals were not filtered. They were
digitized at a 100-Hz sampling rate (PowerLab/4SP,
ADInstruments, Castle Hill, Australia), recorded and
subsequently analyzed in an HP Pavilion 6181, 2GHz
PC. Because oversampling can introduce co-linearities in
the signals, the data were subsampled at 5 Hz. Within
each 30-min interval and after 10 minutes in each stage
(H & L), a stable 10 min time series of VT and mean
inspiratory flow (VT/inspiratory time ratio) that was
artefact free was calculated, on a breath-to-breath basis
after digital integration of the flow signal. Moreover,
episodes of tracheal suctioning, sights or cough were
event-marked by the principal investigator and subse-
quently removed from the respiratory time series, before
analysis. Rapid shallow breathing index (RSBI, breaths/
min/lt), airway occlusion pressure at 0.1 sec (P0.1,

cmH2O) and their product (RSBI*P0.1) were also calcu-
lated during SBT [13,14]. Respiratory signals were ana-
lyzed off-line by someone blind to weaning trials
outcome, according to open-source software from the
website http://www.physionet.org, using a computer
package (Matlab V.6.5, R13, MathWorks Inc, Natick,
MA, USA) [12].

Time series analysis
Detrended fluctuation analysis (DFA)
DFA quantifies intrinsic fractal-like (self-similar) correla-
tion properties of dynamic systems, whose basic features
is scale invariance, meaning that the same features
repeat themselves on different measurement scales
[6,12]. The mean inspiratory flow and VT interval data
after integration were divided into windows of the same
size n and subsequently, analysed in relation to a local
trend in each window. This procedure was repeated for
all different windows. The variability is depicted on a
log-log scale as a function of different sizes of windows
in a form of linear slope (or self-similar parameter) and
characterises the fractal-like correlation properties of the
signal. DFA permits the detection of long-range correla-
tions within a time series and has already been applied
for assessing fractal properties in highly complex cardio-
vascular signals [12,15]. Values higher than 1 and
towards 1.5 tend to reflect a more periodic and predict-
able in its evolution time series whereas values lower
than 1 and approaching 0.5 characterize a random-like
process. For DFA estimation, we used available software
from physionet (http://www.physionet.org).

Sample Entropy (SampEn)
Approximate entropy (ApEn) was introduced by Pincus
as a quantification of regularity in data and compares

each group of consecutive measurements over a prede-
fined time window to every other group of measure-
ments of the same time length. ApEn is a measure of
the likelihood that patterns recur over specified time
intervals. Regular signals are expected to have low
ApEn, while complex ones take on higher ApEn values
[16,17]. Due to ApEn’s dependence on the record length
an alternative statistic named sample entropy (SampEn)
was introduced by Richmann and Moorman [18] with
the benefit of reduced computational load.
Sample entropy that represents the negative natural

logarithm of the conditional probability that two
sequences similar for m points remain similar at the
next point with a tolerance r, where self-matches are
not included [18], was calculated for flow and VT time
series. For entropy analysis, different values of para-
meters (m, r, N) are used for calculations. The N is the
length of the time series. The parameter r that is the
tolerance for accepting matches, is set between 15-25%
of standard deviation (SD) of the time series, after nor-
malization (SD = 1). The parameter m (embedding
dimension) is the length of sequences to be compared
and its values vary between 1 and 2 for data length ran-
ging from 100 to 5000 data points [16]. In our analysis,
we computed SampEn assigning the values of 2 for m
and 0.15 for r, according to criteria published elsewhere,
in order to minimize the maximum of the relative errors
of SampEn and of the conditional probability estimate
[19], using software available from physionet (http://
www.physionet.org).

Fractal dimension (FD)
The fractal dimension is another method of quantifying
fractal properties of a time series. In this study, FD was
estimated in Matlab by use of Higuchi method, which
seems to provide more accurate results and incorporates
a fast algorithm that requires only short time intervals
[20]. FD is based on a measure of length L(k) of a time
series, computed at different scales, by using a segment
of k samples as a unit in each scale. The value of FD is
calculated by a least-squares linear best-fitting procedure
as the angular coefficient of the linear regression of the
log-log graph of the mean of k values Lm(k) for m =
1,2,3...k, with k being an interval time. The length Lm(k)
originating from time m is calculated as the normalized
sum of absolute differences between the values of point
pairs that are ‘k samples distant’ and the length of curve
of the time interval k, L(k) is calculated as the mean of
the k values Lm(k). If the L(k) relates to the scale used
(k) linearly in a log-log plot with slope FD, then the
curve is said to show fractal dimension. High FD values
reflect a high irregularity of the time series and an esti-
mate of the scale-independent complexity of the under-
lying system (over space or time).
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Largest Lyapunov exponents (LLE )
Complex systems are considered sensitive to initial con-
ditions and exhibit an exponential divergence in the
phase space, which describes in a 3-dimensional axis
their different states. Estimation of Lyapunov spectrum
and largest Lyapunov exponents (LLE) can assess sensi-
tivity to initial conditions. Briefly, if we consider two
points in adjacent trajectories-states of the phase space
with a distance between them d(0), after time t the aver-
age divergence (separation) will be:

d t d 0 eLLE i t( ) = ( ) * *( )Δ (1)

whereas LLE is the largest Lyapunov exponent. In this
study, we computed LLE of mean inspiratory flow and
tidal volume signals, using the algorithm proposed by
Rosenstein in Matlab, which seems to be useful, particu-
larly in small data sets [21]. Values higher than 0 reflect
an unstable and unpredictable system, where nearby
points will diverge to any arbitrary separation. Increased
LLEs reflect increased sensitivity to initial conditions
and characterize unpredictable variations, whereas low
values indicate regularity [21].
Finally, three-dimensional distributions of different

respiratory signals and phase spaces of mean inspiratory
flow and MV, which describe all the possible states (tra-
jectories) of a system, were determined. Briefly, different
values of x(i) were plotted against the following ones in
tree-dimensional axes: x, x+t and x+2t in Matlab, giving
rise to the phase portrait of the signal. This graph is a
complicated set of nonrepeating patterns in case of
complex systems, whereas in periodic ones resemble a
simple closed loop.

Statistical analysis
Data are presented as median values with 10th and 90th

percentiles. Weaning success (S) and failure groups (U)
were compared with the nonparametric Mann-Whitney
test for continuous variables and the chi-square test for
dichotomous variables, whereas different respiratory
complexity indices over the 2 phases of PSV were com-
pared with a Wilcoxon paired test. Spearman’s r was
computed for estimating relationships between all vari-
ables before and after the SBT and duration of ventila-
tion. A stepwise multiple regression analysis was
performed in order to test whether new indices add
prognostic value to existing ones and finally, for building
a new prognostic model. Moreover, for assessing prog-
nostic accuracy upon weaning outcome of conventional
(or model 1 that included RSBI, P0.1 and RSBI* P0.1) ver-
sus new studied indices, a 40-fold cross validation pro-
cedure was followed to assess each model’s efficiency,
using available software from Matlab. In each try, 75%
of the dataset was chosen as training set and the

remaining 25% as testing set. The regression model was
trained with the training set to separate between the
two classes. Bootstrapping (500 times) was applied in
each try, to ensure more robust estimation of regression
parameters, due to small sample size. The bootstrapping
procedure involves the repetition of the experiment,
each time with a slightly variant dataset produced by
the replacement of a dataset sample with another exist-
ing one. A distribution is produced for each estimated
variable, and the mean value is then used as a robust
estimator of the variable in focuses, in this case the
regression parameters. In each try, the area under the
curve (AUC) and standard error were calculated, along
with the best threshold for class separation, and the best
sensitivity-specificity pair (in terms of receiver operating
characteristic curve-ROC) [22]. All other tests were per-
formed with SPSS Software Version 13.0 (SPSS Inc, Chi-
cago III), whereas values of p < 0.05 were considered to
be significant.

Results
The respiratory parameters, blood gases and demo-
graphic data did not differ between the 2 groups before
the performance of the weaning trials (Table 1). In addi-
tion, mean APACHE II score upon admission and dura-
tion of ventilation before the start of SBTs were
significantly higher in group U than in group S. Heart
and respiratory rate at the end of SBT (phase L) in
group U was significantly increased compared with
group S [118 (83-132) vs 98 (78-113) and 35 (28-43) vs
28 (22-35), p < 0.001, respectively]. In both groups, HR
and RR between the two phases showed significant
increase. Correlations between all complexity indices
with duration of ventilation were found to be
insignificant.
Figures 1 &2 demonstrate the three-dimensional dis-

tribution of MV, RR and VT in a weaning success and
failure patient, respectively. Dispersion of data seems
decreased in the second compared with the first graph,
reflecting reduced variability of measured parameters.
Similarly, figures 3-6 represent the phase space of flow
and minute ventilation in two patients with different
weaning outcome. In the weaning failure subject (figures
4 and 6) scattering of data seems reduced with limited
number of trajectories, indicating relatively simple geo-
metric patterns with more regular shapes.
DFA exponent of inspiratory flow exhibited inverse

changes between and within groups. It increased
between the 2 weaning phases (after performing an
SBT) in group U [1.08 (0.94-1.25) vs 0.75 (0.63-1.05),
p < 0.001] and decreased in group S [0.81 (0.72-0.95) vs
0.94 (0.75-1.12), p < 0.05], whereas at the end of the
SBT, group S showed significantly decreased DFA expo-
nent compared with group U (0.81 vs 1.08, p < 0.001).
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Figure 1 Three-dimensional distribution of different respiratory signals in a weaning success patient. Three-dimensional distribution of
minute ventilation (MV, lt/min), tidal volume (VT, ml) and respiratory rate (RR, breaths/min) of a weaning success patient. Red dots represent data
during high PS ventilation, whereas blue dots represent data during the performance of a SBT. Graphics were created in Matlab.

Table 1 Respiratory data of the whole study population

Variables Successful group (S) Unsuccessful group (U) p value

(n = 22) (n = 10)

Minute ventilation (MV), L 12.33 (11.21-16.74) 12.95 (11.78-13.2) NS

RR (respiratory rate) breaths/min 16 (15-18) 17 (15-19) NS

HR (heart rate) beats/min 82 (77-86) 83 (82-90) NS

Tidal volume (VT ) ml 676.2 (543.4-742.2) 665 (583.4-834.8) NS

pH 7.41 (7.37-7.46) 7.39 (7.37-7.44) NS

PaCO2 mmHg 41.23 (36.2-45.6) 42.65 (38.3-46.8) NS2aCOl
PaO2 mmHg 132.3 (98.4-156.7) 131.84 (94.84-148.2) NS

Male/female (Number) 17/5 8/2 <0.05

Age (years) 65.7 (58-72.3) 67.56 (56.2-74.45) NS

APACHE II score 16.4 (13.23-19.34) 21.26 (18.76-24.7) <0.05

Weight (Kg) 76.75 (64.3-82.54) 75.84 (63.2-87.2) NS

Time of ventilatory support before

weaning trial (hours) 133.6 (112.5-157.3) 175.6 (142.6-214.2) <0.05

Respiratory parameters, blood gases and demographic features of the whole study population (n = 32), according to weaning outcome, measured before
weaning trials. Data are presented as median (10%-90% percentiles).
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Same trends were also observed for the tidal volume
time series but did not reach statistical significance
(Table 2, Figure 7).
Inverse changes were found in SampEn values of both

studied respiratory signals, compared to DFA findings,
between and within groups. Thus, decreased entropy
values of the inspiratory flow time series were exhibited
in weaning failure patients after transition from high to
low pressure support ventilation [0.88 (0.65-1.21) vs
1.18 (0.85-1.37), p < 0.001] and increased values in those
who separated successfully from the ventilator [1.26
(0.87-1.46) vs 0.82 (0.7-1.1), p < 0.001]. Accordingly,

patients from group U manifested reduced entropy
values at the end of the SBT compared with those
from group S (0.88 vs 1.26, p < 0.001). Entropy values
of tidal volume were also found to change similarly
with those of respiratory flow [0.79 (0.64-0.92) vs 1.34
(0.88-1.65) for group U and 1.27 (0.86-1.44) vs 0.78
(0.65-0.92) for group S, p < 0.001, respectively, Table 2,
Figure 7].
Fractal dimension of both ventilatory signals did not

differ significantly between and within groups; however,
its values were found to increase at the end of SBT in
group S, compared with group U [1.33 (1.25-1.47) vs

Figure 2 Three-dimensional distribution of different respiratory signals in a weaning failure patient. Three-dimensional distribution of
MV, VT and RR of a weaning failure patient. Red dots represent data during high PS ventilation, whereas blue dots represent data during the
performance of a SBT. Dispersion of data seems decreased compared with figure 1, reflecting reduced variability of measured parameters.
Moreover, respiratory values are positioned in different parts of the space.
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1.31 (1.20-1.45) for flow and 1.40 (1.3-1.52) vs 1.38
(1.22-1.49) for VT].
Finally, the same trends of change were observed in

largest lyapunov exponents of both studied respiratory
signals in weaning success and failure patients. LLE of
inspiratory flow increased in group S from phase H to
phase L [0.76 (0.48-1.11) vs 0.43 (0.23-0.68), p < 0.001]
and decreased respectively in group U [0.27 (0.09-0.42)
vs 0.65 (0.34-1.04), p < 0.001]. Similar changes but with-
out statistical significance were found in tidal volume
signals (Table 2, Figure 7).
Conventional weaning predictors exhibited also signifi-

cant differences between groups S and U. RSBI, P0.1 and
their product RSBI* P0.1 were significantly increased in
subjects who failed a SBT [112.2 (85-143) vs 97.8
(73-116), 1.73 (1.45-1.98) vs 1.48 (1.32-1.86) and 175.25

(134.43-210.3) vs 102.32 (97.84-145.2) respectively, p <
0.005 for all comparisons].
Stepwise multiple regression analysis demonstrated

that RSBI and its product with P0.1 were the only con-
ventional variables from model 1 that predicted success-
fully weaning outcome. Moreover, the combination of
RSBI, RSBI* P0.1, SampEn and LLE of inspiratory flow
(model 2) was found to be more accurate compared to
model 1 [R2 = 0.874 with standard error (SE) = 0.215
versus 0.643 with SE = 0.332, p < 0.001, respectively].
The same variables of model 2 according to regression
analysis were also selected from the cross-validation
analysis as the most accurate and robust predictors of
outcome of interest, compared with RSBI and RSBI* P0.1
with significantly different values of AUCs (Table 3,
Figure 8).

Figure 3 Phase space of mean inspiratory flow in a weaning success patient. Different values x(i) of ventilatory flow were plotted against
the following ones in tree-dimensional axes: x, x+t, x+2t in Matlab, giving rise to the phase space. Red dots represent data during high PS
ventilation, whereas blue dots represent data during the performance of a SBT.
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Discussion
A considerable body of data suggests that healthy indivi-
duals exhibit breath-to-breath variability of breath com-
ponents in a breath series [23,24]. Breath-to-breath
variations have been traditionally treated as random
uncorrelated white noise superimposed on the output of
the respiratory controller [24,25]. According to Tobin,
the random fraction aids respiratory system to perform
tasks other than gas exchange, such as speaking [26].
Only simple statistics such as mean, variance and coeffi-
cient of variation can estimate random variational frac-
tion after averaging over many breathing cycles. Since
variability in complex living systems is not only an arte-
fact of biological noise but also an intrinsic property of
various control mechanisms, different types of determi-
nistic (non-random) variability have been described in
the pattern of breathing [27-29].
Neurons in the brain stem govern respiratory rhythm

through a network of coupled oscillators. Critical

components of this network are located in a specialised
region of the brain stem called the pre-Botzinger complex
(pre-BotC) [30]. Del Negro and colleagues showed that
progressively elevating neuronal excitability of the pre-
BotC of neonatal rats in vitro causes periodic modulation
of the inspiratory rhythm, characterised by periodic oscil-
lations, quasiperiodicity and ultimately disorganised aper-
iodic activity [31]. In another experimental study with
anesthetised adult cat models, Chen et al found that both
focal hypoxia and chemical stimulation of pre-BotC can
produce a marked excitation of phasic phrenic nerve dis-
charge, characterized by reduced complexity, estimated
with approximate entropy (low ApEn values) [32]. The
above studies support the hypothesis that central respira-
tory centers are responsible for different breathing pat-
terns with various degrees of variability and complexity in
different settings and levels of stimulation. In addition,
they can also adapt ventilation to metabolic needs through
integration of afferent information.

Figure 4 Phase space of mean inspiratory flow in a weaning failure patient. Red dots represent data during high PS ventilation, whereas
blue dots represent data during the performance of a SBT. Scattering of data seems reduced, compared with findings in figure 3, reflecting
decreased variability of the measured parameter. Moreover, flow values are positioned in different parts of the space.
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Apart from chemoreceptor signalling, chest wall and
pulmonary receptors may continuously affect central
neural output, especially during resistive breathing
[33,34]. Brack and Tobin measured breathing variability
using CVs and autocorrelation analysis, over one hour
in ten patients with restrictive lung disease and in seven
healthy subjects. They found that variability of inspira-
tory time (Ti), expiratory time (Te) and VT, were signifi-
cantly reduced in the patients group compared with the
healthy group [26].
Several approaches have been used for the study of

respiratory complexity. Donaldson in 8 adults during rest-
ing breathing found that different respiratory parameters
were characterized by positive lyapunov exponents [35].

Increased respiratory approximate entropy and lyapunov
exponents have been reported in patients with panic disor-
ders [36], whereas Akey and colleagues described a reduc-
tion in respiratory ApEn upon a hypoxic insult to the
brain [37]. Peng who introduced the DFA algorithm for
the study of noisy and nonstationary biological signals
found that breathing intervals’ DFA exponents were signif-
icantly decreased in elderly compared to young adults [38].
Finally, hypercapnia has been found to decrease complex-
ity but increase largest lyapunov exponents of different
respiratory time series [39].
Implementation of different mathematical tools

derived from signal processing techniques for analyzing
heart rate and respiratory pattern variability has been

Figure 5 Phase space of minute ventilation in a weaning success patient. Different values x(i) of minute ventilation (MV) were plotted
against the following ones in tree-dimensional axes: x, x+t, x+2t in Matlab, giving rise to the phase space. Red dots represent data during high
PS ventilation, whereas blue dots represent data during the performance of a SBT.
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shown to provide prognostic information in the assess-
ment of weaning readiness [40,7-10]. Engoren studied
10 control patients who had undergone cardiac surgery
and 21 patients who required prolonged (> 7 days) ven-
tilatory support and found increased ApEn values of
tidal volume in weaning failure subjects [7]. However
and according to a study from Caminal, an inverse rela-
tion between the level of pressure support and the CVs
of different ventilatory parameters has been established,
supporting the view that unloading of respiratory
muscles is associated with increased breathing pattern
variability, at least in weaning success patients [41].
El-Khatib assessed 52 patients with various disorders
during a continuous positive airway pressure (CPAP)
trial of 5 cm H2O for 60 minutes and found that the

CVs, the Kolmogorov-Sinai entropy (sum of largest lya-
punov exponents) and the correlation dimension (mea-
sure of fractal-like properties) of tidal volume and
airway flow were all significantly smaller in the success-
fully weaning group compared with the failure weaning
group [8]. On the contrary, Bien and Wysocki reported
decreased variability of different ventilatory parameters
in weaning failure patients [9,10]. However, they did not
perform non-linear analysis of respiratory time series for
assessing breathing complexity. In another interesting
study, Vallverdu and colleagues examined heart rate and
respiratory pattern complexity in 78 patients during
weaning trials using information flow analysis, which
describes the regularity of signals by estimating the
auto- and mutual information functions. The authors

Figure 6 Phase space of minute ventilation in a weaning failure patient. Red dots represent data during high PS ventilation, whereas blue
dots represent data during the performance of a SBT. Scattering of data seem highly reduced, compared with findings in figure 5, whereas
ventilation values are positioned in different parts of the space.
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Table 2 Differences of complexity indices between patient subgroups

Parameter Median 95% CI Range p value

(SE) (Lower-upper bounds) (10-90% percentiles)

Sample entropy of flow

S 1.26 (0.035) 1.16-1.32 0.87-1.46 < 0.001

U 0.88 (0.027) 0.77-0.94 0.65-1.21

Sample entropy of VT
S 1.27 (0.075) 0.89-1.47 0.86-1.44 < 0.001

U 0.79 (0.029) 0.54-1.13 0.64-1.92

DFA exponent of flow

S 0.81 (0.034) 0.43-1.35 0.72-0.95 < 0.001

U 1.08 (0.05) 0.76-1.13 0.94-1.25

Largest Lyapunov exponent of flow

S 0.76 (0.045) 0.56-1.22 0.48-1.11 < 0.001

U 0.27 (0.014) 0.14-0.55 0.09-0.42

Statistical significant differences of various complexity indices derived from mean inspiratory flow and tidal volume (VT) time series analysis, between weaning
success (S, n = 22) and weaning failure (U, n = 10) patients. Variables are those that correspond to metrics at the end of the SBT and are presented as median
with standard error (SE), along with 95% confidence intervals (CI).

Figure 7 Box plot of different measured complexity indices. Box plot of sample entropy (SampEn), DFA and largest lyapunov (LLE)
exponents’ mean values of mean inspiratory flow time series from patients with different weaning outcome. These metrics were found to differ
significantly between weaning success and failure subjects.
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were able to find reduced complexity and a more
coupled nonlinear oscillator behavior in weaning failure
subjects [42].
To our knowledge, this is the first study in medical lit-

erature that applied a ‘toolkit’ of nonlinear methods in
respiratory signals for estimating weaning outcome, in a
cohort of surgical patients. In a recently published study
that included a similar group of patients and implemen-
ted the same weaning protocol, we found reduced com-
plexity and coupling of heart and respiratory rate signals
derived from bedside monitors and estimated with DFA
and different entropy metrics, in subjects who failed to
separate from the ventilator [43]. However, since
description of ventilatory complexity requires the assess-
ment of both predictability (entropy) and sensitivity to
initial conditions (Lyapunov exponents) of continuous
oscillatory signals (flow) and time series of discrete
values [24], we decided to apply these methods to differ-
ent respiratory signals derived from the ventilator. In
addition, we tried to assess their scale-invariant proper-
ties by computing the fractal dimension. Finally, we
applied the DFA algorithm for quantifying fractal prop-
erties of respiratory signals through the estimation of
long-range correlations, which contrary to fractal
dimension, is more suitable for analyzing non-stationary
short time series. In conclusion, we assumed that the
implementation of different methods for the mathemati-
cal description of respiratory complex dynamics that
was not performed in our previous report (except for
sample entropy), could add significant value in such
analysis, in case of significant differences between
patients with different outcome of interest. We used the
same weaning protocol as Bien, who examined a sample
of 78 patients with systemic inflammatory response syn-
drome (SIRS) [9].
All indices of respiratory complexity were found to

exhibit inverse changes between weaning failure and
success groups. After the performance of a SBT,
increased unloading of the respiratory system was asso-
ciated with increased breathing complexity in subjects
who managed to liberate from the ventilator (figures 1-6),

since lower values of DFA exponent and higher values of
LLE and SampEn of inspiratory flow were found (figure 7).
These results indicate reduced long-range correlations,
increased sensitivity to initial conditions and augmented
irregularity of flow. Tidal volume signals exhibited similar
changes in DFA and LLE without reaching statistical sig-
nificance, whereas fractal dimension of both signals
increased insignificantly in the weaning success group. In
conclusion, our findings support the hypothesis that
increased ventilatory randomness was associated with
weaning success and proved to be more reliable in discri-
minating patients with different weaning outcome in rela-
tion with conventional indices (figure 8). Moreover,
ventilatory complexity must be estimated with a combina-
tion of nonlinear techniques, since respiratory time series
are often very noisy and highly nonstationary, compared
with cardiovascular signals [38,43].
These results parallel those from Schmidt and collea-

gues who reported increased LLE and Kolmogorov-Sinai
entropy values of mean inspiratory flow signals in
mechanically ventilated patients, after switching the ven-
tilator from the pressure support mode to neurally
adjusted ventilatory assist mode (NAVA) [44]. Accord-
ing to these authors, successful spontaneous breathing
trials unmask underlying variability and complexity of
central neural output, since inspiratory pressure inhibits
the respiratory drive. This effect is nicely reflected
through the increased complexity indices of flow and is
responsible for better neuro-mechanical coupling.
In another study, Mangin and colleagues investigated

ventilatory chaotic dynamics in 17 mechanically ventilated
patients during switching the ventilator from the assist-
control mode to pressure support mode [45]. They were
able to show that both fractal dimension and LLE were
increased, particularly in 5 patients who were successfully
extubated. Furthermore, the authors supposed that
increased breathing complexity may also be attributed to
higher vagal afferent feedback during unassisted breathing,
as has already been shown by Sammon and Bruce [46].
These studies support our findings that transition

between mechanical and spontaneous ventilation is

Table 3 Cross-validation and ROC curve analysis of the two predictive models

Models AUC (SE) Threshold AUC Specificity Sensitivity

95% CI

Model 1 0.831 (0.14) 0.402 0.73-0.92 0.895 0.858

(RSBI, P0.1 and RSBI* P0.1)

Model 2 0.916 (0.006) 0.296 0.76-0.98 0.967 0.886

(RSBI, RSBI* P0.1, SampEn, LLE)

Mean values of areas under the curve (AUC) with standard errors (SE), 95% confidence intervals (CI) and best threshold among regression coefficients that
managed to classify groups with different weaning outcome with the best combined sensitivity and specificity, were computed in Matlab. Three indices (RSBI,
P0.1 and RSBI* P0.1) were included in the model 1 and four indices (RSBI, RSBI* P0.1, SampEn and largest lyapunov exponents of mean inspiratory flow time series)
were selected in model 2 respectively, which was proven to discriminate more accurately patients with different weaning outcome.
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associated with increased complexity of respiratory signals
in weaning success patients, since duration of ventilation
before the SBTs was similar between groups with different
weaning outcome. Moreover, in a study of Burykin and
Buchman investigating cardiorespiratory dynamics and
synchronization during controlled and unassisted breath-
ing in 13 surgical patients, it was demonstrated that
mechanical ventilation reduces significantly both heart and
respiratory rate complexity whereas spontaneous respira-
tion is more irregular with increased uncoupling of cardi-
orespiratory rhythms in weaning success patients [47].
Higher variability and complexity of breathing pattern

during controlled ventilatory support has been found to
ameliorate oxygenation. In an oleic acid injury animal
model, Mutch introduced fluctuations according to an
algorithm, to mechanical respiration and found increased
respiratory arrhythmia and oxygenation and decreased
dead space compared with conventional ventilation (with
similar MV) [48]. According to Suki, when fluctuations
in the form of symmetrically distributed random noise is
added to peak airway pressures, the mean does not
change but isolated values can be augmented, leading to
significant alveolar recruitment [49]. Moreover, low
respiratory variability during both controlled and unas-
sisted breathing could deteriorate respiratory mechanics
by promoting microatelectasis [10].
Reduced respiratory complexity of flow signals in group

U related to group S and between the two phases of PS
within weaning failure patients might also reflect loss of
effective control mechanisms that govern respiratory

rhythms through a network of coupled oscillators [50]. It
seems that increased respiratory load reduces complexity
of central oscillator output, as it has been suggested from
the different studies discussed so far. Moreover, Preas in
a clinical study estimating endotoxin effect upon respira-
tory variability and complexity found a decrease in RR
random variability in patients with restrictive lung dis-
eases, a similar pattern of change with Tobin’s study [26]
and attributed dyspnoea to the endotoxin effect upon
brain stem neurons [51]. In our study, the majority of
weaning failure patients exhibited dyspnoea and rapid
shallow breathing, whereas most of them had high
APACHE II scores upon admission. Their characteristics
parallel those of the Bien’s study, implying the possible
presence of SIRS during the weaning trials.
Furthermore, we assume that the observed significant

results in different complexity properties for inspiratory
flow and not for tidal volume in weaning failure patients
could also be attributed to the decreased random varia-
bility of RR, which was found in Preas and Tobin’s stu-
dies. According to Bruce, any respiratory activity includes
variability of different types, such as random correlated
and uncorrelated, periodic and nonlinear deterministic
[24]. Alterations in the random fraction, although not
measured in our study, could affect the reliable mathe-
matical description of the non-random one, something
that might limit the relevance of these results [24].
For that reason, different techniques, such as the noise

titration method, have been implemented for detecting
chaotic dynamics [45,52]. However, in this study we did
not adopt this technique, since our aim was not to
detect the existence of ventilatory chaos but to investi-
gate possible alterations in respiratory dynamics after a
specific intervention (SBT). Moreover, we recruited a
homogeneous group of patients and it is reasonable to
assume that there were no intersubject variations at the
level of noise.
Our study suffers several other limitations due to small

sample size, which could increase false negative results
and be responsible for lack of statistical significance in
different non-linear properties of ventilatory signals. In
addition, implementation of sophisticated mathematical
techniques remains a challenge for average physicians,
whereas their standardization is urgently needed, since
there is a lack of guidelines for parameter choice and bias
to low values, in some cases. Concerning methodological
issues, non-linear characterization methods are extremely
sensitive to noise and biased when applied to short data
sets [24,28]. Another important issue concerns non-filter-
ing of signals, since it has been proven that using filters
can distort the characterization of non-linearities [53].
Finally, using low sampling frequency avoids introduction
of linearities within the time series, which has been found
to occur during oversampling [53].

Figure 8 Receiver operating characteristic curves (ROC) of the
two predictive models. Receiver operating characteristic curves
(ROC) of the two models, which were tested for accurately
predicting weaning outcome. Model 2 (including RSBI, RSBI* P0.1,
SampEn and LLE of mean inspiratory flow) performed better,
compared with model 1 of conventional indices (RSBI, P0.1 and
RSBI* P0.1).
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In conclusion and despite the fact that inspiratory flow
and VT time series preserved their fractal-like properties,
weaning failure patients exhibited reduced breathing pat-
tern complexity during weaning trials, compared with
subjects who were successfully separated from the venti-
lator. Increased respiratory load due to unresolved
inflammatory response could be responsible for reducing
effective neuro-mechanical coupling. The fact that multi-
plying the methods and studied parameters did not
increase the chance of getting significant results for both
flow and tidal volume could be associated with inherent
limitations of such methods applied to short and highly
noisy time series, patient characteristics or possible pre-
sence of unknown covariates. For that reason and based
on findings form this and our previous study, we believe
that a multimodal monitoring using in addition, both car-
diovascular and electroencephalographic signals might
increase diagnostic accuracy of such approach. Further-
more, the implementation of other methods such as
information flow could be more suitable for studying the
highly noisy and nonstationary ventilatory signals. Finally,
a comparison between nonlinear properties of heart and
different respiratory time series for predicting weaning
outcome could shed more light into complex cardiore-
spiratory interactions during weaning trials.

Conclusions
Complexity analysis must incorporate many methods
that capture different properties of respiratory dynamics.
However, we suggest that non-linear analysis of respira-
tory time during weaning trials might suffer some lim-
itations despite increased diagnostic accuracy compared
with conventional weaning indices. A multimodal moni-
toring of different biosignals derived from both the car-
diovascular and respiratory system could increase the
value of such methods. Sequential characterization of
complex system’s complexity could also provide a moni-
toring tool during weaning trials, at least in surgical
patients. The perspective of adopting such techniques as
descriptors of the effects of an intervention (SBT) may
enhance effectiveness of early extubation. Nevertheless,
these findings cannot yield information about weaning
prediction in different groups of patients. More studies
are needed for the estimation of their value in other
sub-group categories, and for the quantitative assess-
ment of changes during different weaning protocols.
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