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SUMMARY

Chimeric antigen receptors (CARs) are engineered receptors that mediate T cell activation. CARs are

comprised of activating and co-stimulatory intracellular signaling domains derived from endogenous

T cells that initiate signaling required for T cell activation, including ERK activation through theMAPK

pathway. Understanding the mechanisms by which co-stimulatory domains influence signaling can

help guide the design of next-generation CARs. Therefore, we constructed an experimentally vali-

dated computational model of anti-CD19 CARs in T cells bearing the CD3z domain alone or in combi-

nation with CD28. We performed a systematic analysis to explore the different mechanisms of CD28

co-stimulation on the ERK response time. Comparing these model simulations with experimental data

indicates that CD28 primarily influences ERK activation by enhancing the phosphorylation kinetics of

CD3z. Overall, we present a mechanistic mathematical modeling framework that can be used to gain

insights into the mechanism of CAR T cell activation and produce new testable hypotheses.

INTRODUCTION

Chimeric antigen receptor (CAR)-engineered T cells have been approved for the treatment of CD19+ cell

malignancies (Mullard, 2017). Unfortunately, it has been difficult to extend CAR T cell therapies beyond he-

matological malignancies to other types of cancer, specifically solid tumors (Morgan et al., 2010). To better

engineer CAR T cells to fight cancer, we need to improve our understanding of how these modified recep-

tors activate T cells.

CARs typically include an extracellular antibody-derived binding domain linked to a transmembrane

domain and a number of different intracellular signaling domains (Sadelain et al., 2013). These signaling

domains are derived from endogenous T cells and typically include CD3z, a part of the endogenous

T cell receptor (TCR), and a co-stimulatory domain, such as CD28. It is clear that T cells require this second-

ary signaling through a co-stimulatory receptor, but the mechanisms through which co-stimulatory do-

mains influence T cell activation are not clear (Bretscher, 1999). Additionally, although the strong early

signaling events initiated by CARs and the endogenous T cell receptor (TCR) are similar (Harris et al.,

2018), it is clear that the more subtle signaling differences lead to vastly different functionalities between

CAR- and TCR-stimulated T cells.

Computational mechanistic models can be used to test hypotheses about molecular signaling mecha-

nisms. These models have been used in the past to study endogenous T cell activation, providing insights

into important activation and feedback mechanisms that help control the sensitivity and specificity of TCR

activation, reviewed previously (Rohrs et al., 2019). These models generally assume that T cell activation is

derived directly from the TCR CD3z signaling domain, while neglecting the effects of the co-stimulatory

domains. Therefore, the immunology field has developed a fairly clear picture of the signaling events

downstream of CD3z, but there is a lack of understanding of the effects of co-stimulation.

Recently, we have used phospho-proteomic mass spectrometry combined with mechanistic computational

modeling to gain more insight into the effects of co-stimulation. We quantified the site-specific phosphor-

ylation kinetics of CARs containing CD3zwith or without CD28 (referred to as 28z and Z, respectively) (Rohrs

et al., 2018). Our experimental data showed that CD3z immunoreceptor tyrosine-based activation motifs

(ITAMs) are phosphorylated independently, in a random order, and with distinct kinetics. Adding the

CD28 co-stimulatory domain increased the rate of CD3z phosphorylation by over 3-fold. In addition, by

applying the model, we identified that LCK phosphorylates CD3z through a mechanism of competitive
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inhibition. However, our previous experimental and modeling approach was limited; it did not include any

signaling pathways and could not determine whether the increase in CD3z phosphorylation affects down-

stream signaling. More generally, it is not clear how any of the effects of CD28 influence downstream T cell

activation. We are particularly interested in activation of the MAPK signaling pathway, leading to ERK

phosphorylation. Although MAPK signaling is just one aspect of T cell activity, this pathway exhibits clear

switch-like response in T cells and strongly contributes to T cell activation and proliferation (Altan-Bonnet

and Germain, 2005).

To explain how the CAR intracellular domains influence ERK response time, we constructed a mechanistic

computational model of T cell activation by CARs containing the CD3z domain alone or in combination

with CD28. We first calibrate the model using published experimental data and show that the model is

able to reproduce known effects of various intracellular protein perturbations on ERK response time

following T cell activation. We then investigated the model to explore the individual and combined effects

of three possible mechanisms of CD28 co-stimulation, active CD28 recruitment of Grb2, GADS, or LCK,

each based on previously published observations. Experimental measurements of ERK response in CAR-

engineered T cells validate the model-generated hypothesis that CD28 activates ERK primarily through

modifications of CD3z phosphorylation kinetics, likely as a result of increased recruitment of LCK. The

model also generates additional hypotheses that can be used to guide new experiments. Specifically,

the model predicts that removing ITAM sites from CD3z on the CAR can lead to faster activation with

less negative feedback at high antigen concentrations. Overall, this modeling study enriches our under-

standing of CAR T cell co-stimulatory activation.

RESULTS

Model of CAR-mediated ERK Activation

We constructed a computational mechanistic model that describes the early CAR signaling events leading

to T cell activation. We specifically predict how the CAR mediates ERK activation through the MAPK

pathway. Studies have indicated that, although the activation of CARs and TCRs have different signal initi-

ating components, the signaling events initiated downstream are not significantly different (Harris et al.,

2018). Therefore, to construct our model, we combined four mechanistic signaling modules: (1) CAR-spe-

cific phosphorylation based on our previously publishedmodels, (2) phosphatase activity, (3) an LAT signal-

osome, and (4) an MAPK pathway that leads to ERK activation (Figure 1). To characterize the model, we first

explored signaling primarily through the CD3z CAR stimulatory domain. This allowed us to compare our

model with previously developed models in the literature, which largely simplify the TCR to account only

for the CD3z domain.

Module I focuses on LCK autoregulation and its phosphorylation of the CAR intracellular signaling domains

and ZAP-70. We first adapted our model of LCK autoregulation and inhibitory phosphorylation by the ki-

nase CSK to reduce the computational complexity (Rohrs et al., 2016). The second mechanistic element in

this module was adapted from work from our lab to quantify the kinetics of CAR intracellular domain phos-

phorylation by LCK (Rohrs et al., 2018). Our published computational quantification, paired with novel

in vitro phospho-proteomic mass spectrometry, specifically identified the phosphorylation rates of individ-

ual tyrosine sites. This work also revealed that the addition of CD28 increases the rate of CD3z ITAM phos-

phorylation, which will be used later in the present study to explore how CD28 affects downstream

signaling in the T cell activation system. Once CD3z ITAMs are doubly phosphorylated, ZAP-70 is able

to bind. ZAP-70 can then be phosphorylated by LCK at several sites. This phosphorylation has a variety

of effects: holding ZAP-70 in an open conformation, increasing ZAP-70 catalytic activity, and allowing

ZAP-70 to dissociate from CD3z (Katz et al., 2017; Sjölin-goodfellow et al., 2015).

In module II, we modeled the activity of phosphatases known to play a role in T cell activation. This module

influences both modules I and III. We included two main phosphatases that act throughout the whole

model of T cell activation: CD45 and SHP1. CD45 is constitutively active in T cells and prevents unstimu-

lated T cell activation. SHP1 activity is induced upon phosphorylation of the TCR. To explore its effects

on CAR activation, we included a mechanism of negative feedback through phosphatase SHP1 recruit-

ment, first modeled by Altan-Bonnet and Germain (Altan-Bonnet and Germain, 2005). SHP1 is recruited

to singly phosphorylated CD3z ITAMs (from module I), where it can be activated by LCK. SHP1 can then

dephosphorylate various proteins in the signaling cascades in modules I and III.
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Module III, the LAT signalosome, links the output of module I (activated ZAP-70) to the inputs of module IV

(active SOS and PLCg). Module III begins with free and activated ZAP-70 from module I, which is able to

phosphorylate LAT. Phosphorylated LAT can bind to adaptor molecules, GADS and Grb2, which in turn

bind to other downstream signaling proteins, such as SLP76, and the inputs to module IV, SOS and

PLCg. Phosphorylated CD28 can also bind and recruit several of the proteins in the LAT signalosome.

Module IV focuses on MAPK pathway activation. To initiate this pathway, we adapted a model of Ras-GDP

to Ras-GTP conversion by SOS and RasGRP from Das et al. (Das et al., 2009). Their model details the allo-

steric regulation of SOS by active Ras, which results in a positive feedback loop that can transform the

Figure 1. Schematic of Signaling Model from CAR Antigen Binding Through ERK Activation, Incorporating

Models from literature

Arrows and bars indicate activating and inhibitory interactions, respectively. Dashed lines denote the same species in

multiple Modules.

Module I: LCK regulation, autophosphorylation, and phosphorylation of the CAR intracellular signaling domains and

ZAP-70.

Module II: CD45 and SHP1 phosphatase activity. CD45 is constitutively active in resting T cells, but it is excluded from the

signaling area upon CAR binding to its ligand. SHP1 is recruited to the area by singly phosphorylated CD3z ITAMs and is

activated by LCK.

Module III: the LAT signalosome forms when ZAP-70 binds to doubly phosphorylated ITAMs and becomes

phosphorylated by LCK. It can then phosphorylate sites on LAT and SLP76. Phosphorylated sites on LAT can bind proteins

Grb2, GADS, and PLCg. Grb2 can bind to SOS, whereas GADS binds to SLP76. SLP76 recruits Tec family kinases, such as

ITK, which can then phosphorylate and activate PLCg.

Module IV: PLCg and SOS can activate Ras-GDP to Ras-GTP. Ras-GTP can be inactivated by RasGAP. Once activated,

RAS-GTP can activate the MAPK pathway, which leads to ERK activation. Doubly phosphorylated ERK can phosphorylate

LCK at a protection site, which prevents LCK from associating with SHP1, resulting in a positive feedback loop.
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analog phosphorylation events derived from TCR or CAR activation to a digital ERK response. The RAS-

GTP output of this model was used as the input to an MAPK cascade parameterized by Birtwistle et al. (Birt-

wistle et al., 2012), resulting in doubly phosphorylated ERK. Active ERK also feeds back to modules I and II

as it can phosphorylate LCK at a protection site, which prevents interactions with the phosphatase SHP1, as

first modeled by Altan-Bonnet and Germain (Altan-Bonnet and Germain, 2005).

Together, these modules constitute a mechanistic description of what are thought to be the most impor-

tant interactions in the binary decision of T cells to activate ERK. Below, we explore the model in detail and

make predictions about themechanisms through which the individual signaling domains on CARs influence

the ERK response.

Model Parameterization to Literature Data

We first fit the model parameters to experimental data to obtain a robust mathematical framework to pre-

dict T cell activation leading to ERK phosphorylation (Figure 2). We started by refitting our previous model

of LCK regulation to reduce the computational complexity and better constrain the parameters, as

described in the Methods section. We fit this minimal model of LCK autoregulation and phosphorylation

by CSK to five different experimental conditions in the literature (Hui and Vale, 2014). In total, the values

of 11 parameters were estimated using 132 experimental data points.

Figure 2A shows the model fit to experimental data. This experimental data was quantified from single

replicate Western blot experiments under five experimental conditions for the purpose of comparing

the relative phosphorylation rates of the activating (Y394) and inhibitory (Y505) tyrosine phosphorylation

sites on LCK (Hui and Vale, 2014). Therefore, in an effort to ensure that the model is capturing the intended

use of the data, the objective function for the model fitting algorithm included a comparison of the relative

differences between the phosphorylation of the two sites in addition to the sum of squared error (SSE) be-

tween the individual data points and corresponding model simulations. In this way, we ensure that the

model is able to capture the relative phosphorylation of the two sites while allowing for the potential of

biological and experimental variability, which was not quantified in the single replicate extracted from

the paper by Hui and Vale. Therefore, although there are some discrepancies between the model simula-

tions and the single replicate quantitative Western blot data, the model can capture the differences be-

tween stimulating and inhibitory site phosphorylation and provide an appropriate prediction for the overall

catalytic activity of LCK. In addition, the values of the estimated parameters are within a relatively tight

range, indicating that the parameters are identifiable and their values are reliable. The median parameter

values as well as the standard deviation for 100 best fit parameter sets are shown in Figure 2B and are listed

in Table S1 and the species’ initial concentrations are given in Table S2. The final model is in the Data S1.

The majority of the downstream model parameters come directly from measurements in the literature or

from previously published models. However, some of the parameters were not well defined, because

they had not been measured experimentally, they had conflicting values after being fit to the specific as-

sumptions of previous models, or they did not account for the two-dimensional nature of the interactions

specifically modeled here. This was particularly true of the parameters governing phosphatase activity,

which were shown to significantly influence ERK response time in our sensitivity analysis (Figure 3). To better

constrain these parameters, we fit the model to published measurements obtained using an in vitro system

of recombinant proteins interacting on a two-dimensional liposomal membrane (Hui et al., 2017). Hui et al.

used this system, combining twelve proteins involved in T cell activation, to measure nine different protein

phosphorylation states in the presence of varying amounts of CD45. We extracted this data (64 data points)

and fit seven model parameters, as described in the Methods section. Figure 2C, top row, shows the model

fit to the experimental data collected in the absence of CSK; best fit parameter values and standard devi-

ations are listed in the Table S2. To validate this parameterized model, we extracted an additional dataset

from Hui et al., which includes 145 molecules/mm2 CSK (64 data points). As the activity of CSK was fit in our

minimal LCK phosphorylation model and was not accounted for in the fitting of the Hui et al. CD45 dephos-

phorylation data, this validation provides confidence that combining our minimal LCK phosphorylation

model with the larger CD45 dephosphorylation model can accurately reproduce the signaling network

(Figure 2C, bottom row). The median parameter values as well as the standard deviation for 100 best fit

parameter sets are shown in Figure 2D and are listed in Table S2.
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Overall, the fitted models of LCK autoregulation and phosphatase interactions qualitatively and quantita-

tively match the experimental data. Additionally, nearly all of the estimated parameter values lie in a tight

range. Altogether, we demonstrate that these models recapitulate experiments and can be combined with

the other model components to create a predictive framework of CAR-mediated ERK activation. The me-

dian values of the estimated parameters were used in model simulations presented below.

Sensitivity Analysis Reveals Network Features that Control ERK Activation

To better understand how the model parameters interact with one another and influence the output of

doubly phosphorylated ERK response time, we conducted a sensitivity analysis using the extended Fourier

A

B
C

D

Figure 2. Model Parameters Were Fit to Experimental Data

(A) A reduced version of our model of LCK regulation (Rohrs et al., 2016) was refit to data (dots) from Hui and Vale (Hui and Vale, 2014) for five different

experimental conditions using Michaelis-Menten kinetics for all LCK-LCK catalytic interactions and mass action kinetics for all CSK-LCK interactions and

LCK-LCK binding interactions. The median value from 100 fitted parameter sets (solid lines) is shown, with the shaded region indicating the standard

deviation of the fits.

(B) The median value and standard deviation (error bars) of the fitted LCK and CSK parameter values from 100 optimized sets (on log scale). LCK catalytic

parameters are denoted as cat_XX_#, where XX indicates the phosphorylation state of Y394 and Y505 on the substrate LCK and # indicates the tyrosine site

substrate being phosphorylated. Catalytic parameters for CSK phosphorylation of LCK Y505 are denoted as cat_CSK_XX, where XX indicates the

phosphorylation state of the LCK substrate. Dissociation rates are denoted as off_XX_YY, where XX and YY indicate the phosphorylation state of the LCK

binding partners at Y394 and Y505, respectively, or CSKoff_XX, where the binding partners are CSK and LCK phosphorylated at Y394 or Y505 as indicated by

XX, respectively. All fitted parameters are in units of min�1.

(C) (Top row) CD45 catalytic rate parameters were fit to data from Hui et al. in the absence of CSK (Hui et al., 2017) (dots). The median value of 100 optimized

parameter sets (solid lines) is shown, with the shaded region indicating the standard deviation. (Bottom row) As validation, the model was simulated with 145

molecules/mm2 CSK and compared with data from Hui et al. not used in parameter fitting (open circles; error bars, standard deviation from three

independent experiments performed by Hui et al.). The median (lines) and standard deviation (shaded region) of the 100 optimized parameter sets is shown.

(D) The median value and standard deviation (error bars) of the CD45 catalytic parameter values from 100 optimized sets (shown on a log scale). CD45

catalytic rates are denoted as Kcat_CD45_x, where x indicates the substrate tyrosine sites. A1 indicates CD3z ITAM tyrosine sites. Dephos is a generic

dephosphorylation rate applied to all substrates not specifically fit to their own value. Catalytic rates are in units of min�1.
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amplitude sensitivity analysis (eFAST) method (Marino et al., 2008). This global sensitivity analysis allows us

to identify the parameters that the model output is sensitive to both individually, with the first-order sensi-

tivity index (Si), which is analogous to a local sensitivity, and in combination, with the total sensitivity index

(STi). This analysis is particularly important for large models, similar to the one presented here, which incor-

porate many different mechanisms of feedback and other complex interactions, as it allows one to look at

the effect of individual parameters, as well as the effect of changing multiple parameters together. Param-

eters with high first-order sensitivity indices strongly influence the model output, and parameters with high

total-order sensitivity indices influence the model in combination with other parameters. We note that this

analysis is not a global structural analysis and can still change based on model settings, including the stim-

ulation level and the range over which the parameters are allowed to vary. However, it is a powerful way to

analyze the importance of the model parameters.

We analyzed the model parameters in seven groups: initial concentrations, CAR parameters, LCK param-

eters, LAT parameters, RAS parameters, MAPK parameters, and phosphatase parameters. We only list

the parameters for which sensitivity indices are statistically significant. Overall, we find that there is at

least one parameter in each group that significantly influences ERK response time. Additionally, almost

all of the influential parameters have a higher total sensitivity index than first-order index. This indicates

that, even if all the parameters in a group are not significantly influential on their own, they do all still

interact together to affect the output. We next examine the results of the sensitivity analysis in greater

detail.

A B

Figure 3. First-Order (Si) and Total (STi) Sensitivity Indexes of Model Parameters

(A) An eFAST sensitivity analysis was performed on all model initial concentrations for two different nominal ranges of

antigen (Ant_T), as indicated on the left. Only the initial conditions whose sensitivity indices are statistically significantly

different from that of a dummy variable are shown. The relative sensitivities of species in the model change depending on

the amount of antigen in the system.

(B) Model parameters were separated into nine groups, listed on the left. An eFAST sensitivity analysis was performed on

each group with the initial antigen concentration of 100 molecules/mm2. Only the parameters whose sensitivity indices are

statistically significantly different than that of a dummy variable are shown. For binding interactions with literature-defined

KD values, only the kon parameter was chosen to vary in the sensitivity analysis.
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Figure 3A shows the sensitivity of the model to the species’ initial concentrations for two different condi-

tions, one with a high range of antigen (100–10,000 molecules/mm2, top) and one with a moderate range of

antigen (10–1,000 molecules/mm2, bottom). The relative sensitivity indices of the initial species concentra-

tions change between these two experimental conditions. This is particularly interesting when considering

the impact of the antigen concentration itself and the concentration of the negative feedback molecule,

SHP1. At low antigen concentrations, ERK activation is proportional to the amount of antigen in the system.

In this regime LCK, ZAP-70 and CSK emerge as highly influential. This is not surprising, as activation of ZAP-

70 is an early bottleneck that must occur before the downstream signaling pathways diverge into more

complex branched structures through the many elements of the LAT signalosome. The branches of the

LAT signalosome activation converge back onto the MAPK pathway; thus, they are able to help compen-

sate for each other and are less influential overall than the upstream decision makers.

At high antigen concentrations, the sensitivity indices of the antigen concentration are greatly reduced,

and the strong influence of SHP1 emerges. We sought to further understand the role of SHP1 and antigen

concentration in the model, as the eFAST sensitivity analysis indicated that the interaction between these

two species was important. In our model, we assume that the intracellular signaling events downstream of

CD3z activation are the same for the TCR and CARs. As such, our CAR signaling model incorporates a

similar form of SHP1 negative feedback that has been shown to play an important role in TCR signaling.

This response has been modeled in TCR signaling previously (Altan-Bonnet and Germain, 2005). We

explored this feedback in the model by recording ERK response time for various levels of antigen and

SHP1 expression (Figure S2). As antigen concentration increases for high SHP1 concentrations, as well

as in intermediate SHP1 levels (above the red line), the ERK response time first decreases and then in-

creases. When SHP1 concentration is low, this longer ERK response for high CD3z is not seen, indicating

that it is the feedback of SHP1 that is responsible for this shift in the ERK response time trend. These results

reveal that, past a certain threshold antigen concentration, the amount of antigen is not significantly impor-

tant for controlling the rate of T cell activation. Instead, T cell activation is controlled by the intracellular

signaling and negative feedback through SHP1.

Figure 3B shows the sensitivity analysis of the other six groups of parameters starting with a moderate con-

centration of antigen (100 molecules/mm2). The sensitivity indices of these parameters follow similar trends

as with the impact of the initial concentrations. Some of the most influential parameters in the model are

the catalytic rates of LCK, ZAP-70, PLCg, RasGRP, and CD45. Additionally, the value of the Michaelis con-

stant (km) value is a highly influential parameter, because this single parameter plays a role in every Michae-

lis-Menten reaction in the system. However, there are not enough data to be able to identify both a catalytic

rate and Michaelis-Menten constant for all of these reactions, thus leading to our choice to focus our fitting

around the highly sensitive catalytic parameters. The calculated sensitivity indices for the network stimu-

lated with a high concentration of antigen (1,000 molecules/mm2) shows similar changes as the initial con-

dition sensitivities, with SHP1 parameters being more sensitive than the low antigen case and ZAP70 and

CSK parameters being slightly less sensitive.

Taken together, the high-sensitivity indices of multiple parameters spread throughout the different groups

highlights the interconnected nature of the signaling network modeled here, where the final output de-

pends on each step of the pathway to produce a response. Thus, there is not a single category of param-

eters that solely affects ERK activation. Rather, control of ERK response is distributed across the network.

Model Is Validated by Independent Experimental Datasets

We next sought to validate the model predictions using experimental data of ERK activation in CAR T cells.

In ourmodeling approach, we assume that the same signaling events that occur downstreamof the TCR also

occur downstream of the CARs. This assumption has been shown to be true on a macroscale of general

phosphorylation events (Harris et al., 2018) but we wanted to further validate it specifically for the negative

feedback of SHP1. To do so, we compared model simulations with experimental measurements. First, CAR

T cells were made as described in the Methods section. We used lentiviral vectors to create stable Jurkat

T cell lines expressing HA-tagged anti-CD19 CARs (CD3z only and CD28-CD3z CARs) and sorted them

into CAR positive populations (Figure S1). Using 28zMed Jurkat T cells, we verified that anti-HA antibody

is able to bind to the HA-tagged CAR and stimulate ERK phosphorylation. Using this system, we stimulated

the cells with various amounts of anti-HA antibody, up to very high concentrations, and measured the

percent of doubly phosphorylated ERK over time (Figure 4A). We then fit these responses to a 4-parameter
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sigmoidal curve, where the lines in Figure 4A are from simple curve fitting that does not make use of our

mechanistic model of CAR signaling. From the fitted sigmoidal curves, we estimated the 95% confidence

interval of the half maximal ERK response time at each antibody concentration, referred to as the ERK

response time (Figure 4B, black dots and error bars). For very low concentrations of antibody, the maximal

percent of ERK positive cells is very low, making it difficult to fit a sigmoidal curve. Thus, the confidence in-

tervals for the fitted ERK response times are very wide for these low concentrations. However, as we increase

the antibody concentration and higher maximal ERK phosphorylation is achieved, the confidence intervals

around the fitted ERK response times narrow and we can see a clear trend. As the antibody concentration

increases, the ERK response time of the population becomes faster. This trend appears to change at very

high antibody concentrations, where the response time begins to slow, presumably, due to the negative

feedback from SHP-1, as seen in endogenous T cell signaling (Altan-Bonnet and Germain, 2005).

We applied the fitted model to predict the ERK response time for the same antigen concentration levels

used in our experiments. Given the mechanistic detail of the model, we could use it to investigate whether

SHP1 influences CAR signaling in a similar way as in TCR signaling. Using the baseline model parameters,

themodel simulations qualitatively agree with the experimental observations, showing faster ERK response

time with increasing antigen at low concentrations and slowing ERK response time to a plateau at higher

concentrations (Figure 4B, blue line). However, the response times given by the model simulations with the

baseline parameters are much slower than the experimental data. To correct this, we examined the

assumption that all parameters bind with the same association rate (0.1 mm2molecule�1min�1) made during

model construction. Based on experimental evidence, we know that SHP1 must be recruited to the T cell

signaling area in lipid rafts in order to exert its inhibitory effects (Lorenz, 2009) and that this recruitment is

thought to be mediated by molecules that move to lipid raft membranes (Chen et al., 2008). We accounted

for SHP1 recruitment by decreasing the association rate of SHP1 to the singly phosphorylated ITAMs. We

tried a range of values for this association rate and found that reducing this rate to

0.0015 mm2molecule�1min�1 allowed the model to match the experimental data. These simulations indi-

cate that SHP1 does indeed play a significant role in CAR signaling. Additionally, we confirm that themodel

qualitatively and quantitatively matches experimental measurements. We note that simply reducing the

concentration of SHP1 does not allow the model to match experimental data. As described earlier, at lower

SHP1 concentrations, the model does not predict the longer ERK response for high CD3z seen experimen-

tally (Figure S2). We use the reduced SHP1 association rate in all subsequent model simulations.

A B C

Figure 4. The Model Can Reproduce Effects of T Cell Signaling

(A) The percent of ppERK positive 28zMed CAR T cells over time following stimulation with varying amounts of anti-HA

antibody. Experimental data (dots) were fit to a sigmoidal curve (lines) to estimate ERK response time (EC50).

(B) The model simulations (lines) compared the ERK response time of 28zMed CAR T cell activation (dots), calculated from

the ppERK response curves in (A). Experimental data is the sigmoidal fit EC50 value from (A). Error bars, 95% confidence

interval. Model simulations using the baseline assumption that SHP1 association rate with singly phosphorylated CD3z

ITAMs is 0.1 mm2molecule�1min�1 (blue line) do not match the data, but changing the SHP1-ITAM association rate to

0.0015 mm2molecule�1min�1 (red line) allows the model to capture the ERK response data well.

(C) The model can qualitatively match the expected changes in ERK response time due to changes to various intracellular

signaling molecules. The change in the ERK response compared with the baseline ERK response model is shown for

simulations with varying amounts of CSK as well as alterations to the indicated LCK tyrosine sites to mimic a tyrosine to

phenylalanine mutation.
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We next aimed to further validate the model by determining whether it could qualitatively reproduce

known experimental observations obtained following modifications of ERK activation, as published in

the literature. To do this, we applied the model to test how different mutations to upstream signaling mol-

ecules influence downstream ERK response time (Figure 4C). Schoenborn et al. modified CSK experimen-

tally to produce a form of the protein that can specifically bind to a small molecule inhibitor (Schoenborn

et al., 2011). They showed that inhibiting CSK resulted in faster ERK activation in a population of T cells.

When we remove CSK from the model, the model predicts that ERK response time increases by almost

one minute, in agreement with the findings from Schoenborn and coworkers. Conversely, when we double

the amount of CSK, the model shows that ERK response time slows.

In the same study, Schoenborn et al. also showed that CD45-deficient cells have reduced ERK activation

upon TCR stimulation. Using the model, we show that removing CD45 greatly slows the ERK response

time by roughly 2.75 min. These model simulations qualitatively agree with the experimental data.

Similar experiments were done by Philipsen et al. to test the ERK response, given various LCK tyrosine to

phenylalanine mutants expressed in LCK-negative Jurkat T cells (Philipsen et al., 2017). They found that

LCK-Y394F or LCK-Y394F-Y505F essentially eliminated the ERK-positive cell population at 3 min, whereas

LCK-Y505F increased the amount of ERK-positive cells. Implementing these two mutations in our model

shows that removing LCK-Y394 phosphorylation completely prevents LCK phosphorylation, whereas

removing LCK-Y505 phosphorylation speeds up the ERK response time. Because our model does not incor-

porate stochasticity, we cannot directly measure the percentage of positive cells. However, these trends

agree with the experimental findings. Thus, the model is able to capture known effects of signaling mod-

ifications in both TCR- and CAR-specific T cell activation.

Model Analysis Predicts Mechanism of CD28-Enhanced Signaling

The results presented above show the development and validation of a predictive model of ERK activation

in CAR28z T cells. However, in our eFAST sensitivity analysis, none of the CD28 signaling parameters

emerged as statistically significantly sensitive with respect to ERK response time. This was unexpected,

as ERK phosphorylation has been shown to be a key step in T cell activation and proliferation (Altan-Bonnet

and Germain, 2005), and CD28 is known to play a significant co-stimulatory role affecting the degree of

these responses. To further explore this result from the sensitivity analysis and better understand how

various observed mechanisms of CD28 signaling influence ERK activation, a long-standing question in

the field of immunology (Adams et al., 2004; Beyersdorf et al., 2015), we systematically explored the

different mechanisms of CD28 represented in the model.

Specifically, we systematically altered the model to include three mechanisms related to CD28 signaling,

which have been described previously in the literature and are shown in Figure 5. The first two involve pro-

teins that interact with CD28 directly via phosphorylated tyrosine sites and proline-rich regions, enabling

binding of the adaptor proteins Grb2 and GADS (Higo et al., 2014). (1) Grb2 is able to recruit SOS to the

signaling area, which can activate Ras and the MAPK pathway directly (Figure 5A) (Schneider et al.,

1995). (2) GADS is able to recruit SLP76, thus increasing the amount of this adaptor protein in the signaling

region (Figure 5B) (Sela et al., 2011; Wonerow and Watson, 2001). For Grb2 and GADS binding, we assume

that these adaptor proteins will bind and signal in the same way that they do on the LAT signalosome. (3)

The third mechanism uses the kinetic rates calculated in our previous model of phosphorylation of the in-

dividual CD3z ITAM sites in the presence of CD28. In this mechanism, the increased phosphorylation rate of

CD3z allows for faster recruitment of ZAP-70 and therefore faster activation of the LAT signalosome and the

MAPK pathway (Figure 5C) (Rohrs et al., 2018).

To understand the relative importance of each of these three mechanisms (Grb2 binding to CD28, GADS

binding to CD28, and CD28-mediated enhancement of LCK activity) on ERK activation in CAR T cells, we

performed a systematic analysis of CD28 in the model by implementing each of these mechanisms alone

and in combination to understand their effect on ERK activation. We note that we do not fit or further tune

any model parameters. Rather, we directly implement the proposed mechanisms by either setting the

binding association rates of CD28 with Grb2 or GADS (CD28_Grb2_on and CD28_GADS_on, respectively)

to zero or setting the LCK phosphorylation parameters for CD3z to the values for LCK phosphorylation of

CD3z without CD28, calculated in our previous work (Rohrs et al., 2018) (Table S2). We present simulation

results obtained using the median value of the 100 optimal parameter sets from PSO, as the optimal
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parameters show consistent results. The bottom panels of Figure 5 show the predicted ERK response time

as a function of antigen concentration for each individual mechanism of CD28 activation compared with the

simulated case where the CAR only expresses the CD3z domain. Both Grb2 and GADS binding showed

similar effects: slightly slowing ERK response time at low antigen concentrations, with only minor effects

at high antigen concentrations. In contrast, the effect of the increased rate of CD3z phosphorylation was

significantly different, showing a nearly constant decrease in response time in the presence of CD28

over all antigen concentrations. Simulating Grb2 and GADS binding together did not appear qualitatively

different than simulations with each one individually (Figure S3A). Adding either or both binding mecha-

nisms to the mechanism of increased LCK kinetics was not significantly different from the increased kinetics

mechanism alone (Figures S3B–S3D).

In summary, our model simulations indicate that the way in which CD3z phosphorylation is increased in the

CAR due to the presence of CD28 speeds up the ERK response time across the full range of stimulation

levels simulated. In comparison, the effects of adaptor proteins binding to CD28 only shorten the ERK

response time at high stimulation levels. This is in agreement with the eFAST sensitivity results, which

showed that ERK response time is not significantly sensitive to parameters relating to CD28 binding to

adaptor proteins, but it is sensitive to the rate of CD3z phosphorylation by LCK. Thus, the model predicts

that dynamics produced by adaptor proteins binding to CD28 are significantly different than those pro-

duced by implementing increased CD3z phosphorylation.

To test these model predictions, we quantified how the presence of CD28 affects downstream signaling

leading to ERK activation by measuring the ERK response time for Z or 28z CAR T cells. To do this, we

used the Z and 28z CAR-expressing Jurkat T cells, following the same protocol and sorting process

described earlier. We also expressed CD19 on K562 target cells and sorted them into different expression

levels as described in the Methods (Figure S1B). We then stimulated 28zMed and ZMed T cells with different

ratios of 19Med target cells and measured the ERK response time (Figures 6A and 6B). In this way, we mimic

A B C

Figure 5. Systematic Analysis of CD28 Mechanism Contribution to ERK Activation

(A) (Top) CD28 can bind to Grb2, which can bind to SOS and activate the MAPK pathway and ERK. (Bottom) ERK response

time as a function of CD3z concentration for the Z (blue) or 28z (red) CAR in which the only effect of CD28 activation is its

binding to Grb2.

(B) (Top) CD28 can bind to GADS, which can potentially bind to SLP76. Tec family kinases recruited by SLP76 can then

activate PLCg on the LAT signalosome, which activatesMAPK pathway and ERK. (Bottom) ERK response time as a function

of CD3z concentration for the Z (blue) or 28z (red) CAR in which the only effect of CD28 activation is its binding to GADS.

(C) (Top) The presence of CD28 on the N-terminal of CD3z has been shown to increase the rate of CD3z phosphorylation

by LCK. This leads to faster assembly of the LAT signalosome and activation of the MAPK pathway and ERK. (Bottom) ERK

response time as a function of CD3z concentration for the Z (blue) or 28z (red) CAR in which the only effect of CD28

activation is to increase the rate of phosphorylation of CD3z.
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cell-cell interactionsmediated by CAR-CD19 binding, rather than using anti-HA antibodies (as was done for

model validation, shown in Figures 4A and 4B) or a CD19 antibody. Here, we see that the 28z CAR has

consistently faster ERK activation for all target cell ratios. We further verified the results by stimulating

1:1 ratios of high-, medium-, and low-expression CAR and target cells and measuring the ERK response

time (Figure S1C). The ERK response time depends on both CAR expression level and CD19 expression

level, with high expressing cells displaying faster response times than lower expressing cells. Additionally,

28z CARs had consistently faster ERK response times compared with Z CARs.

Comparing these results with the model simulations in Figure 5, we can see that the model in which CD28

influences the kinetics of LCK phosphorylation of CD3z qualitatively matches the experimental data. The

difference in the absolute quantification of ERK response times between the target-cell-stimulated data

and the model is likely due to the fact that the model was fit to experimental data of CAR stimulation

through anti-HA antibodies, which may be less efficient at inducing strong cross-linking between signaling

receptors and bind more diffusely over the T cell surface compared with the clustering of proteins that can

occur within the cell-cell binding interface. However, the model closely predicts the qualitative effects of

CAR stimulation.

Therefore, based on these model simulations and comparison to experimental data, we hypothesize that

CD28 primarily influences ERK activation through recruitment of LCK, which increases the kinetics of CD3z

activation, and not through specific binding events of the CD28 protein itself.

Model Predicts Effects of Removing CD3z ITAMs

The results presented above demonstrate how we have developed a mathematical model to predict ERK

activation downstream of CAR signaling. By comparing the simulations to multiple independent datasets,

we present a validated model that can generate reliable, experimentally based results. This provides con-

fidence that the model can be used to generate new predictions and testable hypotheses.

We present one such set of hypotheses in Figure 7. Specifically, we applied the model to predict the

effects of various inactivating mutations of ITAM tyrosine sites on CD3z CARs with or without CD28.

The model predicts that reducing the number of ITAMs on the CD3z domain can increase the ERK

response rate of both CARz and CAR28z T cells. At low antigen concentrations, this effect is more pro-

nounced for CARz than CAR28z, but at high antigen concentrations, this effect is clearly evident for both

types of CARs. The largest reduction in ERK response time is seen for mutations of the first two ITAMs on

CD3z, with a 1.7-min reduction for CARz ERK response time and a 1.3-min reduction for CAR 28z ERK

response time at antigen concentrations of 3 mM (Figure 7D). The model predicts that removing ITAM

sites reduces the amount of singly phosphorylated ITAMs that recruit the SHP1-negative feedback.

Thus, the most pronounced effects occur at high antigen concentrations where that negative feedback

is strongest. The model predictions agree with experiments showing that CAR T cells with single ITAMs

can have more optimal activation properties (Feucht et al., 2019) (reviewed in detail in Cartellieri et al.,

2010). Thus, the model could be used in the future to make CAR structures that are optimally activated at
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Figure 6. Experimental Validation of CAR Activated ERK Response Time

(A) ZMedCAR cells and 28zMed CAR cells were mixed with various amounts of 19Med K562 cells, and the ERK response was

measured over time. The data (dots) were then fit to a sigmoidal curve (lines), and the ERK response time (EC50) was

calculated.

(B) Experimental ERK response time of ZMed and 28zMed CAR T cell activation (dots). Experimental data are the EC50 value

from the sigmoidal curves fit in (a). Error bars, 95% confidence interval.
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a specific antigen concentration, which could help the design of CARs with less on-target off-tumor

toxicity.

DISCUSSION

In this study, we developed a computational mechanistic model of the signaling events that lead to acti-

vation of CAR-engineered T cells via MAPK signaling. To our knowledge, this is the first model to

combine this level of detail of the T cell activation signaling and co-stimulatory pathways. The model in-

corporates 23 different proteins in the signaling pathway that leads from CAR-antigen binding to ERK

activation. Experiments quantifying ERK activation in CAR-bearing Jurkat T cells were used for model

parameterization and validation. The validated model was used to explore CAR signaling and how the

CD28 co-stimulatory domain influences ERK activation. We performed a systematic analysis by imple-

menting three distinct CD28 signaling mechanisms supported by published literature to explore the

way in whichdifferent CD28 signaling mechanisms influence ERK activation kinetics. We show that

CD28 primarily affects downstream signaling through recruiting LCK to modify the phosphorylation

rate of CD3z and that the binding properties of CD28 alone may actually retard T cell activation at

low antigen concentrations. In addition, we confirmed the importance of SHP1-negative feedback in

CAR signaling and made new predictions about how antigen concentration and ITAM number influences

CAR T cell activation.

The model was first parameterized based on estimated values from experimental measurements and pre-

vious models in the literature (Altan-Bonnet and Germain, 2005; Birtwistle et al., 2012; Das et al., 2009; Higo

et al., 2014; Houtman et al., 2004; Rohrs et al., 2016). We then performed a global sensitivity analysis to

determine which parameters most strongly influence the ERK response time. From this analysis, we found

that the upstream parameters controlling catalytic rates of LCK, ZAP-70, and the phosphatase CD45 were

particularly important in influencing the ERK response time. These parameters were not well defined in the

literature; however, we highlight their importance in this signaling pathway. We believe this provides more

motivation to better determine the values of those parameters experimentally in the future.

Once the model was fully parameterized, we ensured that it could reproduce experimental CAR-specific

T cell activation data as well as observations for TCR-stimulated T cell ERK in the literature. Tuning the
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Figure 7. Model Predictions of CD3z ITAM Mutants

Model predicted ERK response time for WT CARz or CAR28 compared with CARs with Y to F mutations of the two tyrosine

sites on (A) ITAM A, (B) ITAM B, (C) ITAM C, (D) ITAM A and ITAM B, (E) ITAM A and ITAM C, and (F) ITAM B and ITAM C.
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SHP1 association rate with singly phosphorylated ITAMs allowed for our model to fit ERK activation data for

anti-HA antibody-stimulated 28z CAR T cells. The model was also able to capture the effects of various

signaling modifications on T cell ERK activation, indicating that the model is robust.

Given the mechanistic detail of the model, we could perform simulations to distinguish the possible ways

that the CD28 co-stimulatory domain affects ERK response time in engineered T cells. CD28 is known to

bind to several different adaptor proteins that can recruit activators of Ras and the MAPK pathway (Higo

et al., 2014; Tian et al., 2015). We also included a finding from our previous work that CD28 increases

the phosphorylation rate of CD3z (Rohrs et al., 2018), which in turn could lead to more rapid LAT signalo-

some formation and ERK activation (Holdorf et al., 2002). We explored each of thesemechanisms alone and

in various combinations to develop model-driven hypotheses about how each one would affect the ERK

response time. We compared these predictions with experimental data of ERK response time differences

between Z and 28z CAR T cells stimulated with a 1:1 ratio of CD19-expressing target cells. These experi-

ments qualitatively match the model predictions that the main role of CD28 is to increase CD3z phosphor-

ylation kinetics. We note that we assessed how the three signaling mechanisms (Grb2 binding, GADS

binding, or enhanced LCK catalytic activity) are compared with experimental data using the baseline fitted

parameters from model construction without additional fitting. We believe that the significance of the

model assessment is that we can demonstrate the differences between the CD3z and CD3z-CD28 CARs

observed experimentally without additional hand tuning.

The insights from the model increase our understanding of how CD28 is functioning in T cells. It also gen-

erates new hypotheses that can be tested experimentally. Specifically, in the model, the mechanism

through which CD28 is able to increase CD3z phosphorylation kinetics is not clear. One possibility is

that the CD28 domain alters the structure of the CAR on the inner membrane of the T cell to make it

more accessible to rapid phosphorylation. Alternatively, CD28 has binding sites for LCK that could be

increasing the local concentration of this CD3z activating kinase, thus allowing for more rapid phosphor-

ylation. It would be interesting to further test these hypotheses experimentally to more specifically isolate

the structural features of CD28 that improve CAR activation. The model also predicts that CD28 binding to

GADS and Grb2 may retard T cell ERK activation at low antigen levels. More experimental work is needed

to understand the extent of this retardation and how it can be harnessed or modified to improve CAR T cell

activation. This iterative approach between hypothesis generation and experimental testing can be used to

make more optimal next generation CARs.

We also demonstrate that removing one or two ITAMs from CD3z can speed up ERK response time and

reduce negative feedback that slows response at high antigen concentrations and leads to an optimal an-

tigen concentration for T cell response. Similar effects have been shown experimentally in the literature and

could be particularly important for CARs because they have typically been used to target tumor-specific

antigens that are overexpressed on tumors (Feucht et al., 2019). However, the model provides additional

insights into how the antigen concentration influences the T cell response for different CAR ITAMmutants.

The model shows that reducing the number of ITAMs leads the ERK response time to approach an asymp-

tote as antigen concentration increases. These insights could be used in the future to better design CARs

that take advantage of the optimal response time seen with higher numbers of ITAMs to reduce on-target

off-tumor toxicities. More work still needs to be done to link these short-term activation signals to long-

term T cell phenotypic responses; however, modeling can help provide a basis to verify our understanding

of the system and guide future experiments in a more rational way.

Altogether, the mechanistic model of CAR-mediated T cell signaling we have constructed is able to repro-

duce known effects of CAR activation of the ERK/MAPK pathway and shed new light on the mechanisms of

CAR co-stimulatory signaling through CD28. The model indicates a dominant mechanism for the modifi-

cation of ERK response time by CD28, which matches experimental data. Additionally, the model provides

new hypotheses that can be tested experimentally to better understand how to modulate the effects of

CD28 signaling in CAR therapies. Thus, the model provides a framework that can be used to better under-

stand and optimize CAR-engineered T cell development.

Limitations of the Study

We do acknowledge some limitations of our study, including the model itself, model fitting and compar-

ison to experimental data, and the data used for model construction and validation.
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Wemade some assumptions related to the structure of the current model. First, there are additional mech-

anisms in the literature through which CD28 could influence ERK signaling, such as through blocking small

G protein Rap1 (Carey et al., 2000). Although we cannot rule out the importance of these alternative

signaling mechanisms in our current work, we do believe that the results indicate a strong dependence

on the CD28 mechanism of increased LCK recruitment. This mechanism is able to fully match the difference

in ERK response times between Z and 28Z CAR T cells, as well as dominate the inhibitory effects of compet-

itive recruitment of other adaptor proteins, as seen in both the GADS and Grb2 mechanisms at low antigen

concentrations. Thus, we might expect a similar dominance of the CD28-LCK mechanism over other

possible signaling mechanisms. Additionally, the model does not indicate how CD28 influences other

downstream T cell activation pathways. In the literature, CD28 has been shown to bind to PI3K, which ac-

tivates the Akt pathway (Acuto and Michel, 2003; Rudd et al., 2009). Additionally, CD28 co-stimulation with

the TCR can increase the amount of active Vav in the T cell (Helou et al., 2015; Muscolini et al., 2015). These

mechanisms are not specifically included in the model, but it is possible that these pathways may crosstalk

with the MAPK pathway and further influence ERK activation (Costello et al., 1999; Dent, 2014). This work

does not explore the differences between CD28 signaling when incorporated on the CAR compared

with signaling through the traditional separate CD28 molecule, which could have additional implications

for dual-target CAR therapies (Morello et al., 2016). As new data emerge, the model can be updated to

include these alternative mechanisms to help improve our understanding of how CD28 co-stimulatory

signaling can be optimized in CAR T cells.

We do not perform additional fitting when comparing the three models that account for the possible ways

in which CD28 enhances ERK response time. An alternative approach is to explicitly fit each model to the

experimental data for the ERK response time by optimizing the model parameters. However, by fitting

many more parameters, we would encounter a common issue in model optimization wherein the estimated

parameter values are not well constrained, given the number of fitted parameters compared with the data

available for fitting. In addition, to quantify the goodness of fit such as the sum of the squared errors, we

need a quantitative estimate of the antigen concentration used in the experiments (that is, the CD19 den-

sity on the surface of the K562 cells used), rather than a qualitative sorting of the cells with high, medium,

and low CD19 expressions (Figure S1B, right panel). For these reasons, a qualitative comparison with the

experimentally measured ERK response time is most appropriate.

Finally, we acknowledge limitations regarding the data.We have relied on experimental measurements ob-

tained using the Jurkat T cell line, rather than primary T cells. In particular, it has been shown that TCR-prox-

imal signaling in this cell line does not match observations made using primary cells (Bartelt et al., 2009).

Our model provides a robust framework to make novel predictions regarding CAR-mediated signaling

that can be confirmed using primary T cells.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

Model code is provided as an SBML model file (Data S1.xml).

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101023.
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Transparent Methods 

1. Construction of a mechanistic computational model of CAR T cell activation 

We constructed a model of CAR T cell activation based on our previous modeling 

work, as well as other models and experimentally measured kinetic data and parameters 

in the literature. Overall, the model presented in this work includes signaling initiated by 

antigen binding to the CAR and culminates in phosphorylation of ERK. The full model 

(Figure 1) includes models of kinetic proofreading (Altan-Bonnet & Germain, 2005; 

Coombs & Goldstein, 2005; McKeithan, 1995), kinetic segregation (Barua, Faeder, & 

Haugh, 2007; Davis & van der Merwe, 2006), CD45 phosphatase activity (Arulraj & Barik, 

2018), LCK autoregulation (Rohrs, Wang, & Finley, 2016), CAR phosphorylation (Rohrs 

et al., 2018), LAT signalosome formation, Ras activation (Das et al., 2009), MAPK 

pathway activation (Birtwistle et al., 2012), and SHP1 negative feedback (Altan-Bonnet & 

Germain, 2005). The steps used to unite these elements into a single model are described 

below.  

LCK autoregulation – We have previously developed a mass action based model of 

LCK autoregulation (Rohrs, Wang, et al., 2016). However, due to the size of the complete 

CAR signaling model, we simplified this model of LCK autoregulation to reduce the 

computational complexity. To do this, we altered the interactions between various 

phosphorylated forms of LCK from mass action kinetics to Michaelis-Menten kinetics and 

added in the significant protein-protein binding reactions identified by the original LCK 

autoregulation model.  This greatly reduced the number of ordinary differential equations, 

as all pairs of different phosphorylated LCK species no longer need to form dimers before 

the autophosphorylation reactions can be catalyzed. The parameters from this newly 



 

reduced minimal LCK model were refit to the same data used to parameterize the original 

model (Hui & Vale, 2014). In the fitting process, it was determined that pairs of Michaelis-

Menten constants and catalytic rates as well as pairs of association and dissociation rates 

were not independently identifiable. Therefore, Michaelis-Menten constants were held at 

a value of 1000 molecules/µm2, which is similar to previously fit values from similar 

systems (Rohrs, Zheng, Graham, Wang, & Finley, 2018) and within the rate of protein 

concentrations in the model. Association rates were held constant at a value of 0.1 

µm2molecule-1min-1 (Northrup & Erickson, 1992; Schlosshauer & Baker, 2004). These 

assumptions for the values of Michalis-Menten constants and association rates were used 

throughout the model when explicit literature values were unavailable. Fitting was done 

using particle swarm optimization (PSO), described below.  

CAR phosphorylation and kinetic proofreading – Before stimulation, LCK 

autophosphorylation is allowed to reach steady state in the presence of the phosphatase 

CD45. Antigen is then added to the model and allowed to bind to the CAR. The 

dissociation constant for binding of the antigen to the CAR was hand-tuned to agree with 

the in vitro 28ζ CAR T cell ERK activation experimental data measured in this work, 

described below.  

Antigen-bound CAR can be phosphorylated by active LCK, as we have quantified and 

modeled previously. The parameters governing these interactions were adapted directly 

from our previous work (Rohrs et al., 2018). We assume that only LCK phosphorylated 

on the activating site, Y394, is catalytically active toward the CAR and other downstream 

proteins in the T cell activation pathway (Philipsen et al., 2017). As our previously 

published model of CAR tyrosine site phosphorylation only accounts for the catalytic 



 

activity of active LCK monophosphorylated at Y394, we assumed that doubly 

phosphorylated LCK, phosphorylated at the activating site Y394 and the inhibitory site 

Y505, has a catalytic activity 50x slower than active monophosphorylated LCK. Kinetic 

proofreading occurs when antigens with lower affinities unbind from the CAR. Free 

tyrosine sites on this antigen-unbound CAR can then be dephosphorylated by the 

phosphatase CD45.  

Kinetic segregation – Binding of an antigen to a TCR or CAR protein leads to a narrow 

region between the T cell and target cell that excludes the large extracellular domain of 

CD45 (Leupin, Zaru, Laroche, Müller, & Valitutti, 2000; Mukherjee, Mace, Carisey, 

Ahmed, & Orange, 2017; Watanabe, Kuramitsu, Posey, & June, 2018). This is modeled 

by a transition of CD45 from an accessible form to an inaccessible form based on the 

relative amount of antigen-bound and -unbound CAR. It has been shown that CD45 is 

excluded from the immunological synapse and that this synapse formation occurs 

between 5-30 minutes after T cell engagement with a target cell (Huppa & Davis, 2003); 

therefore, we assume that this CD45 transport has a half-life of 30 minutes and its 

exclusion rate is proportional to the amount of antigen-bound CD3ζ.  

ZAP activation – ZAP-70 is a kinase that can bind to doubly phosphorylated ITAMs on 

CD3z. ZAP binding protects these ITAM sites from dephosphorylation. The parameters 

governing the binding of ZAP to the ITAMs were adapted from experimental 

measurements in the literature (Bu, Shaw, & U, 1995; Katz, Novotná, Blount, & Lillemeier, 

2017). Additionally, the kinase activity of CAR-bound ZAP can be activated through 

phosphorylation by LCK, and we assume that this occurs with a slightly slower catalytic 

rate than LCK phosphorylation of CD3ζ ITAMs. Active ZAP can then unbind from the 



 

CD3z ITAMs and subsequently phosphorylate downstream proteins in the LAT 

signalosome. As we do not explicitly model the spatial heterogeneity and movement of 

ZAP from the ITAM to the LAT signalosome, we assume that ZAP phosphorylates its 

substrates 10-fold slower than the catalytic rate of LCK phosphorylation of ZAP.  

LAT signalosome – In the LAT signalosome, we include only proteins that directly 

relate to the activation of the ERK and the MAPK pathway (Braiman, Barda-Saad, 

Sommers, & Samelson, 2006; Brownlie & Zamoyska, 2013; Nag, Monine, Faeder, & 

Goldstein, 2009). All of the dissociation constants governing these interactions were 

taken from measurements in the literature (Houtman et al., 2004).  

CD28 activation – CD28 contains four tyrosine sites that are able to be phosphorylated 

by LCK (Rohrs et al., 2018). These sites bind a variety of downstream signaling proteins, 

similar to the LAT signalosome. Dissociation constants for these interactions were taken 

from the literature (Higo et al., 2014; Tian et al., 2015).  

Ras activation – The mechanism of Ras-GTP activation was adapted from a model by 

Das et al. (Das et al., 2009). The activators of Ras-GTP from Ras-GDP are SOS and 

RAS-GRP. In our model, SOS is able to bind directly to Grb2 in the LAT signalosome and 

on CD28. Ras-GRP, is activated by DAG, produced by cleavage of PIP2 by PLCg. PLCg 

can be activated by Tec family kinases, which are recruited by SLP76 binding in the LAT 

signalosome and on CD28. Little quantitative information is known about the parameters 

governing Tec family kinase activity; however, it has been shown that the activity of these 

kinases is directly related to SLP76 binding (Bogin, Ainey, Beach, & Yablonski, 2007). 

Therefore, we assumed that the rate of PLCg activation is proportional to the amount of 

SLP76 bound to the CAR signaling region on LAT or CD28.  



 

MAPK pathway – The MAPK pathway and its parameters were directly adapted from 

the Birtwistle et al. model, using the zero feedback case (F=1) (Birtwistle et al., 2012). 

This pathway includes the three-layer phosphorylation cascade involving RAF, MEK, and 

ERK. 

SHP1 negative feedback – The last mechanism we included in the model was 

negative feedback through the phosphatase SHP1, which can be turned off by positive 

feedback from activated ERK, first modeled by Altan-Bonnet and Germain (Altan-Bonnet 

& Germain, 2005). The catalytic rate parameters governing SHP1 activation and its 

activity were assumed to be rapid, but slightly slower than LCK phosphorylation of CD3ζ. 

The association rate of SHP1 was tuned to agree with the 28ζ in vitro CAR T cell ERK 

activation experimental data described below.  

 

2. Initial conditions  

Initial concentrations of proteins in the model were adapted from values calculated in 

the literature or previous models (Birtwistle et al., 2012; Das et al., 2009; Hui et al., 2017; 

Hui & Vale, 2014; Lipniacki, Hat, Faeder, & Hlavacek, 2008). In the model, all interactions 

are assumed to take place in the region on or near the T cell membrane; therefore, for 

ease of comparison and calculation, all species were converted to units of molecules/µm2. 

To covert from parameter values and concentrations in units per volume to units per 

surface area, we assume an average T cell radius of 6 µm. Volume was calculated 

assuming a spherical shape and surface area was calculated assuming a sphere with a 

roughness factor of 1.8 (Hui & Vale, 2014).  

 



 

3. Parameter fitting using particle swarm optimization (PSO) 

The minimal model of LCK autoregulation was fit to data using a particle swarm 

optimization (PSO) algorithm (Iadevaia, Lu, Morales, Mills, & Ram, 2010). We allowed 

the catalytic rates to vary on a log scale from 10-1-104 min-1. The objective function was 

calculated to minimize the sum of the squared errors between the model outputs and the 

experimental data. The PSO algorithm was run 100 times, and we selected the optimal 

parameter set for each round. We report the median value and standard deviation of the 

100 optimal parameter sets (Supplemental Table S1). For model predictions, we present 

simulation results obtained using the median value of the 100 optimal parameter sets, as 

the optimal parameter sets show consistent results. 

We also fit the catalytic rates of CD45 dephosphorylation to data from Hui et al. 2017 

(Hui et al., 2017). A similar method using this data was used previously to explore the 

effects of PD1 on T cell signaling (Arulraj & Barik, 2018). To do this, we simulated our 

model using only the species included in the experiments performed by Hui and 

coworkers. The initial conditions for these species were set according to the equivalent 

molecules/µm2 value listed in the Hui et al. supplemental information. All other species’ 

initial concentrations in our model were set to 0.  We then recorded the model outputs of 

the normalized phosphorylation of various species at 30 minutes for a range of different 

CD45 concentrations, mimicking the experiments performed by Hui et al. We fit the model 

100 times using PSO, keeping all Michaelis-Menten constants (KM) equal to 1000 

molecules/µm2, a value on the same order of magnitude as the protein concentrations 

and the average KM values from the LCK minimal model.  



 

This fitting procedure provided a set of parameter values that enabled the model to 

match the available experimental data (Figure 2).  

 

4. Sensitivity analysis 

We use the extended Fourier amplitude sensitivity test (eFAST) (Marino, Hogue, Ray, 

& Kirschner, 2008), as in our previous work (Rohrs, Sulistio, & Finley, 2016; Rohrs, Wang, 

et al., 2016). Briefly, eFAST is a global variance-based sensitivity analysis that can 

identify which model parameters have the most significant effect on a given model output. 

In this method, a set of model parameters are varied at the same time, with different 

frequencies, and the model output is calculated. The Fourier transform of the model 

output is then compared to the various frequencies with which the parameters were 

varied. A model output’s sensitivity to a given parameter of interest is proportional to the 

normalized Fourier transform peak of the model output at the frequency with which that 

parameter was varied. This is referred to as the individual sensitivity index (Si).  The extent 

of higher order interactions between parameters can then be estimated by calculating the 

Fourier transform peaks of frequencies other than those of the individual frequency and 

harmonics of the parameter of interest, giving the total sensitivity index (STi). A greater 

total index compared to first-order index indicates that a parameter is more important in 

combination with other parameters than alone. The effect of a parameter is considered to 

be statistically significant if its sensitivity index is greater than that of a dummy variable. 

We implemented the eFAST method using MATLAB code developed by Kirschner 

and colleagues (Marino et al., 2008). We analyzed the parameters in seven groups, 

allowing each parameter to vary 10-fold up and down from its baseline value. 



 

 

5. Cell lines and reagents  

Jurkat T cells (ATTC TIB-152) and K562 cells (ATCC CCL-243) were maintained 

in 5% CO2 environment in RPMI (GIBCO) media supplemented with 10% fetal bovine 

serum, 1% penicillin-streptomycin, and 2 mM L-glutamine. Alexa-488 conjugated 

antibody against doubly phosphorylated ERK (clone E10) was purchased from Cell 

Signaling Technology. Anti-HA antibody (AB9110) was purchased from Abcam. Alexa-

647 conjugated goat anti-rabbit secondary antibody was purchased from Thermo 

Scientific. PE conjugated anti-CD19 (clone HIB19) was purchased from Biolegend.  

 

6. Stable transductions of CAR- and CD19-expressing cell lines 

The construction of a lentiviral plasmid containing an HA-tagged anti-CD19 CAR 

bearing the CD28 transmembrane domain and CD28 and CD3ζ intracellular domains 

(28z) (Siriwon et al., 2018). Briefly, the anti-CD19 sequence was based on a previously 

reported CD19 CAR (Milone et al., 2009). The codon optimized CD19 single-chain 

fragment variable (scFv) sequence and human CD8 hinge region (aa 138-184) was 

synthesized by Integrated DNA Technologies (Coralville, IA). The CD19/CD8 hinge gene 

block was amplified by PCR and added upstream of the transmembrane and intracellular 

domains of human CD28 (aa 153-220) followed by the intracellular domain of human 

CD3ζ (aa 52-164). The CD8 leader sequence and HA-tag were inserted upstream of the 

CD19 scFv to allow for labeling and detection of CAR-expressing cells (Supplemental 

Figure 1a). To make the lentiviral vector, this sequence was inserted downstream of the 



 

human ubiquitin-C promoter in the lentiviral plasmid pFUW using Gibson assembly (Dai, 

Xiao, Bryson, Fang, & Wang, 2012).  

To make the CD3ζ-only CAR (Z), PCR was used to amplify the sequence from the N-

terminal of the CAR construct through the scFv region, as well as the CD3ζ intracellular 

domain. The codon optimized CD8 transmembrane domain sequence was synthesized 

by IDT-DNA and inserted between the scFv and CD3ζ PCR products using PCR. The 

CAR gene fragment was then reinserted into the lentiviral plasmid using Gibson 

assembly.  

Lentiviral vectors were prepared by transient transfection of 293T cells using a 

standard calcium phosphate precipitation protocol (Dai et al., 2012). The viral 

supernatants were harvested 48 hours post-transfection and filtered through a 0.45 μm 

filter (Corning, Corning, NY). For transduction, Jurkat T cells were mixed with fresh viral 

supernatant and centrifuged for 90 minutes at 1050xg at room temperature. A stable 

CD19-expressing K562 line was generated in a similar way by transducing parental K562 

cells with a lentiviral vector encoding the cDNA of human CD19 (Siriwon et al., 2018).  

To get populations of cells that express the transduced protein at different levels, 

CAR-expressing Jurkat T cells and CD19-expressing K562 cells were sorted into high, 

medium, and low populations (referred to as ZHi, ZMed, ZLow, 28ZHi, 28ZMed, 28ZLow, 19Hi, 

19Med, and 19Low, respectively). To do this, the cells were stained with fluorophore-

conjugated antibodies. T cells were first stained with anti-HA antibody for 30 minutes at 

4°C, followed by three washes with PBS. The cells were then stained with a secondary 

alexa-647 conjugated anti-rabbit antibody for 15 minutes at 4°C, followed by three more 

washed with PBS. CD19 cells were stained with PE conjugated anti-CD19 followed by 



 

three washed with PBS. All stained cells were then sorted into the three groups using the 

BD SORP FACS Aria I cell sorter at the USC stem cell flow cytometry core 

(Supplemental Figure 1b). 

 

7. T cell stimulation and ppERK analysis 

CAR-expressing Jurkat T cells were stimulated by either HA antibody or CD19-

expressing cells. For antibody stimulation, 0.1x106 CAR-expressing cells were incubated 

with various amounts of anti-HA antibody in 200 µl in 96 well plates in a 37°C water bath. 

For cellular stimulation, 0.1x106 CAR-expressing Jurkat T cells were combined with 

various concentrations of CD19-expressing K562 cells in 200 µl in 96 well plates. After 

the cells were mixed, they were centrifuged at 1000xg for 10 seconds before moving 

directly into a 37°C water bath. Doubly phosphorylated ERK was measured following the 

work of Altan-Bonnet (Altan-Bonnet & Germain, 2005). Briefly, to fix the intracellular 

stimulation reactions after a given amount of time, cells were moved to an ice bath, and 

ice cold 16% paraformaldehyde solution was added to a final concentration of 4% for 20 

minutes. The cells were then centrifuged and resuspended in 100% ice-cold methanol. 

The cells were incubated at -20°C for at least 30 minutes, followed by 3 washes in 200 µl 

FACS staining buffer (5% FBS in PBS). Cells were then stained with fluorophore 

conjugated phospho-ERK antibody for 30 minutes at 4°C in the dark, followed by 3 

washes with 200 µl PBS. Fluorescence signal was analyzed using the Miltenyi Biotec flow 

cytometer and all FACS data were analyzed using FlowJo software. Small Jurkat cells 

were distinguishable from the large K562 target cells based on their low autofluorescence 

in the forward and side scatter channels. 



 

Upon T cell activation, ERK exhibits a digital (on/off) response. Typically, when ERK 

is measured as a readout of T cell activation, the percent of ERK positive cells in a 

population is measured. The response time of the population can then be calculated 

based on the fit of the phosphorylation time course to a standard sigmoidal curve.  In this 

work, we assume the ERK response time is equal to the time it takes to reach half of the 

maximal level of phosphorylation (EC50). This depends on both the amount of antigen 

and the amount of CAR expression (Supplemental Figure 1c).  In our model, we assume 

that the deterministic differential equations are representative of the average response of 

the T cell population. Therefore, we directly compare the ERK response time in the model, 

which represents the response time of an average cell in the population, to the half 

maximal cellular population response time. This comparison has previously been shown 

to relate well (Altan-Bonnet & Germain, 2005).  

 

8. Experimental data curve fitting 

Graphpad Prism was used to fit the phosphorylated ERK response time from our 

experimental data to a standard sigmoidal curve, using the non-linear regression curve fit 

function. 
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Supplemental Figures: 
 

 

Figure S1: CAR and CD19 expression and T cell activation. Related to Figure 4. 

a) Schematic of the CAR lentiviral vectors. Sequences encoding anti-CD19 CARs were inserted 

downstream of the Ubi promoter in the FUW lentiviral vector.  

b) (Left, middle) CAR expression in Jurkat T cells. CARs were expressed using lentiviral vectors and the 

resulting populations were sorted into high (green), medium (blue) and low (red) expressing 

populations. The grey area shows the isotype control staining. (Right) CD19 expression in K562 cells. 

CD19 was expressed using a lentiviral vector and the resulting population was sorted into high 

(green), medium (blue) and low (red) expressing populations. The grey area shows the isotype 

control staining.  

c) The ERK response time with varying populations of CD19-expressing cells. High, medium, and low 

CAR-expressing cell populations were mixed at a 1:1 ratio with high, medium, and low CD19 K562 

cell populations, and the percentage of ERK positive cells was measured over time. A sigmoidal 

curve was fit to the time course data, and the ERK response time (EC50) was calculated.  



 

 
Figure S2: Effect of SHP1 on ppERK CAR T cell activation. Related to Figure 3. Antigen and SHP1 

concentrations were varied in the model and the ERKERK response time was calculated. The concentration 

of SHP1 which qualitatively matches the experimental data in Figure 4B is shown in red.  
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Figure S3: Analysis of CD28 combination mechanisms. Related to Figure 5.  

a) ERK response time as a function of CD3ζ concentration for the Z (blue) or 28z (red) CAR in which 

CD28 activation allows for both Grb2 and GADS to bind.   

b) ERK response time as a function of CD3ζ concentration for the Z (blue) or 28z (red) CAR in which the 

only effect of CD28 activation allows for both Grb2 to bind and for the increased rate of CD3ζ 

phosphorylation.   

c) ERK response time as a function of CD3ζ concentration for the Z (blue) or 28z (red) CAR in which the 

only effect of CD28 activation allows for both GADS to bind and for the increased rate of CD3ζ 

phosphorylation.   

d) ERK response time as a function of CD3ζ concentration for the Z (blue) or 28z (red) CAR in which the 

only effect of CD28 activation allows for both GADS and Grb2 to bind as well as increasing rate of CD3ζ 

phosphorylation.   



 

Table S2: Model initial concentrations, Related to Figure 1  

 

Initial Concentrations 

Species Literature 
values 

Literature 
units 

Model 
value Units Reference 

'Ant_T' -  30 molec/µm2 calculated  
'CD45_T' 361–1,805 molec/µm2 1000 molec/µm2 Hui and Vale 2014 
'LCK_T' 144–433 molec/µm2 250 molec/µm2 Hui and Vale 2014 

'CD3z_T' 
108–361 

(TCR) molec/µm2 500 molec/µm2 Hui and Vale 2014 
'CD28_T' -  500 molec/µm2 Hui and Vale 2014 
'LAT_T' 870 molec/µm2 870 molec/µm2 Hui and Vale 2017 

'Gads_T' 0.8 uM 540 molec/µm2 Hui and Vale 2017 
'ZAP70_T' 0.9 uM 600 molec/µm2 Hui and Vale 2017 
'SLP76_T' 0.3 uM 300 molec/µm2 Hui and Vale 2017 
'p85a_T' 0.2 uM 120 molec/µm2 Hui and Vale 2017 
'CSK_T' 0.05 uM 25 molec/µm2 Hui and Vale 2017 

'Grb2_T' 50-600 molec/µm3 800 molec/µm2 Hui and Vale 2017 
'SOS_T' 20-60 molec/µm3 60 molec/µm2 Das et al. 2009 
'Ras_T' 60-960 molec/µm3 600 molec/µm2 Birtwistle et al. 2012 
'RAF_T' 0.2 µm 150 molec/µm2 Birtwistle et al. 2012 
'MEK_T' 0.2 µm 150 molec/µm2 Birtwistle et al. 2012 
'ERK_T' 0.36 µm 250 molec/µm2 Birtwistle et al. 2012 

'RasGAP_T' 10 molec/µm3 20 molec/µm2 Das et al. 2009 
'PLCg_T' 12500 molec/µm3 350 molec/µm2 Das et al. 2009 

'RasGRP_T' 1500 molec/µm3 1500 molec/µm2 Das et al. 2009 
'PIP2_T' 1250 molec/µm2 1250 molec/µm2 Das et al. 2009 
'DAG_T' -  0 molec/µm2 formed from PIP2 cleavage  
SHP1_T' 3.00E+05 molecules  400 molec/µm2 Lipniacki et al. 2008 

      
Conversion Factors  

T cell radius  6 µm    
T cell surface area  810 µm2   Hui and Vale 2014 

T cell volume  900 µm3    
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