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Background. Antibiotics, such as inhaled tobramycin, are used to eradicate new-onset Pseudomonas aeruginosa (PA) infections 
in patients with cystic fibrosis (CF) but frequently fail due to reasons poorly understood. We hypothesized that PA isolates’ resistance 
to neutrophil antibacterial functions was associated with failed eradication in patients harboring those strains.

Methods. We analyzed all PA isolates from a cohort of 39 CF children with new-onset PA infections undergoing tobramycin 
eradication therapy, where 30 patients had eradicated and 9 patients had persistent infection. We characterized several bacterial 
phenotypes and measured the isolates’ susceptibility to neutrophil antibacterial functions using in vitro assays of phagocytosis and 
intracellular bacterial killing.

Results. PA isolates from persistent infections were more resistant to neutrophil functions, with lower phagocytosis and intra-
cellular bacterial killing compared to those from eradicated infections. In multivariable analyses, in vitro neutrophil responses were 
positively associated with twitching motility, and negatively with mucoidy. In vitro neutrophil phagocytosis was a predictor of per-
sistent infection following tobramycin even after adjustment for clinical risk factors.

Conclusions. PA isolates from new-onset CF infection show strain-specific susceptibility to neutrophil antibacterial functions, 
and infection with PA isolates resistant to neutrophil phagocytosis is an independent risk factor for failed tobramycin eradication.

Keywords.  cystic fibrosis; Pseudomonas aeruginosa; antibiotic eradication therapy; neutrophil phagocytosis.

Cystic fibrosis (CF) is a multisystem genetic disorder caused by 
mutations in the gene encoding the cystic fibrosis transmem-
brane conductance regulator (CFTR). CFTR dysfunction leads 
to impaired mucociliary clearance and airway mucus plugging, 
which favor bacterial colonization and chronic infection [1]. 
Chronic infections with Pseudomonas aeruginosa (PA), the pre-
dominant opportunistic respiratory pathogen in CF, are associ-
ated with lung function decline and worse clinical outcomes [2]. 

To avoid progression to chronic infection, new-onset PA infec-
tions are routinely treated with antibiotics, most commonly in-
haled tobramycin in North America [3, 4]. Unfortunately, even 
with early interventions, antibiotic eradication therapy fails and 
PA infections persist in 28%–40% of patients [3–7].

Several studies to date in different pediatric CF cohorts—
namely, in the US Early Pseudomonas Infection Control (EPIC) 
study [8, 9], the Netherlands and Denmark [10], Australia [11], 
and our study cohort at the Hospital for Sick Children in Canada 
[12]—have examined clinical and microbiological parameters 
to identify predictors of persistent infection following eradica-
tion therapy. Although these studies varied in design and sam-
pling method for the recovery of PA, none found significant 
differences in the clinical characteristics (age, age at diagnosis, 
sex, CFTR genotypes, eradication treatments, and lung func-
tion) between patients with successful eradication and those 
with persistent infection.

Interestingly, Mayer-Hamblett et  al [9] (EPIC study) and 
Vidya et al [12] (Hospital for Sick Children cohort study) also 
investigated phenotypic characteristics of the infecting PA 
isolates for their association with failed eradication therapy. 
Bacterial phenotypes commonly associated with chronic 
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infections, namely mucoidy and lack of twitching motility, as 
well as wrinkly colonies surface and irregular edges, showed 
association with eradication failure [9, 12]. Such bacterial 
phenotypes may impair the efficacy of antimicrobials [13, 
14], but also evade host defense mechanisms that are impor-
tant for bacterial clearance [15, 16]. Neutrophils are innate 
immune cells that carry out phagocytic and bacterial killing 
functions critical to PA eradication and enhance the efficacy 
of antibacterial therapy [17, 18]. Multiple bacterial factors, 
such as surface molecules [19], motility appendages [20, 21], 
and overproduction of exopolysaccharides (EPSs; alginate, 
Psl and Pel) [22–24], alter neutrophil-mediated antibacte-
rial clearance. Bacterial characteristics of PA isolates at the 
time of new-onset infection may thus be determinants of 
neutrophil-PA interactions and be associated with outcomes 
of eradication therapy in CF patients.

Although many studies have investigated host-PA inter-
actions in experimental in vitro and animal models of in-
fection, few have linked these findings to clinical outcomes 
[10, 25–28]. In this study, we characterized all PA isolates 
collected from new-onset infections of children with CF 
from the Hospital for Sick Children cohort study [12] using 
in vitro assays for neutrophil phagocytosis and intracellular 
bacterial killing. We sought to identify the bacterial pheno-
types that contributed most to in vitro resistance to neutro-
phil antibacterial functions, and to determine whether such 
resistance was associated with failed eradication therapy in 
CF patients.

MATERIALS AND METHODS

Cohort Design

Bacterial isolates and clinical data from a prospective co-
hort of CF children followed at the Hospital for Sick Children 
(Toronto, Canada) were used for this study [12]. Patients in-
cluded in this study were (1) 5–18 years old, (2) able to produce 
sputum, and (3) diagnosed with new-onset PA infection during 
the period 2011–2014, and all were treated with inhaled tobra-
mycin twice per day for 28 days. All patients from this cohort 
were included except for those with PA isolates with tobramycin 
minimum inhibitory concentration (MIC) >2 μg/mL to exclude 
tobramycin resistance as a cause of eradication failure and be-
cause the in vitro neutrophil assays can only be performed 
on aminoglycoside-susceptible isolates. New-onset PA infec-
tion was defined as a PA-positive sputum culture following at 
least 3 PA-negative sputum cultures in the previous 12 months. 
A sputum culture (posttreatment) was collected 1 week after the 
end of tobramycin therapy to determine the outcome of eradica-
tion therapy, based on previous definitions [3, 5]. The infection 
was considered “persistent” if the posttreatment sputum culture 
was positive for PA, and “eradicated” if the posttreatment cul-
ture was negative [29]. This study was approved by the research 
ethics board (REB) at the Hospital for Sick Children.

PA Clinical Isolates

All PA clinical isolates were recovered from patients’ sputum 
collected prior to the initiation of inhaled tobramycin as pre-
viously described [12]. In brief, sputum samples were hom-
ogenized with sputolysin and stored at –80°C. PA isolates 
were recovered from frozen sputum, included multiple colony 
morphotypes when present, and were confirmed by matrix-
assisted laser desorption/ionization–time of flight mass spec-
trometry for species identification.

Phenotypic Characterization of PA Isolates

Phenotypic assays for twitching and swimming motility, bio-
film formation by crystal violet (CV) assay, and mucoidy status 
were done as previously reported [12]. In brief, mucoidy was 
determined by colony morphology following growth on yeast 
extract mannitol (YEM) agar for 24–48 hours. Swimming mo-
tility was determined by inoculating a single colony into 0.3% 
Luria-Bertani (LB) agar and measuring the diameter (mm) of 
the zone of bacterial growth after overnight incubation at 37°C. 
Twitching motility was determined by inoculating a single 
colony into 1% thin LB agar plate and measuring the diameter 
(mm) of the twitching zone following staining with 0.1% CV. 
Biofilm formation was measured by inoculating polystyrene 
96-well plates with 100  µL of overnight bacteria cultures di-
luted 1:100 in LB medium. After static incubation overnight at 
37°C, the adherent biofilm biomass was stained with 0.1% CV, 
resolubilized with 95% ethanol, and measured at optical density 
(OD) 600 nm. The Congo red binding assay was used to assess 
EPS-mediated bacterial aggregation in liquid culture [30]. One 
hundred microliters of overnight PA cultures was diluted into 
4  mL Vogel-Bonner minimal medium  (VBMM) containing 
40 µg/mL Congo red (Sigma catalog number C6767) and incu-
bated for 18 hours at 37°C with shaking at 250 rpm. Bacterial 
cells were then spun down and the absorbance of the superna-
tant was measured at OD at 490 nm (OD490nm). The Congo red 
binding was calculated as (OD490nm [VBMM + Congo red con-
trol] – OD490nm [sample]).

In Vitro Neutrophil Phagocytosis and Intracellular Bacterial Killing Assays

A gentamicin protection assay was used to measure the phag-
ocytic uptake of PA isolates by human neutrophil–like cells de-
rived from immortalized HL-60 cells. In brief, HL-60 cells were 
cultured in Iscove’s modified Dulbecco’s medium (Wisent) and 
differentiated with 1.3% dimethyl sulfoxide and 2.3 µM all-trans 
retinoic acid for 3  days to generate neutrophil-like cells (dHL-
60s) with >95% viability. Bacteria were grown in 5 mL LB me-
dium overnight (18 hours) at 37°C with shaking at 250  rpm, 
then spun down, washed twice with Hanks’ balanced salt solu-
tion without calcium, magnesium, and phenol red (Wisent), and 
diluted to 107 colony-forming units (CFU)/mL. Two hundred 
fifty microliters of the diluted bacterial suspension was opson-
ized with 20% human serum (Millipore Sigma) and coincubated 
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with 2.5  ×  105 dHL-60s at a multiplicity of infection of 10 for 
30 minutes at 37°C. Following this incubation, 100 µg/mL gen-
tamicin was added for another 30 minutes (T = 60 minutes) for 
the phagocytosis assay or 90 minutes (T = 120 minutes) for the 
intracellular bacterial killing assay. Cells were then washed twice, 
lysed with 0.1% Triton, and plated on LB agar for enumeration 
of viable intracellular bacteria by counting CFUs after overnight 
incubation at 37°C. The phagocytosis index was calculated as the 
number of internalized bacteria at T = 60 divided by total bac-
teria at T = 0. The intracellular bacterial killing was calculated 
as the number of internalized bacteria at T = 60 minus T = 120, 
then divided by total bacteria at T = 0. All experiments were done 
with at least 4 replicates in at least 2 independent experiments.

Statistical Analyses

Comparisons were performed using the Mann–Whitney non-
parametric test or χ 2 test as indicated. Univariable Spearman 
correlation was first used to measure the association between 
each bacterial phenotype and in vitro neutrophil responses 
(phagocytosis or intracellular bacterial killing), and those with a 
P value ≤ .2 were included in a subsequent multivariable model. 
A random-effects model was used to determine the association 
between different bacterial phenotypes and in vitro neutrophil 
responses while accounting for clustering due to occurrence of 
multiple isolates per patient. A  logistic regression model was 
used to determine the association between in vitro neutrophil 
responses and a persistent infection outcome. For the adjusted 
multivariable logistic regression model, clinical parameters or 
bacterial phenotypes were considered based on prior literature 
or selection using the Spearman correlation above, and only 1 
additional variable was tested in the model at a time given the 
power of our limited sample size. Statistical comparisons and 
regression analyses were performed using SPSS version 26 soft-
ware (IBM SPSS, Chicago, Illinois). A P value of ≤.05 was con-
sidered significant.

RESULTS

Characteristics of Patients With Eradicated or Persistent PA Infections

From a total of 43 eligible patients, 39 patients were analyzed 
in this study, while 4 patients harboring 6 isolates with tobra-
mycin MIC  >2 were excluded. The study thus included 30 
patients with eradicated infections and 9 patients with per-
sistent infections (ie, failed tobramycin eradication therapy), 
resulting in 52 eradicated PA isolates and 19 persistent PA iso-
lates. Several patients were infected with >1 morphologically 
distinct PA isolate (morphotypes), with a median of 2 (range, 
1–3) morphotypes in patients with persistent infections, and a 
median of 1 (range, 1–4) morphotype in patients with eradi-
cated infections (Supplementary Figure 1). Consistent with our 
previous report [12], demographic and baseline clinical char-
acteristics were similar between patients who failed eradication 
therapy and those who succeeded (Table 1).

PA isolates from patients with persistent infections are more resistant to 

neutrophil phagocytosis and intracellular bacterial killing compared to 

those from patients with eradicated infections

We compared the phagocytic uptake and intracellular bac-
terial killing by dHL-60s of PA isolates from the eradicated 
group to those from the persistent group. Since some patients 
were infected with >1 PA isolate, we analyzed our data by 
combining the neutrophil assay data for all morphotypes 
in each patient. As shown in Figure 1, the average phago-
cytic index was >2-fold lower (9.1% vs 19.5%; P = .0003) in 
patients with persistent infections compared to those with 
eradicated infections. We measured the reduction in neu-
trophil intracellular bacterial load as a measure of intracel-
lular bacterial killing and found it to be 2.5-fold lower (2.6% 
vs 6.7%; P = .018) in the persistent group compared to the 
eradicated group. Notably, similar results were obtained 
when we used the maximal value (Supplementary Figure 2A 

Table 1. Baseline Characteristics of Study Patients by Persistent or Eradicated Status

Characteristic Persistent (n = 9) Eradicated (n = 30) P Value 

Age, y, median (range) 10 (6.3–17.1) 11.3 (6.5–17.5) .52

Female sex, No. (%) 4 (44) 18 (60) .41

Age at diagnosis, No. (%)    

 <2 y 8 (89) 21 (70) .08

 >2 y 1 (11) 9 (30)  

FEV1 % predicted, median (range) 85.8 (55.4–120.5) 88.8 (39.4–126.8) .52

Genotypes, No. (%)    

 Homozygous ΔF508 4 (44) 16 (53) .83

 Heterozygous ΔF508 3 (33) 10 (33)  

 Other 2 (22) 4 (13)  

Pancreatic insufficiency, No. (%) 8 (89) 29 (97) .28

CFRD, No. (%) 1 (11) 2 (6.7) .91

BMI z score, median (range) –0.55 (–1.63 to 1.21) –0.07 (–1.44 to 2.44) .51

Data were previously published in Vidya et al [12] and modified accordingly to the current study population.

Abbreviations: BMI, body mass index; CFRD, cystic fibrosis–related diabetes mellitus; FEV1, forced expiratory volume in 1 second.
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and 2B) or the median (Supplementary Figure 2C and 2D) 
of combined neutrophil data from each patient. We also ob-
served similar findings when all PA isolates were analyzed 
independently (Supplementary Figure 3) and noted that the 
phagocytic index was significantly correlated with intracel-
lular bacterial killing (r = 0.70, P < .0001; Figure 2). These re-
sults thus indicated that patients who fail eradication therapy 
harbor PA isolates that are more resistant to neutrophil anti-
bacterial functions than patients with successful eradication.

Loss of Twitching Motility and Mucoidy Are Associated With Impaired 

Neutrophil Antibacterial Functions

We first characterized the flagellum-mediated swimming mo-
tility, type IV pilus–mediated twitching motility, mucoidy (al-
ginate overproduction), biofilm formation, and Congo red 
binding (Psl and Pel EPS-mediated bacterial aggregation) in all 
PA isolates (Table 2). In initial univariable analyses, neutrophil 
phagocytosis was only significantly correlated with twitching 
motility (r = 0.43, P < .001) and not any other bacterial pheno-
type (Table 3). Neutrophil intracellular bacterial killing was sig-
nificantly associated with twitching motility (r = 0.43, P < .001), 
mucoidy (r = 0.26, P = .03), and Congo red binding (r = 0.32, 
P < .01).

Next, since some patients have multiple morphologically 
distinct PA isolates, which could lead to clustering due to 
repeated measures, we calculated the intraclass correlation 
(ICC) for neutrophil phagocytosis and bacterial killing in our 
dataset. With an ICC value of 0.5, our data showed moderate 
clustering of neutrophil measurements within each patient; 
that is, neutrophil responses elicited by PA isolates from the 
same patient are more similar to each other than those be-
tween different patients. To account for this data clustering, 
we used a random-effects model to determine the relation-
ship between neutrophil phagocytosis or intracellular bac-
terial killing, and the 3 bacterial phenotypes identified in 
univariate analyses with a P ≤ .2, namely twitching, mucoidy, 
and Congo red binding (Table 4). We found that twitching 
motility (r = 0.27, P = .02) and mucoidy (r = –5.60, P = .04) 
were significantly associated with neutrophil phagocytosis, 
that is, a 1-mm increase in twitching was associated with a 
0.27% increase in phagocytosis, and the presence of mucoidy 
was associated with an average 5.6% reduction in phagocy-
tosis. However, Congo red binding showed no association 
with phagocytosis. Twitching motility (r = 0.20, P = .03) and 
mucoidy (r = –4.53, P = .03) were also significantly associ-
ated with intracellular bacterial killing (Table 4).

Multivariate Analysis to Predict Persistent Infection Following Inhaled 

Tobramycin Therapy

We used a logistic regression model to assess whether the resist-
ance of PA isolates to neutrophil phagocytosis is an independent 
predictor of failed eradication therapy after adjusting for other 
covariables. In patients infected with >1 PA morphotype, we 
used the mean of neutrophil results as done for Figure 1. We 
observed a trend toward association between in vitro intra-
cellular bacterial killing and persistent infection, but this did 
not reach statistical significance. However, in vitro neutro-
phil phagocytosis was a significant predictor of persistent in-
fection (odds ratio, 0.76 [95% confidence interval, .62–.94]; 
P = .01), indicating that every percentage increase in neutrophil 
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Figure 2. Neutrophil phagocytosis is significantly associated with intracellular 
bacterial killing. Association was calculated by Spearman correlation coefficient.
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Figure 1. Pseudomonas aeruginosa isolates from patients with persistent infections exhibit lower neutrophil antibacterial functions compared to those from patients with 
eradicated infection. Neutrophil phagocytosis (A) and intracellular bacterial killing (B) of the persistent (n = 9 patients) group and the eradicated (n = 30 patients) group. The 
data were analyzed per patient by averaging the neutrophil results of all P. aeruginosa isolates from each patient. Results are shown as median and interquartile range. 
Statistical comparisons were performed using Mann–Whitney test (*P < .05, ***P < .001).

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiab102#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiab102#supplementary-data
http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiab102#supplementary-data


1890 • jid 2022:225 (1 june) • Kwong et al

phagocytosis was associated with a 24% reduction in the odds 
of a persistent infection outcome (Table 5). In addition, we fur-
ther determined that in vitro neutrophil phagocytosis remained 
a significant predictor of failed eradication therapy even after 
adjustment for other clinical parameters (age, sex, age at diag-
nosis, forced expiratory volume in 1 second, body mass index, 
CFTR genotypes, pancreatic insufficiency, cystic fibrosis–re-
lated diabetes mellitus) and bacterial phenotypes (twitching, 
mucoidy) (Table 5).

DISCUSSION

Although several studies have previously reported on the phe-
notypic characteristics of PA isolates in patients undergoing 
eradication therapy [9–12, 31], our study is the first to examine 
the association between bacterial–neutrophil interactions (ie, 
phagocytosis and intracellular killing) and outcomes of PA anti-
microbial eradication therapy in patients with CF. Our study 
showed that PA isolates from patients who failed tobramycin 
eradication therapy were more resistant to neutrophil phagocy-
tosis and intracellular bacterial killing than those from patients 

with successful eradication. Furthermore, loss of twitching mo-
tility and mucoidy were associated with resistance to neutrophil 
antibacterial functions.

Among the few studies that have characterized bacte-
rial phenotypes in patients undergoing eradication therapy, 
Douglas et  al also identified a high proportion of mucoidy 
among isolates from new-onset infections (18.2%), and 3 of 6 
isolates from patients who failed eradication were mucoid [11]. 
Interestingly, Mayer-Hamblett et al tested 22 bacterial pheno-
types and reported that wrinkly colony surface and irregular 
colony edges morphologies were associated with eradication 
failure in the 194 participants from the EPIC trial; they con-
cluded that eradication failure was associated with PA pheno-
types typical of chronic infection [9] and host adaptation [32, 
33]. Whether the occurrence of such “chronic phenotypes” re-
flect a preexisting infection [34], acquisition of shared strains, 
or patient-to-patient transmission [35] remains unknown. 
A recent study of our cohort by Stapleton et  al reported that 
41% of CF patients with new-onset PA infection shared strains 
with other patients based on whole genome sequencing of their 

Table 2. Comparison of Bacterial Phenotypes in Persistent Versus Eradicated Pseudomonas aeruginosa Isolates

PA Phenotypes Persistent PA (n = 19) Eradicated PA (n = 52) P Value

Biofilm production (OD595nm), median (IQR) 0.21 (0.15−0.24) 0.21 (0.10−0.32) .97

Twitching, mm, median (IQR) 18.0 (3.7−20.8) 26.9 (19.3−36.7) <.01

Swimming, mm, median (IQR) 11.2 (0−17) 13.9 (10.1−16.0) .33

Mucoidy, No. (%) 12 (63) 18 (35) .03

Congo red binding (OD495nm), median (IQR) −0.25 (−0.32 to −0.21) −0.23 (−0.31 to −0.15) .14

Statistical comparisons were performed using Mann–Whitney or χ 2 test.

Abbreviations: IQR, interquartile range; OD, optical density; PA, Pseudomonas aeruginosa.

Table 3. Correlation Between Bacterial Phenotypes and In Vitro Neutrophil Antibacterial Responses in Univariable Analysis

PA Phenotypes

Phagocytosis Intracellular Bacterial Killing

Coefficient P Value Coefficient P Value

Twitching 0.43  <.001 0.43  <.001

Swimming 0.07 .55 0.05 .69

Mucoidy –0.19 .09 –0.26 .03

Congo red binding 0.18 .13 0.32  <.01

The association between each bacterial phenotype and neutrophil phagocytosis or intracellular bacterial killing was calculated using the Spearman correlation coefficient.

Abbreviation: PA, Pseudomonas aeruginosa.

Table 4. Association Between Bacterial Phenotypes and In Vitro Neutrophil Antibacterial Responses in Multivariable Analysis

PA Phenotype

Phagocytosis Intracellular Bacterial Killing

Coefficienta (95% CI) P Value Coefficienta (95% CI) P Value 

Twitching 0.27 (.04–.51) .02 0.20 (.02–.38) .03

Mucoidy –5.60 (–11.04 to –.14) .04 –4.53 (–8.63 to –.42) .03

Congo red binding –13.94 (–49.81 to 21.11) .44 –8.06 (–35.31 to 19.17) .56

Abbreviations: CI, confidence interval; PA, Pseudomonas aeruginosa.
aThe regression coefficient was calculated using a random-effects model fitted on all isolates (n = 19 persistent and n = 52 eradicated isolates).
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PA isolates, and patient-to-patient transmission was potentially 
involved in a third of patients with shared strains [36], a pro-
portion similar to results reported by Marvig et al [37].

Numerous PA phenotypes modulate host–pathogen inter-
actions important to bacterial clearance, but few studies have 
examined whether such interactions are associated with in-
fection outcomes in patients with CF. Tramper-Stranders 
et  al found no differences in bacterial motility, protease, or 
pyocyanin production between persistent and eradicated iso-
lates, but did observe that persistent isolates caused greater 
cytotoxicity in IB3-1CF bronchial cells compared to the erad-
icated isolates [10]. In a study that examined bronchoalveolar 
lavage fluid (BALF) at the time of new-onset PA infection in a 
cohort of 26 children with CF, Douglas et al reported a trend 
toward higher neutrophil counts, neutrophil elastase, and IL-1ß 
in the BALF of patients who failed eradication therapy [11].

Neutrophils are the primary phagocytic cells recruited 
to eradicate PA in the lung [16, 17], yet appear ineffective 
at eliminating PA in chronic stages of infections [38]. In 
addition to the inflammatory milieu of the CF lung, neu-
trophil functions are also modulated by the CF-adapted 
PA phenotypes commonly encountered in chronic infec-
tions. Several studies have examined how phagocytic re-
sponses differ upon infection with CF-adapted clinical 
isolates. Mahenthiralingam et  al originally observed that 
chronic infection PA isolates commonly lacked swimming 
and twitching motility, were mucoidy, and were resistant 
to nonopsonic phagocytosis by murine macrophages, com-
pared to their clonally related isolates recovered from new-
onset PA infection [39]. Two more recent studies compared 
neutrophil extracellular trap (NET) formation in response 
to pairs of clonally related PA isolates from early and 
chronic CF infections, and found that CF adapted isolates 
elicited significantly less NET formation [40, 41]. However, 
none of these studies investigated whether the neutrophil 
responses to early-infection PA isolates were predictive of 
subsequent clinical outcomes.

Neutrophil phagocytosis and intracellular killing of bac-
teria are complex processes that involve interactions with nu-
merous bacterial surface molecules and motility appendages 
[42]. For example, complement deposition, opsonization, and 
reactive oxygen species–mediated killing are hindered by the 
overexpression of EPSs such as alginate in mucoid isolates, and 
Psl and Pel in wrinkly colony isolates [24, 43, 44]. Furthermore, 
pili act as ligands for nonopsonic phagocytosis [45], and 
nonmotile mucoid PA are resistant to nonopsonic phagocytosis 
[22]. The association of loss of twitching motility and mucoidy 
with impaired neutrophil-mediated bacterial clearance in 
our PA clinical isolates is thus mechanistically plausible and 
could increase the risk of persistent infection in CF patients. 
Future studies with larger collections and more comprehen-
sive phenotyping of PA isolates may identify other bacterial 

characteristics associated with impaired neutrophil antibacte-
rial functions.

 In a recent study of a subset of our cohort, Beaudoin et al 
observed higher levels of the exopolysaccharide Psl in biofilm-
grown persistent PA isolates [31]. The wrinkly colony mor-
phology described by Mayer-Hamblett et  al to be associated 
with eradication failure is also typically caused by the over-
production of exopolysaccharides Psl and Pel [9, 13]. Since the 
overproduction of Psl and/or Pel reduces complement depo-
sition, confers resistance to neutrophil antibacterial functions 
[24], and promotes  bacterial persistence in mouse infection 
models [46], these observations raised the possibility that high 
Psl and/or Pel expression may be associated with eradication 
failure through their effects on neutrophil functions. However, 
using the Congo red aggregation assay [30], we found no differ-
ences between persistent and eradicated isolates, nor any asso-
ciation with differential neutrophil responses.

Our study has several limitations. Chronic PA infections 
of the CF lung are genetically and phenotypically highly di-
verse, and occur in the context of polymicrobial communities. 
Multiple PA sublineages often coexist [47, 48], and Stapleton 
et  al reported that mixed strains were found in 16% of new-
onset PA infections [36]. Since we only tested morphologically 
distinct PA clones recovered from each single sputum sample, 
we may have overlooked some of the phenotypic diversity. 
However, when multiple PA morphotypes were present, we 
analyzed all neutrophil assay results, using either the maximal, 
the median, or the mean value for each patient and found sim-
ilar results, suggesting that the in vitro neutrophil phenotypes 
were robust measures. Additionally, the status of persistent in-
fection was defined based on a positive sputum culture after the 
completion of tobramycin treatment, without confirmation by 
whole genome sequencing to exclude the possibility of a new 
PA infection. We chose to test neutrophil responses using the 
HL-60 cell lines to obtain robust and reproducible measure-
ments of neutrophilic functions in response to a large number 
of PA isolates. However, we recognize that our results have not 
been validated in primary human neutrophils, and our exper-
imental system does not account for acquired or intrinsic neu-
trophil defects associated with the CF lung milieu or CFTR 
defect [49, 50]. Finally, the multivariable analyses were limited 
by the small sample size, particularly for patients with persistent 
infections. Our study sample size only had sufficient power for 
1 additional variable to be included in the logistic regression 
analyses, leading us to examine the effect of different clinical 
parameters and bacterial phenotypes in a sequential manner.

Our study suggests that decreased neutrophil phagocytosis 
of PA is an independent predictor of failed tobramycin eradi-
cation. Whether in vitro neutrophil assays could be used in a 
clinical setting remains unknown, and further studies are re-
quired to address the potential polyclonal nature of new-onset 
PA infections and to validate our results in an independent 
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cohort. Nonetheless, our results provide biological insights into 
why eradication therapy might fail in CF patients. Although 
the mechanisms underlying the failure of tobramycin eradica-
tion are likely multifactorial, our study supports the notion that 
strain-specific PA–neutrophil interactions are important de-
terminants of the outcome of inhaled tobramycin eradication 
treatment. These results thus highlight the possibility that novel 
nonantibiotic therapies that target PA–neutrophil interactions 
and enhance neutrophil-mediated antibacterial functions should 
be considered to improve the outcome of PA eradication in CF.
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