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Abstract

Recent advances in neuroimaging have augmented numerous findings in the human reasoning process but have yielded
varying results. One possibility for this inconsistency is that reasoning is such an intricate cognitive process, involving
attention, memory, executive functions, symbolic processing, and fluid intelligence, whereby various brain regions are
inevitably implicated in orchestrating the process. Therefore, researchers have used meta-analyses for a better
understanding of neural mechanisms of reasoning. However, previous meta-analysis techniques include weaknesses such
as an inadequate representation of the cortical surface’s highly folded geometry. Accordingly, we developed a new
meta-analysis method called Bayesian meta-analysis of the cortical surface (BMACS). BMACS offers a fast, accurate, and
accessible inference of the spatial patterns of cognitive processes from peak brain activations across studies by applying
spatial point processes to the cortical surface. Using BMACS, we found that the common pattern of activations from
inductive and deductive reasoning was colocalized with the multiple-demand system, indicating that reasoning is a
high-level convergence of complex cognitive processes. We hope surface-based meta-analysis will be facilitated by BMACS,
bringing more profound knowledge of various cognitive processes.

Key words: Bayesian meta-analysis of the cortical surface (BMACS), functional magnetic resonance imaging, inductive and
deductive reasoning, integrated nested Laplace approximation (INLA), log-Gaussian Cox process

Introduction
Reasoning is one of the uniquely human cognitive processes
(Penn et al. 2008; Heit and Rotello 2010). Among different
categories of reasoning, inductive reasoning involves inferring
underlying relations from several instances (Wertheim and
Ragni 2018). Existing knowledge is intricated with inductive
reasoning for making predictions about novel objects or con-
texts (McAbee et al. 2017), and thus, various cognitive processes
are involved in inductive reasoning such as categorization,
probability judgment, analogical thinking, inference, and
decision-making (Klauer and Phye 2008; Hayes et al. 2014). With

respect to deductive reasoning, this process requires inferring a
definitive conclusion from given information (Goel 2005). People
work with a set of premises and derive a conclusion that is
not explicitly stated on the initial premises, and thus, several
mental processes are engaged for successful performance in
deduction such as premise encoding, premise integration, and
conclusion validation (Rodriguez-Moreno and Hirsch 2009).
Both inductive reasoning and deductive reasoning hinge on
multiple mental processes which dynamically interact with
each other, being intrinsic to human high-level cognition
(Heit and Rotello 2010).

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://academic.oup.com/
https://doi.org/10.1093/cercor/bhab174
http://orcid.org/0000-0002-3149-3632


5498 Cerebral Cortex, 2021, Vol. 31, No. 12

The fact that reasoning is central to human cognitive pro-
cesses has attracted many researchers to interrogate its under-
lying neural mechanisms. With respect to inductive reasoning,
several regions such as the left inferior frontal gyrus, precen-
tral gyrus and superior frontal gyrus, bilateral middle frontal
gyrus, bilateral superior parietal lobule, right precuneus, left
inferior parietal lobule, and right superior occipital gyrus were
reported to be actively involved (Wertheim and Ragni 2018). In
analogy—a type of inductive reasoning—researchers claimed
that the left frontopolar cortex is necessary for the processing
of induction (Green et al. 2010). In terms of deductive reason-
ing, a “core” region of deductive reasoning was found in the
left rostrolateral prefrontal cortex and medial superior frontal
gyrus (Monti et al. 2009). Meta-analyses have been conducted
in this regard, showing that the right middle frontal gyrus,
left medial frontal gyrus, and bilateral posterior parietal cortex
were actively involved in deductive reasoning (Prado et al. 2011).
Another study observed bilateral occipital, parietal, temporal,
and frontal lobes; basal ganglia; and cerebellar regions as a large
brain network for deductive reasoning (Goel 2007). As described
here, a large and varied set of regions in the human brain has
been reported for these 2 reasoning processes, with some of the
regions being overlapped or differentiated. Thus, there has not
been a clear answer to the question of whether or not a central
neural process exists in different types of reasoning. Findings
in most of the previous neuroimaging studies have focused on
either inductive-specific or deductive-specific reasoning, and it
is hard to find studies where the 2 processes were compared
directly with each other within a single study. Therefore, in the
present study, we investigated the core neural underpinnings
of reasoning by combining inductive and deductive reasoning
together, hoping to find the differences as well as commonalities
of neural mechanisms across the 2 types of reasoning.

In spite of the recent advances in neuroimaging techniques,
there has been controversy over the low statistical power of
individual neuroimaging studies (Button et al. 2013), primarily
resulting from small sample sizes (typically 20–30 participants
per study). A recent study showed that results were highly
variable even from a single dataset when analyzed by different
research groups (Botvinik-Nezer et al. 2020). One way of over-
coming these problems and producing coherent results from a
large number of individual studies is to conduct a meta-analysis.
The meta-analysis of neuroimaging studies has been performed
mostly using x, y, and z coordinates of brain activations, known
as a coordinate-based meta-analysis, as neuroimaging studies
usually report peak locations of brain activations (i.e., peak
x, y, and z coordinates) rather than whole-brain statistical
maps. The 2 well-known methods for coordinate-based meta-
analysis are a multilevel kernel density analysis (MKDA)
(Wager et al. 2007) and an activation likelihood estimation (ALE)
(Turkeltaub et al. 2002). These methods construct study-specific
maps by convolving kernels (e.g., a 10 mm sphere) with foci (i.e.,
a set of reported peak coordinates) from individual studies. The
study-specific maps are then collapsed into a single image, being
thresholded by significance testing. A series of these processes
reveal significant brain voxels that are consistently activated
across studies. MKDA and ALE are often called “kernel-based
methods,” since the analyses entail convolving foci with some
types of kernels.

Even though kernel-based methods have been widely used
in neuroimaging communities, there are a small number of con-
cerns. Firstly, kernel-based meta-analyses are based on a mass-
univariate approach consisting of a number of univariate statis-
tical tests, testing each voxel independently. As a consequence,

these methods often ignore the nature of spatial dependence
of neuroimaging data such as long-range correlations as well
as local correlations of activity among brain areas (Bowman
2005). Secondly, the spatial kernel parameters (e.g., the radius
of spheres in MKDA and standard deviation of Gaussian kernels
in ALE) are determined arbitrarily, being independent of how the
foci are distributed in the brain. There are no rigorous guidelines
on choosing spatial kernel parameters satisfactorily such that
the parameters are determined empirically or based on sample
size (Eickhoff et al. 2009), let alone reflecting how the foci are
distributed. Moreover, this arbitrarily selected kernel is applied
to the whole brain regardless of foci locations, which is bio-
logically implausible because the degree of spatial dependence
would vary across brain regions (Penny et al. 2005). Most impor-
tantly, the spatial kernels do not properly represent the highly
folded geometry of the cortical surface because the underlying
assumption behind the setup of kernels implies that the neural
activation would propagate over the volumetric space. As a
result, the distance between 2 points on the neighboring gyri is
regarded as much closer than the actual distance on the cortical
surface when the distance is considered in volumetric space
(Dale et al. 1999).

As an alternative to the kernel-based methods, model-
based methods grounded on spatial statistics theories such
as Bayesian meta-analytic methods have been suggested
to resolve the concerns regarding the conventional meta-
analysis mentioned above (Kang et al. 2011, 2014; Yue et al.
2012; Montagna et al. 2018; Samartsidis et al. 2019). The
Bayesian model-based methods, which estimate the posterior
distribution of the spatial model parameters, enable us to obtain
various information from the model, such as activation strength
of a particular location in the brain or the effect of a covariate
(e.g., age) on a specific cognitive process. Furthermore, these
methods allow us to build predictive maps for different cognitive
processes, which are known to outperform the results from a
naive classifier based on kernel-based methods (Samartsidis
et al. 2017).

However, the Bayesian model-based methods also have
weaknesses. They are complicated to use and require consid-
erable computing resources and processing time, which may
hinder practitioners from conducting Bayesian meta-analysis
easily. In addition, to the best of our knowledge, no Bayesian
methods have introduced cortical surface-based analysis to
date. Thus, they still convey one of the major problems of
kernel-based approaches, that is, ignorance of the highly folded
geometry of cortical surface. To overcome these shortcomings,
we need a new way of meta-analysis that is not only reliable
and precise but also easily accessible and fast in computation
that accurately models the spatial dependence of the data.

Putting the 2 issues (i.e., the neural underpinnings of reason-
ing and the issue of meta-analysis) together, researchers have
strived to unveil the core brain regions involved in the reasoning
process through coordinate-based meta-analyses. However, as
mentioned earlier, the conventional kernel-based approaches
used in previous analyses still have some weaknesses. Moreover,
the question of which brain regions are crucial to the reasoning
process has not been properly addressed, since previous studies
focused on studying different kinds of reasoning separately
instead of adopting a comprehensive approach that includes
different reasoning processes together. Therefore, we suggest
2 solutions to overcome these problems. One is to develop a
fast, accurate, and reliable meta-analysis method, and the other
is to take a comprehensive approach to the understanding
of general mechanisms related to inductive and deductive
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reasoning by using a substantial number of studies. To this end,
we developed a new meta-analysis method, called Bayesian
meta-analysis of the cortical surface (BMACS), in which we
adopted log Gaussian Cox processes (LGCPs) (Møller et al. 1998;
Samartsidis et al. 2019) to define explicit spatial modeling and
confined the regions of interest to the cortical surface to better
reflect the complexly folded cortical layer structure (Mejia et al.
2020). LGCPs are a class of models that are known to infer
true spatial patterns even from incompletely observed patterns
such as a set of points, which are flexible but easily tractable
(Diggle et al. 2013). Furthermore, for parameter estimation,
BMACS used integrated nested Laplace approximation (INLA;
Rue et al. 2009) that is known to require less computation and
to provide more accurate estimation in most circumstances
(Rue et al. 2017) compared to a common method called Markov
chain Monte Carlo (MCMC; Gamerman and Lopes 2006) that is
known to provide a precise estimation but needs substantial
computation. As a result, BMACS offers a fast, accurate, and
reliable model-based meta-analysis.

An overview of our new meta-analysis, BMACS, is displayed
in Figure 1. We initially collected foci from 76 studies that exam-
ined either inductive or deductive reasoning. After additional
screening to perform meta-analysis of the cortical surface, the
coordinates from 74 studies in the volumetric coordinate sys-
tem were accurately mapped to the surface coordinate system
(Wu et al. 2018). One might raise an issue of inaccurate map-
ping between the 2 coordinate systems. However, we would
argue that we took the most appropriate and rigorous approach,
considering only a scarce number of publicly shared individ-
ual studies using cortical surface-based analysis in the current
neuroimaging community. After transferring all the foci to the
spherical surface, we applied the LGCP (Møller et al. 1998) to esti-
mate spatial maps for each reasoning process. Then, we mapped
core regions related to inductive and deductive reasoning using
exceedance probability such that we could rigorously scrutinize
different as well as common activated patterns of each reason-
ing process. BMACS was further validated in multiple steps with
different analyses to confirm its reliability.

Materials and Methods
Data Collection

We collected our data following Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (Moher et al. 2009). The
procedure is explained in detail as follows.

1. Identification: We collected 986 studies from the PubMed
database. The exact search keyword was “(Reasoning
[Title/Abstract] OR ‘Transitive Inference’ [Title/Abstract])
AND (fMRI OR functional magnetic resonance imaging OR
PET OR Positron Emission Tomography),” and we limited
the publication date till 31 December 2019. Additionally, we
included 102 studies that had been included in previous
meta-analyses (Prado et al. 2011; Wendelken 2015; Hobeika
et al. 2016; Wertheim and Ragni 2018). After removing
duplicated studies, we collected 996 studies in total.

2. Screening: We first screened irrelevant studies based on their
titles. Therefore, studies other than human neuroimaging
with healthy adults were excluded (e.g., clinical reasoning
or topics unrelated to human reasoning), resulting in 208
remaining studies.

3. Eligibility: We further excluded studies that did not contain
whole-brain analysis (e.g., region of interest [ROI] analysis
or conjunction analysis only). Also, studies with incomplete

description of functional data were removed (e.g., omission
in scanning parameters such as a voxel size or a slice gap).
Lastly, we excluded one study where all the x, y, z coordinates
were reported as positive values, regardless of their locations.
Finally, 76 studies were included for the current study.

4. Included: 76 studies were filtered with respect to reasoning
in functional magnetic resonance imaging (fMRI) or positron
emission tomography studies. Subsequently, we only
included contrast maps if they were classified into one
of the following categories: 1) simple task contrasts, 2)
contrasts compared to baseline conditions, 3) contrasts
compared to the other reasoning tasks, 4) contrasts that
compared different conditions within reasoning, 5) contrasts
with parametric effects, and 6) contrasts that looked for
interaction effects. These categories were applied to both
inductive and deductive reasoning. As a result, we obtained
2207 foci within 265 contrasts in the 76 studies. The detailed
information about the included studies and contrast maps
were released in http://doi.org/10.5281/zenodo.4638499.

Preprocessing

According to the advice on neuroimaging meta-analysis
(Müller et al. 2018), we located all the foci from different brain
templates into the Montreal Neurological Institute (MNI) space
with MATLAB R2020a (MathWorks Inc., MA), using the following
4 strategies:

1. If the functional data were normalized with the statistical
parametric mapping (SPM) standard template but the peak
coordinates were reported in Talairach coordinates without
mentioning any transformations from MNI coordinates to
Talairach ones, they were categorized as MNI coordinates.

2. If the peak coordinates were transformed from MNI coor-
dinates to Talairach coordinates using Brett transformation
(Brett et al. 2001), we used tal2mni function (Brett et al. 2001) to
unbrett the coordinates. The functions related to Brett trans-
formation were obtained from https://imaging.mrc-cbu.ca
m.ac.uk/imaging/MniTalairach.

3. If transforming MNI coordinates using Lancaster transfor-
mation (Lancaster et al. 2007) were mentioned in a paper,
we applied tal2icbm function (Lancaster et al. 2007). The
functions related to Lancaster transformation were obtained
from https://brainmap.org/icbm2tal/.

4. If the functional data were normalized into Talairach
space and the peak coordinates were reported in Talairach
coordinates, we applied Lancaster transformation (tal2icbm)
(Lancaster et al. 2007).

For cortical surface-based analysis, we additionally trans-
formed the MNI coordinates onto the fsaverage surface
(Fischl et al. 1999) using RF-ANTs (v0.11.1), which is a nonlinear
mapping method that has been known to enable accurate
mapping between the 2 coordinate systems (Wu et al. 2018).
Specifically, we mapped the coordinates onto the sphere-shaped
fsaverage surface. A sphere-shaped surface has an advantage
over surfaces of other shapes, because the estimation process
of random field is easier on a sphere. We could not complete the
mapping of 585 coordinates (out of 2207 coordinates) onto the
cortical surface through the conversion process, because they
were reported outside of the MNI brain or the gray matter in the
cortex. Among the remaining 1622 coordinates, we additionally
removed coordinates from 2 deductive reasoning studies, which
reported a large number of foci (i.e., 170 136 foci) that could
potentially bias the results. As a result, our dataset contains
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Figure 1. Overview of BMACS. (A) Searching the PubMed database and incorporating additional studies from previous meta-analyses, we first included 996 candidate

studies for our meta-analysis of reasoning. (B) After following the suggestions by Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA; Moher
et al. 2009), 76 studies were filtered for the meta-analysis. (C) The acquired foci were then located in the standard MNI coordinate system. (D) Subsequently, the foci were
mapped onto the fsaverage surface for each reasoning process and hemisphere, respectively, resulting in the final dataset of 1413 foci from 74 studies (iL, inductive
Left; iR, inductive Right; dL, deductive Left; dR, deductive Right). (E) Using LGCPs, BMACS estimated reasoning-specific maps such as inductive reasoning (orange-red)

and deductive reasoning (teal-cyan). (F) Finally, the results were mapped onto the fs_LR surface (Van Essen et al. 2012) and thresholded using exceedance probability
for visualization. Darker colors correspond to regions with above 95% exceedance probability (highly related regions), and lighter colors correspond to regions with
above 50% exceedance probability (moderately related regions).

1413 coordinates from 227 contrasts in 74 studies. Among the
74 studies, 4 studies reported contrasts related to both inductive
and deductive reasoning. Here, we separated such studies into
2 independent studies, one being an inductive-specific study
and the other being a deductive-specific study to model study-
specific effects. We will therefore indicate the number of studies
as 78 in the remaining of the paper although the actual included
number of studies is 74. In total, each inference included 39
studies, respectively. The preprocessed data are available from
http://doi.org/10.5281/zenodo.4638499.

Bayesian Meta-Analysis of the Cortical Surface

In the present study, we introduced BMACS. BMACS assumes
that the point patterns are generated by LGCPs (Møller et al.
1998) on the cortical surface. Here, the unit of observation was
an individual study, which means we considered each set of
foci reported from individual studies as separate point patterns
generated by the latent spatial point processes. Given the inten-
sity surface λ(s) and a point set Y, the likelihood of a LGCP
(Simpson et al. 2016) is defined as

π (Y|λ) = exp

⎧⎨
⎩|�| −

∫
�

λ(s)ds

⎫⎬
⎭

∏
y∈Y

λ(y), (1)

where the intensity λ is given as

λ(s) = exp
{
Z(s)

}
(2)

at a location s ∈ � with Z(s) being a Gaussian random field. In
BMACS, � is a unit sphere, representing the cortical hemisphere
unfolded into a sphere, and |�| is the area of a unit sphere (i.e.,
4π2). Point set Y is a set of coordinates reported in previous

reasoning fMRI studies. Finally, the intensity λ represents the
activation strength over the cortical surface. The likelihood to
observe a point set Y given an intensity λ increases when Y
contains points with high intensities (i.e., highly observable
regions). In addition, the integral of intensity λ(s)over the surface
� (i.e.,

∫
�
λ(s)ds) is the expected number of points to be observed

over the surface �.
The latent field Z(s) is then modeled as

Z(s) = μ + x(s), (3)

where μ is a constant mean over the space and x is a spatially
varying random field that is constructed by a Matérn covari-
ance structure, which is more flexible at explaining the spa-
tial variance than the common squared exponential covariance
function (Lindgren and Rue 2015).

Since each hemisphere is mapped onto the separate cortical
surface, we considered foci from different hemispheres as foci
from separate spheres. Also, we modeled a common random
effect αi for each study i. By introducing a random effect for each
study, BMACS relaxes the assumption of independence within
points from the same studies and prevents the possibility of
biased estimates driven by only a few studies (Samartsidis et al.
2019). Subsequently, by extending equation (2) to incorporate
random effects for studies, intensity λ for each study i and
hemisphere h is given as

λi,h(s) = αi exp
{
μri ,h + xri ,h(s)

}
, (4)

where i = 1, 2, . . . , 78, ri ∈ {inductive, deductive}, h ∈ {left, right}.
The major computational bottleneck of previous Bayesian

meta-analysis methods was the process of MCMC (Gamerman
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and Lopes 2006) for posterior estimation. To speed up the
computation of posterior estimates, we applied an approximate
inference method called INLA, which is implemented in the
R-INLA package v21.02.23 (Rue et al. 2009). Additionally, to
make inference of the random field more feasible, we adopted
a stochastic partial differential equation (SPDE), and thus,
we approximated a continuous Matérn spatial field, which
produces fast as well as stable inference (Lindgren et al. 2011;
Simpson et al. 2012). We used 6252 vertices to approximate the
spatially varying random field x for computational feasibility
(Mejia et al. 2020). For priors, default priors of R-INLA were used
for parameters in BMACS, unless mentioned otherwise. Briefly,
for SPDE specification, priors for 2 parameters of the Matérn
field were log(τ) ∼ N (−3.22, 10) and log(κ) ∼ N (1.95, 10), where
the means of the prior distributions were decided depending on
the spatial resolution of the surface. The default prior for the
random effects of studies was log(αi) ∼ N (0, 1/p), where the log
precision p was set as log p ∼ G(1, 0.00005). All the relevant codes
for BMACS and further analysis are available from http://doi.o
rg/10.5281/zenodo.4638499.

Posterior Analysis

One thousand posterior samples of the maps for each reasoning
r and hemisphere h were obtained after regressing out the
random effects from each study as

λk
r,h(s) = exp

{
μk

r,h + xk
r,h(s)

}
, (5)

where r ∈ {inductive, deductive}, h ∈ {left hemisphere,
right hemisphere}, and k = 1, 2, . . . , 1000 representing 1000 pos-
terior draws.

Exceedance probability refers to the probability that a param-
eter would be greater than or less than a value, being computed
from posterior distribution of the parameter (Bolin and Lind-
gren 2015). Using this exceedance probability, we found regions
that are most likely to be engaged in the reasoning processes.
Specifically, we searched for regions where the probabilities that
intensity λ would exceed one are greater than a threshold p.
Intensity λ for a Poisson distribution is interpreted as that λ

events are expected to occur within the unit interval. In other
words, when λ is greater than one, we expect more than one
event to occur during the reasoning process in survived regions.
The exceedance probability is formulated as

Pr
(
λ(s) ≥ 1

) = 1
K

K∑
k=1

II
(
λk(s) ≥ 1

)
, (6)

where K is the number of posterior draws and II(·) refers to an
indicator function that is 1 if pointwise intensity λ(s) is equal to
or greater than 1, or 0 otherwise. To further describe the results
into the multimodal parcellation of the Human Connectome
Project, the exceedance probability maps were mapped onto
the fs_LR surface (Van Essen et al. 2012). We set the threshold
of the exceedance probability P as 0.95 and considered the
regions that survived the threshold as highly related regions.
The reported regions of interests were described according to
the multimodal parcellation of the Human Connectome Project
(Glasser, Coalson, et al. 2016a).

Bayesian Spatial Point Process Classifier

Inferring the cognitive states from the observed neural activity
is known as reverse inference or, in general, brain decoding
(Poldrack 2006; Yarkoni et al. 2011). In line with this, one impor-
tant question to be addressed in the present study was whether
or not the estimated mental representations (i.e., spatial acti-
vation patterns) would accurately identify inductive-specific or
deductive-specific processes. To determine if this was possi-
ble, based on a previous study (Kang et al. 2014), we built a
classifier using the inductive- and deductive-specific activation
maps estimated by BMACS and scrutinized its ability to cor-
rectly decode the type of reasoning of a newly presented brain
activation map. We used leave-one-study-out cross-validation
(LOOCV) as a measure to evaluate the performance of BMACS.
Usually, we need to re-run BMACS N times to compute LOOCV
accuracy, in which N is the number of studies included. Even
though it takes significantly less time to run BMACS compared
to previous Bayesian meta-analysis methods, it is still inefficient
to fit the model repetitively since the number of studies included
in a meta-analysis typically exceeds 20, and in the current study,
78. In other words, we would have to have fitted the model 78
times for the present study. Therefore, for more efficient com-
putation, we approximated LOOCV using importance sampling
without multiple refittings (Gelfand et al. 1992; Gelfand 1996;
Kang et al. 2014). The LOOCV probability that the label Ti of
a new pointset Yi is classified as j given observed data D−i is
approximated using posterior draws of the parameters that were
estimated from the full data D (Kang et al. 2014) as

P̂r [Ti = j|Yi,D−i] = pjQ̂jti∑J
j′=1 pj′ Q̂j′ti

. (7)

Because the denominator of equation (7) is just a normalizing
term, we only computed the numerator, where pj is prior prob-
ability that a new point set would be classified as label j (either
inductive or deductive reasoning), and Q̂jti

is

Q̂jti
= 1

K

K∑
k=1

π
(
Yi|λk

j

)
π

(
Yi|λk

ti

) , (8)

where ti is the true label of study i and K is the number of
simulations from approximated posterior distribution, which is
1000 posterior draws in the current study.

Here, π(Yi|λk
j ) is

π
(
Yi|λk

j

)
= π

(
Yi|λk

j, left

)
+ π

(
Yi|λk

j, right

)
. (9)

The predicted label T̂i of a new pointset Yi is then given by

T̂i = arg max
j

(
pjQ̂jti

)
. (10)

Multilevel Kernel Density Analysis

We additionally performed another meta-analysis using MKDA
(Wager et al. 2007; Wager et al. 2009) (available from https://
github.com/canlab/Canlab_MKDA_MetaAnalysis) to scrutinize
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whether the results from BMACS were comparable to those
from a conventional meta-analysis (i.e., MKDA).

We used 1413 foci that survived conversion to fsaverage
space, such that BMACS and MKDA had the same number of
foci for the analysis. The peak coordinates were convolved with
a spherical kernel of 10 mm in radius, then a binary indicator
map was produced with the value of one in the location of con-
volved peaks or else zero for each of the 78 studies, which were
aggregated with convolved peaks in a study. After calculating
a weighted average of the indicator maps, 5000 Monte Carlo
simulations were performed to set a threshold for a null hypoth-
esis that peaks would be uniformly distributed throughout the
gray matter. Voxels were considered to be significant at P < 0.05,
family-wise error rate corrected for multiple comparison. We
rendered the MKDA results onto the cortical surface to directly
compare the results of MKDA depicted in the volumetric space
with the results of BMACS depicted on the cortical surface
(Marcus et al. 2011).

We also built reverse inference maps from MKDA and
performed a LOOCV using a Naive Bayes Classifier (NBC)
(Yarkoni et al. 2011). The classification accuracy from NBC was
later used as a baseline to compare how BMACS performs in
terms of classification.

Validation of BMACS on a Working Memory Dataset

BMACS adopts several strategies to analyze the data on the cor-
tical surface instead of the volumetric space and to approximate
the posterior distributions of the model parameters using INLA
(Rue et al. 2009). To validate whether BMACS is able to draw
compatible results with other Bayesian methods, we applied
BMACS to the publicly available working memory dataset
(Rottschy et al. 2012) that had previously been analyzed using
another Bayesian meta-analytic method (Samartsidis et al. 2019)
called a Bayesian random-effects meta-regression model, which
used MCMC on the volumetric space. We elucidated how the
results from the 2 methods (BMACS and the Bayesian random-
effects meta-regression model) were comparable to each other.
We tried to reproduce 3 core results: 1) the comparison of
probabilities of observing at least one peak coordinate for ROIs
between verbal and nonverbal working memory, 2) the effects
of age and sample size on working memory, and 3) variability in
random effects between studies.

The model specification for each study j defined in the orig-
inal study (Samartsidis et al. 2019) is as follows:

λj,h(s) = αj exp

{
μvj ,h + β1agej + β2

1√
nj

+ xvj ,h(s)

}
, (11)

where vj ∈ {verbal, nonverbal}, and h ∈ {left hemisphere,
right hemisphere}. Covariates agej and nj refer to mean age and
the total sample size of study j, respectively.

Probability of Observing At least One Focus in ROIs
The probability of observing at least one peak coordinate in
an ROI B is expressed as Pr{N(B) ≥ 1}, where N(·) refers to the
number of observed foci in an ROI. It can be formulated into
the probability that more than one event would occur in a ROI
using Poisson distribution with intensity �B as 1−Pois(x = 0; �B),
where �B = ∫

Bλ(s)ds. Since the authors in the original paper
(Samartsidis et al. 2019) used the Harvard-Oxford Atlas to define
ROIs, we applied the same atlas, mapping it onto the cortical
surface and computing the probability for each ROI.

Effects of Age and Sample Size on Working Memory
We tried to reproduce the effects of covariates, namely age and
sample size, of the original paper (Samartsidis et al. 2019). From
the estimated model using BMACS, we derived the marginal
posterior distribution of coefficients of age and sample size. The
effects of covariates were considered to be significant if the 95%
highest density interval of the covariates did not contain zero.

Variability of random effects
In the original paper (Samartsidis et al. 2019), the authors
assumed the prior distribution of random effects to be a Gamma
distribution as αi ∼ G(10, 10) to let 90% of the density be within
[0.5,1.5]. Likewise, we embedded similar prior information
for the random effects αi by setting the prior distribution of
random effects to be the log-normal distribution with mean as
0, variance as 0.1, such that log(αi) ∼ N (0, 0.1).

Simulation

To further validate our model, we performed a simulation study
and examined whether our model recovers true parameters
well. We set the true parameters as posterior means of the
estimates from BMACS and generated one point set for each
formulated study using equation (4), resulting in 78 simulated
point sets. The parameters were considered to be successfully
recovered if the 95% highest density intervals derived from the
marginal posterior distribution of parameters contained the
true parameters.

Results
Reasoning-Specific Maps Revealed by BMACS

Using BMACS, we found regions that were specifically acti-
vated in inductive and deductive reasoning as well as the
commonly activated regions (Fig. 2; see Supplementary Fig. S1
for unthresholded maps). Here, the abbreviations for the brain
regions were borrowed from the multimodal parcellation of
the Human Connectome Project (Glasser, Coalson, et al. 2016a).
Only the regions that are easily shown in Figure 2 are stated here
(for the full list of anatomical labeling of the activated parcels
and their abbreviations, see Supplementary Table S1).

We revealed areas commonly activated in both types of rea-
soning processes (Fig. 2A): the dorsolateral prefrontal cortex (8C,
p9-46v), inferior frontal cortex (p47r, IFSp), orbital and polar
frontal cortex (a47r), anterior cingulate and medial prefrontal
cortex (8BM), insular and frontal opercular cortex (AVI), and
paracentral lobular and mid cingulate cortex (SCEF) in the left
hemisphere. Activations in the right hemisphere were smaller
than those in the left hemisphere, being located in the dorsolat-
eral prefrontal cortex (p9-46v), inferior/superior parietal cortex
(IP1, MIP, LIPd), anterior cingulate and medial prefrontal cortex
(8BM), and paracentral lobular and mid-cingulate cortex (SCEF).

In inductive reasoning (Fig. 2B), several activations were
observed in the left hemisphere in addition to the common
regions: the inferior frontal cortex (IFJp, and IFSa), inferior
parietal cortex (IP1), premotor cortex (6r), and visual cortex
(V1). Much smaller extent of activations was observed on the
right hemisphere than the left hemisphere: insular and frontal
opercular cortex (AVI), premotor cortex (6r), and early visual
cortex (V3).

In deductive reasoning (Fig. 2C), in addition to the common
regions, a broad expanse of the left frontal lobe was observed
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Figure 2. Reasoning-specific maps above 95% exceedance probability. The maps represent brain areas that are highly related to neural process of reasoning, which
correspond to regions with above 95% exceedance probability. (A) The conjunction map of both inductive and deductive reasoning depicts the regions that were
observed in both reasoning-specific maps. (B) The map illustrates cortical surface areas related to inductive reasoning. (C) The map highlights cortical surface areas
related to deductive reasoning. Borders and names of parcels were indicated with 180 parcels per hemisphere, following the multimodal parcellation of the Human

Connectome Project (Glasser et al. 2016a). In the Results section, we described regions following the anatomical labeling by Glasser et al. (2016a), where they grouped
the 180 parcels into 22 broader regions for readers’ readability.

including the dorsolateral prefrontal cortex (8Av, SFL, and i6–
8), inferior frontal cortex (44), inferior/superior parietal cortex
(PFm, PGs, IP2, and MIP), and premotor cortex (FEF). On the right
hemisphere, we found activations in the dorsolateral prefrontal
cortex (8C).

Reasoning-Specific Maps Revealed by BMACS
in Comparison with MKDA
We compared activation patterns of reasoning obtained from
BMACS with those obtained from MKDA. The activation patterns
revealed by MKDA show much broader regions compared to
BMACS (Fig. 3), which may be linked to reduced specificity of

MKDA. We additionally performed MKDA with smaller kernel
sizes (namely 6 and 8 mm) to inspect the possibility that kernel
size may have affected the result. However, no significant dif-
ferences were found between the original kernel size (10 mm)
and the new sizes (8 mm and 6 mm), resulting in the same
conclusion that MKDA shows much broader activation patterns
than BMACS.

Better Classification Accuracies in BMACS
than in MKDA

Based on a previous study (Kang et al. 2014), we built a classi-
fier to determine whether our posterior predictive maps were
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Figure 3. Reasoning-specific maps from MKDA. Colored areas represent the results specific to inductive reasoning (A), and deductive reasoning (B), being estimated

from MKDA that were significant at P < 0.05. The results were mapped onto the fs_LR surface for visualization (Van Essen et al. 2012).

able to robustly predict the type of reasoning in comparison
with MKDA specifically using a NBC that is widely used for a
conventional reverse inference (Yarkoni et al. 2011). By doing
this, we aimed to discover which method performed better in
terms of classification accuracy, that is, which method captured
the spatial patterns associated with inductive and deductive
reasoning better.

As a result, BMACS outperformed MKDA. BMACS correctly
classified 89.74% of inductive reasoning studies and 74.36% of
deductive reasoning studies, with an overall accuracy of 82.05%
(Table 1). On the other hand, NBC combined with MKDA correctly
classified 76.92% of inductive reasoning studies and 43.59% of
deductive reasoning studies, resulting in an overall accuracy of
59.51% (Table 1). This result suggests that BMACS identified the
selective activation patterns relevant to each reasoning process
better than MKDA.

Validation of BMACS via Successful Reproduction
of Results from a Previous Study

To prove that BMACS produces consistent results with other
Bayesian methods, we attempted to reproduce 3 core results of a
previous Bayesian meta-analysis study (Samartsidis et al. 2019).
Consequently, we obtained comparable results to the original
study in all the 3 aspects by using BMACS. Firstly, we found that
the probability of observing at least one peak coordinate in ROIs
for verbal and nonverbal working memory was similar between
the original study and BMACS (Table 2). Secondly, we showed
that the sample size had no significant effect (Fig. 4A, μ: 0.01,
95% highest density interval [HDI]: [−0.08, 0.09]), likewise in the
original study where the HDI included zero. Age was negatively

correlated with participants’ performance in working memory
tasks (Fig. 4B, μ: −0.15, 95% HDI: [−0.24, −0.06]), with the HDI
containing the posterior mean of age effect (μ: −0.22) from the
original study. Lastly, the distribution of random effects across
studies was similar to the original study (Fig. 4C). These results
confirm that the performance of BMACS is accurate enough
to be compatible with previous time-consuming and complex
methods.

Validation of BMACS Via Successful Parameter Recovery

We conducted model validation to verify whether BMACS
performs as accurately as expected. We simulated a new
dataset from the mean hyperparameters of fitted BMACS
that were estimated from the reasoning dataset used in the
present study. The hyperparameters here are intercepts for
reasoning maps, variance and range parameters for spatial
random effects, and a variance parameter for study-specific
random effects. We then fitted BMACS to the newly simulated
dataset and compared estimated parameters with the true
parameters that had been used for the simulation. In our
results, most of the true parameters were positioned within
the 95% highest density intervals of the estimated parameters
except for a slight underestimation of a variance parameter
(variance.sf.dR; Fig. 5), showing a successful recovery of the true
parameters.

Discussion
In the present study, we proposed a novel Bayesian model-based
neuroimaging meta-analysis method of the cortical surface,
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Table 1 Comparison of the classification accuracy between BMACS and NBC in combination with MKDA

True label BMACS MKDA + NBC

Predicted label Predicted label

Inductive Deductive Inductive Deductive

Inductive 89.74 10.26 76.92 23.08
Deductive 25.64 74.36 56.41 43.59
Overall accuracy 82.05 59.51

Note: The confusion matrix described classification results as the proportion of classified category. The rows represent true reasoning types and columns represent
classified reasoning types. For example, BMACS correctly classified 89.74% of inductive reasoning point patterns as inductive reasoning, whereas NBC with MKDA
correctly classified 74.36% of inductive reasoning point patterns. Overall, the classification accuracy of BMACS was higher (82.05%) than the combination of MKDA
and NBC (59.51%).

Table 2 Reproduction of expected number of activated foci in several ROIs from previous meta-analysis result

ROIs Original study (Samartsidis et al. 2019) BMACS

Verbal Nonverbal Verbal Nonverbal

Frontal orbital cortex 37.26 36.48 30.70 30.50
Insular cortex 32.79 33.86 28.90 33.60
Precentral gyrus 64.10 72.09 76.10 86.50
Inferior frontal gyrus 43.66 35.69 51.20 43.90
Angular gyrus 24.30 18.91 16.20 15.60
Superior parietal lobule 38.81 33.24 44.50 40.00
Paracingulate gyrus 42.91 49.14 39.60 55.70

Note: We compared probabilities of observing at least one peak coordinate between the original study (Samartsidis et al. 2019) and BMACS. For example, Samartsidis
et al. reported that there is a probability of 37.26% that we would observe at least one focus in the frontal orbital cortex during verbal working memory task, while the
probability becomes a bit less in nonverbal working memory task of 36.48%. The conclusion that there is a higher probability of observing a focus in frontal orbital
cortex during verbal task than nonverbal task remains the same in the result of BMACS (30.70% for verbal task and 30.50% nonverbal task). In all ROIs, the propensity
of the original study was well preserved in BMACS whether verbal or nonverbal working memory has higher probability or not.

Figure 4. Reproducing the effects from a working memory dataset. The effects of covariates and distribution of random effects were reproduced using BMACS. (A)
Sample size had no significant effect (μ: 0.01, 95% HDI: [−0.08, 0.09]) on working memory tasks. (B) Age was negatively correlated (μ: −0.15, 95% HDI: [−0.24, −0.06])

with performance on working memory tasks. (C) The distribution of random effects matched the distribution in the original study (Samartsidis et al. 2019). The red
lines in (A) and (B) illustrate 95% HDIs reported in the original study. The red dot in (B) displays the posterior mean. The red dashed line in (C) represents the prior
Gamma distribution used in the original study.

called BMACS. Using BMACS, we clearly demonstrated inductive-
and deductive-specific brain maps, and more importantly, com-
monly activated regions in both reasoning processes. BMACS, as
a model-based approach, has several advantages over conven-
tional meta-analysis methods, such as MKDA or ALE (i.e., kernel-
based methods), and overcomes some limitations of previous
Bayesian meta-analysis methods.

Understanding of Reasoning along with the
Multiple-Demand System

The long-standing and unsolved question among cognitive neu-
roscientists is how inductive and deductive reasoning are repre-
sented at the level of brain networks. With the help of our newly

developed Bayesian model-based neuroimaging meta-analysis
method of the cortical surface, we show an interesting map
of common activations during inductive and deductive reason-
ing (Fig. 2A), which deserves further discussion. We observed
a pattern of activity extending over a specific set of regions,
particularly in the dorsolateral prefrontal cortex (8C and p9-
46v), orbital and polar frontal cortex (a47r), insular and frontal
opercular cortex (AVI), paracentral lobular and mid cingulate
cortex (SCEF), and anterior cingulate and medial prefrontal cor-
tex (8BM) in the left hemisphere. This set of regions is known as
the multiple-demand (MD) system (Duncan et al. 2000; Duncan
2010), and our maps in Fig. 2A specifically are located in the “core
MD” system that were most strongly activated and functionally
interconnected in the original study (Assem et al. 2020, 2021;



5506 Cerebral Cortex, 2021, Vol. 31, No. 12

Figure 5. Successful recovery of true parameters. To test whether BMACS could
accurately estimate the model parameters, we generated a new dataset from
arbitrarily set parameters (i.e., true parameters) and attempted to recover these

parameters using BMACS. Most of the parameters were recovered, showing that
the true parameters (red lines) were located within the estimated 95% highest
density intervals (black lines), except a slight underestimation of a variance
parameter (variance.sf.dR). iL, inductive Left; iR, inductive Right; dL, deductive

Left; dR, deductive Right; variance.sf/range.sf, variance and range parameters
that describe the characteristics of spatial fields with regard to the Matérn
covariance structure (Lindgren and Rue 2015).

see Supplementary Fig. S2). The regions in the MD system have
been observed repeatedly in numerous functional neuroimaging
studies with respect to selective attention, working memory,
task switching, response inhibition, conflict monitoring, cog-
nitive control, novel problem-solving, and semantic word pro-
cessing (Duncan 2010). The MD system has been known to be
involved in different kinds of cognitive challenges such as selec-
tion of task-relevant stimuli of a current cognitive operation,
swift reorganization with changing context, and separation of
successive stages of task steps, which are intrinsic to the under-
lying mechanism for humans’ flexible thoughts and problem-
solving (Duncan 2010; Woolgar et al. 2018). In fact, this line of
processes is closely intertwined with critical components that
exert on reasoning (Krawczyk 2018). For example, reasoning
deals with multiple inputs such as various premises, conditions,
or possibilities, which are transformed into one output, that is,
a physical action or a new thought. To do this, selecting task-
relevant stimuli, which is one of the functions of the MD system,
is obviously involved. However, owing to humans’ limited men-
tal resources in perception, attention, and memory, reasoning
takes place in multiple steps to draw the most appropriate
decision, which pertains to the separation of successive stages
of task steps in the MD system. Moreover, reasoning requires the
integration of previous knowledge with new information to draw
a novel conclusion, and this process is linked to the function of
problem-solving in the MD system. Putting all these arguments
together, reasoning, which is substantiated by the regional sim-
ilarity between the core MD system and the conjunction map
from the 2 types of reasoning (Fig. 2A), may be construed as a

high-level cognitive capability that is unique to humans (Gray
and Thompson 2004; Woolgar et al. 2018).

Findings in Inductive- and Deductive-Specific
Reasoning

Using BMACS, we showed several brain regions associated with
each reasoning process as well. Most of our findings accord with
the brain regions that were known to be employed by 1 of the
2 reasoning processes in previous studies. We observed acti-
vations in the left inferior frontal cortex and dorsolateral pre-
frontal cortex, which resemble the activation patterns specific to
inductive reasoning in a previous meta-analysis (Wertheim and
Ragni 2018). We found a large cluster in the left inferior frontal
cortex that has been known to be related to the integration of
multiple relations, which is a pivotal process for higher order
relational processing during inductive reasoning tasks (Christoff
et al. 2001; Cho et al. 2010). Additionally, the right superior
parietal cortex was known to maintain spatial information dur-
ing a relational matching task when participants matched 2
given stimuli in terms of visuospatial concepts (e.g., direction,
location, or form) (Wendelken et al. 2012) or applied acquired
rules after they learned the unknown relationship within a
series of numbers in a reasoning process (Jia and Liang 2015).
Furthermore, the right lateralized network that we observed in
the present study, including the dorsolateral prefrontal cortex
and superior parietal cortex, was more activated when partici-
pants drew analogies with complex rules than with simple rules
(Hampshire et al. 2011). This network seems to take part in
the process of induction, specifically when the cognitive loads
increase with respect to reasoning. One thing to note here is
that the observed neural activity in the visual cortex may be
derived from the effect of study designs since 76 studies out of
78 studies used visual stimuli for reasoning tasks. Collectively,
using BMACS, we successfully demonstrated the brain regions
known to be actively involved during inductive reasoning.

The deduction-specific regions in our study, such as the left
premotor cortex and orbital and polar frontal cortex, have been
reported to be activated across multiple deductive reasoning
studies in a previous meta-analysis (Prado et al. 2011). Further,
the left orbital and polar frontal cortex was exclusively engaged
in logical inference compared to linguistic tasks (Monti et al.
2007, 2009), assuring the critical role of these regions in the
process of deduction. Activation of the bilateral superior/in-
ferior parietal cortex was also reported in previous deductive
reasoning studies, reflecting the process of integrating consec-
utive arguments during transitive inference (Monti et al. 2007;
Brzezicka et al. 2011) or the manipulation of the context-relevant
meaning of propositions with respect to combining logical con-
nectives (Baggio et al. 2016). Also, the right prefrontal regions,
such as the anterior cingulate and medial prefrontal cortex, and
dorsolateral prefrontal cortex, were known to play an important
role in inhibiting perceptual bias that helps people to come to a
valid conclusion in deductive arguments (Goel and Dolan 2003;
Monti et al. 2007; Goel et al. 2009). In summary, our deduction-
specific activation map demonstrated brain regions that are
crucial for processing deductive arguments.

One caveat to our findings of the reasoning-related set of
regions is that we could not include subcortical areas for the
BMACS analysis. Previous meta-analyses reported contradicting
results regarding the engagement of subcortical areas in reason-
ing processes. For example, Prado and colleagues (Prado et al.
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2011) observed activation of the left basal ganglia across dif-
ferent arguments (i.e., relational, categorical, and propositional
arguments) of deductive reasoning. Conversely, Wertheim and
Ragni (2018) reported that the engagement of bilateral basal
ganglia was specific only to inductive reasoning. Because the
estimation of activation patterns of BMACS is confined to the
cortical surface, future studies should be conducted that include
subcortical regions as target areas for analysis.

We would also like to caution the readers about concep-
tual interpretation of our results. The current meta-analysis
included several different types of contrasts (e.g., contrasts com-
paring task conditions to baseline conditions or contrasts com-
paring different task conditions themselves) to maximize the
size of dataset and to investigate all the relevant neural pro-
cesses for reasoning. However, a previous study has shown that
despite the same experimental task, different neural patterns
can be observed depending on various baseline conditions (New-
man et al. 2001). Accordingly, the acquired neural patterns of
reasoning in the present study need to be carefully understood
within the scope of contrasts we have included. To this end,
readers may find the detailed description of included studies
and contrasts, which is available from http://doi.org/10.5281/ze
nodo.4638499.

Advantages of BMACS over Other Methods

BMACS offers 6 advantages over other meta-analytic methods.
Firstly, BMACS enables us to directly model the spatial depen-
dence of the data, that is, spatially correlated neural activity
between brain areas. In the case of conventional meta-analyses,
the inference of consistently activated brain regions is based
on null hypothesis significance testing. In other words, the con-
ventional meta-analyses take a mass univariate approach, only
searching for voxels that have a greater than random chance to
be activated, and as such do not consider spatial dependence
of neuroimaging data (Samartsidis et al. 2017). Conversely, with
the help of BMACS, we modeled the observed spatial points
(i.e., activation foci on the brain) as being generated from latent
spatial fields and inferred the spatial patterns for each reasoning
process. In our study, we first hypothesized that there would be a
spatial map for inductive reasoning studies and another spatial
map for deductive reasoning studies. Specifically, we directly
modeled studies for each reasoning process to share a common
latent spatial field with varying activation strengths in separate
studies. Thus, we were able to estimate the general activation
patterns for the 2 reasoning processes.

Secondly, it is possible to directly obtain the uncertainty of
the parameters, that is, the dispersion of the estimated posterior
distributions of model parameters in a Bayesian paradigm (i.e.,
λ ≥ 1) at any given location on the cortical surface, then define
which brain areas are most likely to be observable during a
reasoning process. Consequently, we found activation patterns
with high confidence by assessing the reliability of the acti-
vation strengths across the cortical surfaces and bypassed the
problem of multiple comparisons that is unavoidable in most of
the conventional meta-analysis methods using a non-Bayesian
approach (Bolin and Lindgren 2015).

The third advantage of using BMACS is that the obtained acti-
vation maps are highly specific to the core process of a particular
cognitive state. As we mentioned earlier, the activation maps
for the 2 reasoning processes from BMACS (Fig. 2) show more
distinguishable activations than the maps from MKDA (Fig. 3).
This third advantage is a natural consequence derived from the

first 2 advantages. By incorporating the spatial dependence and
uncertainty of the estimated spatial patterns, BMACS seemed to
suppress false-positive results. In other words, BMACS demon-
strated more selective patterns of activations and higher clas-
sification accuracy compared to MKDA, whereupon the brain
regions selectively engaged in the specific reasoning process
were clearly observed.

The fourth advantage of BMACS is that it is designed to
be easily customizable and extensible. To the best of our
knowledge, there have only been a few previous studies in
which researchers developed new methods adopting Bayesian
spatial models for coordinate-based meta-analysis (Kang et al.
2011, 2014; Yue et al. 2012; Montagna et al. 2018; Samartsidis
et al. 2019). However, their methods require fine tuning of the
algorithm, which makes it difficult to design new model struc-
tures (e.g., adding new covariates or modifying how common
spatial maps are grouped) because newly implemented models
are required to be retuned every time they are introduced.
In addition to retuning, the internal structure of the code
should be revised to incorporate new model structures, which
adds an additional difficulty in testing various hypotheses. In
contrast, BMACS is powered by a general Bayesian inference
tool, namely INLA (Rue et al. 2009), such that practitioners need
not be concerned about additional efforts for fine-tuning the
underlying algorithm and can simply focus on establishing
model structures or hypotheses. As a result, BMACS has the
advantage of being easily extensible into a number of different
models.

The fifth advantage of BMACS is a shortened computing time
by the significant reduction of computation, which is engen-
dered by adopting a Bayesian posterior approximation tool such
as INLA as an alternative to MCMC. The computational bottle-
neck in previous Bayesian methods was caused by estimating a
full covariance function that depicts spatial dependence of the
data. Even though some MCMC methods attempted to accelerate
the estimation of covariance function by the block Toeplitz
matrix (Samartsidis et al. 2019), they still required considerable
computing time. For example, Bayesian meta-analysis meth-
ods that used MCMC took more than 20 h of computing time
(Kang et al. 2014) or even 30 h on a graphics processing unit
(Samartsidis et al. 2019). On the contrary, by using INLA, BMACS
efficiently approximates the spatial field with a sparse Gaussian
Markov random field instead of a full covariance function such
that it reduces a significant amount of computation (Lindgren
et al. 2011; Simpson et al. 2012; Rue et al. 2017). Correspondingly,
fitting BMACS to our reasoning dataset or the working memory
dataset (Rottschy et al. 2012) took only 1 or 2 h in approximation,
respectively.

The final advantage of BMACS is the proper consideration of
the spatial dependence between brain areas. In Bayesian meta-
analysis methods, the squared exponential function has been
commonly used as a covariance function to consider the spatial
correlations, and Euclidean distance has been used as a distance
measure between brain areas (i.e., voxels) for the covariance
function (Montagna et al. 2018; Samartsidis et al. 2019). However,
the actual distance between brain areas is more appropriately
represented by the distance defined along the cortical surface,
since the human brain exhibits a folded cortical surface struc-
ture (Mejia et al. 2020). By adopting cortical surface-based analy-
sis, BMACS represents the spatial dependence of brain data more
realistically (Mejia et al. 2020). Additionally, we used the Matérn
covariance structure, which is a more flexible function than
the commonly used squared exponential covariance function

http://doi.org/10.5281/zenodo.4638499
http://doi.org/10.5281/zenodo.4638499
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(Lindgren et al. 2011; Simpson et al. 2012; Samartsidis et al. 2019),
as a function of spatial dependence such that we were able to
apprehend the true spatial pattern more accurately.

Overall, BMACS, while preserving the advantage of a model-
based approach, eliminated most of the difficulties found in pre-
vious model-based methods, as it circumvents a huge amount of
computing time and extends easily to various model structures.
In addition, to the best of our knowledge, BMACS is the first
Bayesian meta-analysis method that uses cortical surface-based
analysis.

Limitations of BMACS

Nonetheless, a few limitations lie in the current method, BMACS,
which need to be addressed in future studies. Firstly, we were
unable to apply BMACS to the studies that performed group-
level analysis of the cortical surface. The major problem of
coordinate-based meta-analyses is the use of peak coordinates
obtained from volume-based analyses. The methods are known
to lack precise localization, and thus, it has been recommended
to use surface-based methods instead (Coalson et al. 2018).
However, sharing cortical surface data has not been a com-
mon practice in the neuroimaging community, although the
Human Connectome Project has strived for putting surface-
based methods into practice and sharing large-scale cortical
surface data (Glasser, Smith, et al. 2016b). Therefore, it was
difficult for us to obtain the necessary cortical surface data with
regard to reasoning. Researchers share their results using open-
source databases such as NeuroVault (https://neurovault.org) or
OpenNeuro (https://openneuro.org) nowadays, but most of these
data are released in the format of volumetric space. Thus, under
the current circumstances, we did our best to reach the most
appropriate compromise by developing BMACS. Fortunately, the
brain analysis library of spatial maps and atlases (BALSA; https://
balsa.wustl.edu) recently started to offer a repository to upload
surface-based dataset, and we believe this database will pro-
mote sharing cortical surface-based data (Van Essen et al. 2017).

The second limitation is potential inaccuracies during the
process of mapping peak coordinates from the volumetric space
to the cortical surface. We used the state-of-the-art mapping
method described in Wu et al. (2018) to minimize distortion
during the coordinate system conversion. However, as stated in
the original study (Wu et al. 2018), the ideal way of representing
brain data on the cortical surface would be through directly reg-
istering the raw data to the cortical surface coordinate system,
if possible. Unfortunately, to the best of our knowledge, this
suggestion is currently very challenging due to the aforemen-
tioned problem (the lack of open-source cortical surface data
in reasoning). We hope for researchers to pay more attention to
cortical surface-based analysis and to share cortical surface data
in the neuroimaging community (Tucholka et al. 2012; Mejia et al.
2020).

Conclusion
To summarize, using BMACS we revealed the core regions asso-
ciated with both inductive and deductive reasoning types, which
conform to the core MD system. Therefore, we suggest that
the reasoning process occurs in a dynamic way, being closely
interwoven with numerous cognitive processes and being intrin-
sic to human high-level cognition. We posit BMACS as a tool
that provides a fast, reliable, and accessible coordinate-based
meta-analysis that robustly estimates the activation patterns of

the cortical surface’s targeted cognitive processes. However, the
outcomes reported in the current study should be interpreted
carefully because of the limitations that BMACS embodies. Fur-
thermore, we call for the future meta-analysis studies that
involve individual cortical surface-based studies. We hope that
BMACS will advance toward the use of cortical surface-based
meta-analysis and that it will be of great help in unveiling neural
mechanisms of diverse cognitive processes.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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