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OBJECTIVE—We demonstrated previously that chronic mater-
nal micronutrient restriction altered the body composition in rat
offspring and may predispose offspring to adult-onset diseases.
Chromium (Cr) regulates glucose and fat metabolism. The objec-
tive of this study is to determine the long-term effects of maternal
Cr restriction on adipose tissue development and function in a
rat model.

RESEARCH DESIGN AND METHODS—Female weanling
WNIN rats received, ad libitum, a control diet or the same with
65% restriction of Cr (CrR) for 3 months and mated with control
males. Some pregnant CrR mothers were rehabilitated from
conception or parturition and their pups weaned to control diet.
Whereas some CrR offspring were weaned to control diet, others
continued on CrR diet. Various parameters were monitored in
the offspring at three monthly intervals up to 15–18 months of
age.

RESULTS—Maternal Cr restriction significantly increased body
weight and fat percentage, especially the central adiposity in
both male and female offspring. Further, the expression of leptin
and 11 �-hydroxysteroid dehydrogenase 1 genes were signifi-
cantly increased in CrR offspring of both the sexes. Adipocyto-
kine levels were altered in plasma and adipose tissue; circulating
triglyceride and FFA levels were increased, albeit in female
offspring only. Rehabilitation regimes did not correct body
adiposity but restored the circulating levels of lipids and
adipocytokines.

CONCLUSIONS—Chronic maternal Cr restriction increased
body adiposity probably due to increased stress and altered lipid
metabolism in WNIN rat offspring, which may predispose them to
obesity and associated diseases in later life. Diabetes 59:

98–104, 2010

T
he fetal origin of adult disease hypothesis pro-
poses that environmental factors can redirect
the developmental path of the fetus such that the
fetus adapts for survival in an environment in

which the resources are limited (1). These adaptations
contribute to poor fetal health outcomes resulting in the
thrifty phenotype. Exposure of such a thrifty phenotype to
excessive nutrition postnatally overloads its reduced met-
abolic capacity, which could manifest in metabolic disor-
ders such as obesity, cardiovascular disease, and type 2
diabetes in later life (2). Robust evidence (epidemiological
and experimental) suggests that manipulation of maternal
nutrition (macro- or micronutrient restriction) during
pregnancy leads to metabolic abnormalities as well as
development of insulin resistance and its associated com-
plications in the offspring (3,4). Many studies report that
central adiposity correlates strongly with insulin resis-
tance (5).

Accumulation of adipose tissue, a major storage site for
fat deposition, leads to obesity. Adipose tissue differenti-
ation is a highly regulated process, taking place from birth
throughout adult life. The transcriptional factors peroxi-
some proliferator–activated receptors (PPARs) and sterol
regulatory element–binding proteins (SREBPs) regulate
the expression of genes involved in adipogenesis and lipid
metabolism (6,7). Expression of PPAR� in adipose tissue
promotes the differentiation of preadipocytes and regu-
lates the expression of fat cell–specific genes (8). SREBPs
modulate lipogenesis and cholesterol homeostasis, and
SREBP2 overexpression increases fatty acid synthase
(FAS) gene expression (9). Adipose tissue differentiation
is also regulated by glucocorticoid hormone (10). Glu-
cocorticoid oversecretion results in the manifestation of
central adiposity, visceral obesity, insulin resistance, hy-
pertension, and dyslipidemia (11,12). Glucocorticoid-
mediated effects in target tissues are regulated by 11
�-hydroxysteroid dehydrogenase 1 (11�-HSD1), an NADPH-
dependent bidirectional enzyme (13). It reduces cortisone
to active cortisol and is expressed in many tissues includ-
ing the liver, adipose, and skeletal muscles. Adipose tissue,
currently considered the biggest endocrine organ, secretes
adipocytokines like adiponectin, leptin, plasminogen acti-
vator inhibitor (PAI), interleukin (IL)-6, tumor necrosis
factor (TNF)-�, etc. (14), which regulate energy metabo-
lism and insulin sensitivity and play a vital role in the
pathogenesis of obesity, atherosclerotic vascular disease,
hypertension, and diabetes (15).

Cr, an important trace element, regulates carbohydrate
and fat metabolism (16). Many investigations in humans
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and animal models suggest that Cr supplementation re-
duces body weight, regulates hunger, and also decreases
body fat (16–18). Cr supplementation is reported to de-
crease plasma total cholesterol and triglycerides, increase
HDL cholesterol, and lower body weight in diabetic sub-
jects (16). However, the effect of Cr deficiency per se on
lipid/fat metabolism or obesity has not been studied, let
alone the effect of peri-/postnatal dietary Cr restriction on
the development and function of the adipose tissue in the
offspring. Based on the available evidence, we hypothe-
sized that perinatal and postnatal dietary Cr restriction
modulates body adiposity and adipose tissue function in
the offspring. The present study has been conducted in
WNIN rats to validate/negate this hypothesis and to eluci-
date the associated mechanisms.

RESEARCH DESIGN AND METHODS

All experimental procedures were approved by the ethics committee on
animal experiments at the National Institute of Nutrition, Hyderabad, India,
and were performed in accordance with the principles of laboratory animal
care (19). WNIN female weanling rats (n � 30) were obtained from the
National Centre for Laboratory Animal Sciences (NCLAS) at the National
Institute of Nutrition, Hyderabad, India.

The animals were divided into two groups of 6 and 24 rats, housed
individually in wire mesh–bottomed polypropylene cages, and maintained
under standard lighting conditions (12-h light/dark cycle). Temperature and
relative humidity were kept constant at 22 � 2°C and 55 � 10%, respectively.
The diets (casein-based, 18% protein) were prepared according to American
Institute of Nutrition–93G formulation and analyzed for Cr content in an
atomic absorption spectrometer (Varian Spectra AA220; Varian, Walnut
Creek, CA) using reduced flame (20). Cr-restricted diet was prepared by
excluding the Cr salt from the mineral mixture that was added to the diet. The
group of 24 rats received, ad libitum, the Cr-restricted (CrR) diet (0.51 mg
Cr/kg diet) for 12 weeks, whereas the group of 6 rats received the control diet
(1.56 mg Cr/kg diet) with free access to deionized water. Daily food intake and
weekly body weights were monitored in these rats until the end of the feeding
regimen. Plasma Cr levels were determined at the end of 12 weeks of feeding
the respective diets.

The animals were then mated with control males (two females with one
male), and the day a vaginal plug was detected was counted as day 1 of

pregnancy. From this day of conception, six of CrR pregnant dams were
switched to control diet (CrRC) and their offspring weaned to control diet.
Another six CrR mothers were rehabilitated with control diet from parturition
(CrRP) and their offspring weaned to control diet. The remaining 12 CrR
mothers continued on CrR diet during lactation. Litter size was adjusted to
seven in all groups on postnatal day 3 and maintained throughout lactation.
At weaning (postnatal day 21), half CrR offspring were weaned to control
diet (CrRW), whereas the remaining pups were continued on CrR through-
out life. Considering the high mortality in the female offspring beyond 15
months of age, female offspring were followed up to 15 months of age, and
for similar reasons the male offspring were studied up to 18 months of age.
The feeding protocol used in this experiment is presented schematically
(Fig. 1).
Plasma Cr status. Plasma Cr levels were monitored once every 3 months in
the offspring by atomic absorption spectrometer using a graphite furnace
(GFS97 SOLAAR AA Series; Thermo Electron, Cheshire, CT) according to
Mahalingam et al. (21).
Body composition. Body composition of the offspring was determined from
3 months of age using total body electrical conductivity, a small animal body
composition analysis system (model SA 3000 multidetector; EMSCAN, Spring-
field, IL) as described previously (22,23). Total body fat percentage was
obtained mathematically by following the method of Morbach and Brans (24).
Adiposity index. Adiposity index, an index of visceral adiposity, was
computed according to Taylor et al. (25). The wet weights of the retroperito-
neal, mesenteric, and epididymal/gonadal fat pads were determined, and the
adiposity index was computed using the following formula: adiposity index �
(sum of the weights of the three fat deposits / body weight) � 100.
Plasma lipid analysis. Total cholesterol, triglycerides, and HDL cholesterol
levels were determined in plasma using enzymatic assay kits from Biosystems
(Barcelona, Spain). Plasma free fatty acids (FFAs) were determined using the
enzymatic kit from Randox (Antrim, U.K.).
Adipocytokines in plasma and adipose tissue. Concentrations of adi-
ponectin, leptin, PAI, IL-6, and TNF� were determined in fasting plasma and
adipose tissue using Lincoplex research kits (Linco Research, St. Louis, MO)
on a BIOPLEX platform (BioRad). Adipose tissue homogenate was prepared
as described previously (26). The protein content in plasma and adipose tissue
lysate was determined using bicinchoninic acid assay (27).
Quantitative analysis of genes by RT-PCR in the offspring. Retroperito-
neal fat tissue was dissected from the male and female offspring of all the
groups at the time they were killed and was stored frozen immediately at
�80°C. Total RNA was isolated from �100 mg of the adipose tissue using
TRIzol reagent according to the manufacturer’s instructions (Invitrogen Life
Technologies, Carlsbad, CA). cDNA was synthesized from 2 �g of total RNA
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FIG. 1. Schematic representation of the feeding protocol of different groups of WNIN rat mothers and their offspring.
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using an Invitrogen kit (Invitrogen Life technologies, Carlsbad, CA). Primers
were designed with the aid of primer quest software (Integrated DNA
Technologies, Corolville, IA). Semiquantitative PCR was conducted to analyze
the expression of 1) PPAR� (5	CCCATTCCTTTGACATCAAACC3	; 5	ATTGT-
GAGACATCCCCACAGC3	), 2) SREBP2 (5	AAGTCTGGCGTTCTGAGGAA3	;
5	 CCAGGAAGGTGAGGACACAT3	), 3) 11�-HSD1 (5	 GCCCTGGTGCTCTA-
GAACTG3	; 5	 AGTTCCACATCGGCCACTAC3	), 4) adiponectin (5	 CTACT-
GTTGCAAGCTCTCC3	; 5	CTTCACATCTTTCATGTACACC3	), 5) leptin (5	
GAGACCTCCTCCATCTGCTG3	; 5	 CATTCAGGGCTAAGGTCCAA3	), and 6)
FAS (5	 TCGAGACACATCGTTTGAGC3	; 5	 TCAAAAAGTGCATCCAGCAG3	)
with the internal control 18S rRNA (5	CCAGAGCGAAAGCATTTGCCAAGA3	;
5	AATCAACGCAAGCTTATGACCCGC3	). The amplicons were resolved elec-
trophoretically on 1.2% agarose gels prestained with ethidium bromide. The
image was captured in a Chemidoc system (Bio-Rad Laboratories, Herculus,
CA) and quantitated using Quantity One software (Bio-Rad). Results have
been expressed as the ratio of the intensities of the band of the target gene to
that of the 18s rRNA.
Statistical analysis. All values are presented as means � SE. Data were
analyzed using unpaired Student t test to identify differences between
control and restricted mothers. One-way ANOVA followed by the multiple
range test or least significant difference method was used appropriately to
analyze data in the offspring. Wherever heterogeneity of variance was
observed, differences between groups were tested using nonparametric
Mann-Whitney U test. The differences were considered significant at P 

0.05.

RESULTS

Growth characteristics, Cr status, and lipid profile in

WNIN rat dams. As expected the plasma Cr levels were
significantly decreased (P 
 0.05) in CrR rats compared
with CrC rats (Table 1). Food intake was significantly (P 

0.05) but marginally higher in CrR than CrC rats (Table 1).
Body weight gain was comparable among the two groups.
Indeed, there were no significant differences between the
two groups of rats in the levels of plasma total cholesterol,
HDL cholesterol, triglycerides, and FFAs (Table 1).
Growth characteristics of the offspring. Food intake
was comparable among the offspring (of both sexes) of the
various groups at all the time points studied. However,
CrR offspring (male and female) weighed significantly
more (P 
 0.05) than CrC from 12 months of age (Fig. 2A
and B) until the time they were killed. In male offspring all
three rehabilitation regimens corrected the change at 12
months of age, whereas CrRP but not CrRC or CrRW
restored the change to control levels at 18 months of age
(Fig. 2A). In female offspring CrRP but not CrRC and
CrRW could correct the insult at 12 months of age,
whereas none of them could do so at 15 months of age
(Fig. 2B). Plasma Cr levels were significantly (P 
 0.05)
decreased in CrR than CrC offspring at all time points
studied, and the rehabilitation regimens restored them to
control from as early as 3 months of age (Fig. 2C and D).
Body fat percentage and adiposity index of the off-
spring. Body fat percentage of the male CrR offspring was
significantly higher than that of CrC rats (Fig. 3A) at 18
months of age but not earlier. CrRC but not CrRP or CrRW
corrected this insult. Similarly, female CrR offspring had
significantly (P 
 0.05) higher body fat percentage than
CrC rats, albeit from 3 months of age (Fig. 3C). Although
all three rehabilitation regimens appeared to correct the
change at 12 months of age, only CrRC could correct the
change at 15 months. Wet weights of the epididymal,
mesenteric, and retroperitoneal fat deposits were signifi-
cantly (P 
 0.05) higher in CrR than CrC offspring (of both

TABLE 1
Diet intake as well as physical and lipid profile in WNIN female
rats fed control and Cr-restricted diets for 12 weeks before
mating

CrC CrR

Food intake (g) 9.73 � 0.295 10.7 � 0.107*
Body wt gain (g) 107 � 5.46 116 � 2.31
Plasma Cr concentration (�g/l) 1.18 � 0.181 0.648 � 0.058*
Total cholesterol (mmol/l) 1.46 � 0.068 1.52 � 0.098
HDL cholesterol (mmol/l) 1.16 � 0.078 1.12 � 0.084
Triglycerides (mmol/l) 0.433 � 0.037 0.492 � 0.035
FFAs (mmol/l) 0.803 � 0.064 0.813 � 0.050

Data are means � SE (n � 6). *P 
 0.05 using Student t test.
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FIG. 2. Body weights and plasma chromium levels in the male (A and C) and female (B and D) offspring at different ages. CrC, f; CrR, �; CrRC,
; CrRP, 2; CrRW, . Values are mean � SE (n � 6). Bars without a common letter are significantly different at P < 0.05 by one-way ANOVA.
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sexes), and no rehabilitation regimen could correct these
changes (Fig. 3B and D). Accordingly, the computed
values of adiposity index were significantly (P 
 0.05)
higher in CrR than CrC offspring, and rehabilitation in
general did not correct the increased adiposity index.
Plasma lipid profile. Plasma lipid profile (triglycerides,
total cholesterol, HDL cholesterol, and FFAs) was compa-
rable among male offspring of different groups at all the
time points tested (data not given). However, in female
offspring plasma triglycerides and FFAs were significantly
higher (P 
 0.05) in CrR than CrC rats from 9 months of
age but not earlier, and all three rehabilitation regimens
restored these rats to control levels (Fig. 4A and B). Total
and HDL cholesterol levels were comparable among the
female offspring of different groups at all time points
studied (data not given).
Adipocytokine levels in plasma. Plasma adiponectin
levels were comparable among male offspring of all the
groups. In female offspring, although plasma adiponectin
levels were comparable among CrR and CrC groups, CrRC
and CrRP rats had significantly (P 
 0.05) increased levels
(Table 2), whereas CrRW rats showed no effect. Leptin
levels were significantly higher (P 
 0.05) in CrR than CrC
rats, albeit in female offspring only, and all three rehabil-
itation regimens restored rats to control levels. Interest-
ingly, TNF� levels were significantly higher (P 
 0.05) in
CrR than CrC offspring of both the sexes, and all three
rehabilitation regimens corrected the change (Table 2).
However, the levels of circulating IL-6 and PAI (active)
were comparable among the groups in both male and
female offspring (Table 2).
Adipocytokines in adipose tissue. Adiponectin and PAI
(active) levels in adipose tissue homogenate were signifi-
cantly (P 
 0.05) reduced and increased, respectively, in
male CrR than CrC offspring (Table 3). Surprisingly, adi-
ponectin levels were corrected in CrRW but not CrRC or
CrRP offspring, whereas PAI levels were corrected in
CrRC and CrRP but not CrRW offspring. The levels of
other cytokines i.e., leptin, TNF�, and IL-6, in the adipose

tissue homogenate were comparable among all the groups
(Table 3). Unlike male offspring, in females neither mater-
nal Cr restriction nor rehabilitation affected the expression
of the adipocytokines studied (Table 3).
Quantitative analysis of genes involved in adipose
tissue development and function. Expression of leptin
and 11�-HSD1 genes was significantly increased in the
adipose tissue of CrR offspring of both sexes compared
with the corresponding controls (Fig. 5A and B). In male
offspring change in 11�-HSD1 expression was corrected
by all three rehabilitation regimens, whereas CrRC and
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CrRP but not CrRW could correct the change in leptin
expression. On the other hand, in female offspring CrRP
but not CrRC and CrRW showed comparable effects on the
expression of both leptin and 11�-HSD1 genes. However,
expression of PPAR�, SREBP2, adiponectin, and FAS
genes did not show any significant change among the
offspring of different groups (Fig. 5A and B).

DISCUSSION

We demonstrated previously that restriction of micronu-
trients in utero increased body fat perdentage and central
adiposity in offspring (22,23,26,28,29). Considering the
importance of Cr in maintaining carbohydrate/lipid metab-
olism and modulating body composition in diabetic sub-
jects (30), we investigated the effects of peri-/postnatal Cr
restriction on the development of adiposity and the asso-
ciated mechanisms in the WNIN rat model.

The marginally higher diet intake of CrR compared with
CrC rats is in disagreement with increased food intake
reported on Cr picolinate supplementation (31). Consis-
tent with earlier reports (28,32), we observed no changes
in the plasma lipid profile of CrR rats despite increased
food intake. This could be due to moderate Cr deficiency
and/or insufficient duration of Cr restriction.

Although it did not affect food intake in the offspring,
peri-/postnatal Cr restriction decreased plasma Cr in CrR
pups from 3 months of age, and all rehabilitation regimens
restored rats to control levels, besides increasing their
body weights. However, rehabilitation corrected body

weight changes in male offspring partially but not in
female offspring. Although in line with previous studies on
the effects of Cr and vitamin A (17,33) on body weight,
these findings contradict reports on maternal micronutri-
ent restriction–lowered body weight in rat offspring
(22,28) and Cr supplementation–increased body weight in
pigs (30). However, some studies showed that Cr picoli-
nate did not affect body weight (34). Indeed, no studies to
date reported the effect of maternal Cr restriction on the
offspring body weight.

Most often, high body adiposity precedes insulin resis-
tance (35). In this study, maternal Cr restriction increased
body fat percentage in males at 18 months of age, whereas
in females it increased from 3 months of age, and only
CrRC could correct these changes. These findings concur
with the decreased fat percentage reported in obese
subjects on Cr supplementation (17) and our previous
reports that maternal mineral restriction had similar ef-
fects in rat offspring (22,23,26,28). These observations
suggest the importance of Cr during gestation and lacta-
tion in modulating body fat in offspring.

Increased visceral fat is usually associated with obesity
and attendant metabolic disorders (36,37). That chronic
maternal Cr restriction significantly increased adiposity
index in the offspring and rehabilitation did not correct it
stresses the importance of Cr during growth, gestation,
and lactation in modulating visceral adiposity in offspring.
These results agree with those reported in vitamin A
restriction (33) and our findings in offspring of Mg-

TABLE 2
Plasma adipocytokine levels of various groups of male and female offspring

CrC CrR CrRC CrRP CrRW

Male offspring
Adiponectin (�g/ml) 31.5 � 3.00 31.5 � 3.90 33.8 � 5.31 35.4 � 8.48 36.2 � 3.18
Leptin (ng/ml) 4.22 � 0.407 4.24 � 0.809 4.57 � 0.582 2.73 � 0.685 5.17 � 0.676
TNF� (pg/ml) 0.820 � 0.150* 2.28 � 0.657† 1.46 � 0.367* 1.34 � 0.329* 0.905 � 0.221*
IL-6 (ng/ml) 0.014 � 0.007 0.018 � 0.006 0.015 � 0.007 0.015 � 0.000 0.015 � 0.004
PAI (ng/ml) 0.653 � 0.030 0.762 � 0.137 0.948 � 0.374 0.291 � 0.133 0.597 � 0.112

Female offspring
Adiponectin (�g/ml) 17.8 � 2.84* 17.5 � 3.00* 30.2 � 1.05† 27.3 � 3.59† 13.2 � 2.22*
Leptin (ng/ml) 1.11 � 0.241* 2.95 � 0.318† 1.71 � 0.259* 1.46 � 0.313* 1.89 � 0.199*
TNF� (pg/ml) 1.04 � 0.174* 2.59 � 0.669† 1.67 � 0.392* 1.98 � 0.364* 0.996 � 0.106*
IL-6 (ng/ml) 0.304 � 0.059 0.246 � 0.008 0.255 � 0.008 0.265 � 0.019 0.281 � 0.020
PAI (ng/ml) 0.417 � 0.092 0.500 � 0.128 0.541 � 0.115 0.476 � 0.201 1.02 � 0.316

Data are means � SE (n � 6). Data without a common symbol are significantly different at P 
 0.05 by one-way ANOVA.

TABLE 3
Adipocytokine levels in adipose tissue of different groups of male and female offspring

CrC CrR CrRC CrRP CrRW

Male offspring
Adiponectin (�g/mg) 8.56 � 0.865* 5.94 � 0.425† 5.89 � 0.637† 5.71 � 0.958† 6.58 � 0.492*
Leptin (ng/mg) 5.12 � 0.972 5.48 � 1.03 3.51 � 0.195 4.82 � 0.703 4.19 � 0.585
TNF� (pg/mg) 0.511 � 0.048 0.602 � 0.070 0.568 � 0.040 0.531 � 0.110 0.606 � 0.113
IL-6 (ng/mg) 0.073 � 0.008 0.129 � 0.031 0.120 � 0.032 0.149 � 0.069 0.122 � 0.031
PAI (ng/mg) 0.291 � 0.050* 1.33 � 0.154† 0.582 � 0.076* 0.480 � 0.171* 1.07 � 0.239†

Female offspring
Adiponectin (�g/mg) 5.97 � 0.434 4.71 � 0.664 5.77 � 0.317 6.16 � 0.762 5.25 � 0.642
Leptin (ng/mg) 2.75 � 0.844 3.05 � 0.590 2.32 � 0.467 2.34 � 0.945 1.87 � 0.132
TNF� (pg/mg) 0.628 � 0.119 0.799 � 0.115 0.718 � 0.289 0.587 � 0.085 0.670 � 0.075
IL-6 (ng/mg) 0.200 � 0.035 0.185 � 0.062 0.120 � 0.021 0.212 � 0.052 0.114 � 0.039
PAI (ng/mg) 0.428 � 0.078 0.561 � 0.208 0.381 � 0.060 0.659 � 0.333 0.503 � 0.170

Data are means � SE (n � 6). Data without a common symbol are significantly different at P 
 0.05 by one-way ANOVA.
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restricted rats (26,28), which indicate that maternal Cr
restriction increased adiposity, especially visceral adipos-
ity, in offspring and may therefore predispose to insulin
resistance and associated diseases in later life.

Fasting hypertriglyceridemia and/or low HDL choles-
terol levels are associated with insulin resistance (38). The
increased plasma triglycerides and FFAs in female CrR
offspring are in line with reports of high plasma triglycer-
ide in the offspring of micronutrient-restricted rats
(22,23,28), altered lipid metabolism in pups of protein- or
iron-restricted rats (39), and effects of Cr supplementation
on lipid metabolism and fat deposition in lambs (40).

Altered adipocytokines underlie the development of
adiposity and insulin resistance (15). Our observations
that maternal Cr restriction increased plasma TNF� in
male and female CrR offspring but increased leptin only in
females agree with similar reports in offspring of vitamin-
restricted rats (22). Further, they corroborate reports that
1) hypocaloric diet reduced leptin and TNF� but not
adiponectin and PAI-1 levels in plasma (41) and 2) mice
fed conjugated linoleic acid and chromium along with
high-fat diet had lower plasma leptin levels (42). That
rehabilitation could correct changes in plasma adipocyto-
kines but not body fat percentage or visceral adiposity
suggests that rehabilitation may correct the associated
biochemical changes but not the maternal Cr restriction–
induced visceral adiposity in rat offspring.

That maternal Cr restriction decreased adiponectin and
increased PAI levels in adipose tissue of male offspring
and rehabilitation partially corrected the changes suggests
its role in modulating adipose tissue function in offspring,
which may predispose them to insulin resistance and
associated diseases in later life. However, our observation
that the lack of changes seen in leptin and TNF� levels in
adipose tissue despite increased levels in circulation was
perplexing. Taken together, these observations suggest
that maternal Cr restriction may affect the expression of
adipocytokines differentially and variably in male and
female offspring. The possible reasons for these discrepant
observations on adipocytokines are not clear at present.

Expression of PPAR�, SREBP2, and 11�-HSD1 in adi-
pose tissue modulates obesity/visceral adiposity, dyslipi-
demia, insulin resistance, and associated complications
(8,43,44). We observe that 11�-HSD1 and leptin expres-
sion upregulation, but not that of PPAR�, SREBP2, adi-
ponectin, and FAS, in CrR offspring and the partial
correction by rehabilitation are in agreement with the
upregulation of leptin and 11�-HSD1 reported in diabetic
subjects (45) and the adipose tissue dysregulation re-
ported in rats through high fat–induced overexpression of
11�-HSD1 (46). It thus appears that increased expression
of 11�-HSD1 and leptin may underlie enhanced body
adiposity (fat percentage and visceral adiposity) in the
offspring.

In conclusion, this study has demonstrated for the first
time to the best of our knowledge that chronic maternal Cr
restriction increased visceral adiposity and modulated
adipose tissue function in rat offspring. The upregulation
of 11�-HSD1 and leptin may underlie increased adiposity
in these offspring. Finally, this study reiterates the impor-
tance of Cr during the peri-postnatal period in the devel-
opment and function of adipose tissue in the offspring that
may predispose them to obesity and insulin resistance in
later life.
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