(\) BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY

Synthesis of uniform cyclodextrin thioethers to transport

hydrophobic drugs

Lisa F. Becker, Dennis H. Schwarz and Gerhard Wenz"

Full Research Paper
Address:
Organic Macromolecular Chemistry, Saarland University, Campus

C4.2, 66123 Saarbriicken, Germany

Email:
Gerhard Wenz" - g.wenz@mx.uni-saarland.de

* Corresponding author
Keywords:

active pharmaceutical ingredient; binding constant; cyclodextrin;
derivatization; gas chromatography; sevoflurane; substitution pattern

Abstract

Beilstein J. Org. Chem. 2014, 10, 2920-2927.
doi:10.3762/bjoc.10.310

Received: 01 August 2014
Accepted: 23 November 2014
Published: 09 December 2014

This article is part of the Thematic Series "Superstructures with
cyclodextrins: Chemistry and applications II".

Associate Editor: S. C. Zimmerman

© 2014 Becker et al; licensee Beilstein-Institut.
License and terms: see end of document.

Methyl and ethyl thioether groups were introduced at all primary positions of a-, B-, and y-cyclodextrin by nucleophilic displace-

ment reactions starting from the corresponding per-(6-deoxy-6-bromo)cyclodextrins. Further modification of all 2-OH positions by

etherification with iodo terminated triethylene glycol monomethyl ether (and tetraethylene glycol monomethyl ether, respectively)

furnished water-soluble hosts. Especially the B-cyclodextrin derivatives exhibit very high binding potentials towards the anaes-

thetic drugs sevoflurane and halothane. Since the resulting inclusion compounds are highly soluble in water at temperatures <37 °C

they are good candidates for new aqueous dosage forms which would avoid inhalation anaesthesia.

Introduction

Cyclodextrins (CDs) are cyclic oligomers of a-1,4-linked
glucose units. Those CDs consisting of 6, 7, and 8 glucose units
are called a-, B- and y-CD, respectively [1]. CDs are well
known to increase the bioavailability of active pharmaceutical
ingredients (APIs) [2,3], and they are readily available in phar-
maceutical purity and industrial quantities. Furthermore, they
are water soluble and regarded as non-toxic in case of a- and
v-CD [4,5], while B-CD shows some toxic effects such as
haemolysis at high concentrations [6].

CDs are generally employed to increase the bioavailability of

those APIs scarcely soluble in water [7]. The observed solubili-

zation of an API is generally based on the complexation of the
hydrophobic part of the API molecule within the CD cavity [3].
There are several formulations of APIs containing CDs on the
market, such as prostaglandine/a-CD [8], and piroxicam/B-CD

[9].

Further application of native CDs for the delivery of hydro-
phobic drugs is often hampered by aggregation [10], and gener-
ally by poor solubility of the formed inclusion compounds. As a
consequence, the phase solubility isotherm shows saturation
behaviour, so-called B-type curves [11,12]. Therefore many CD
derivatives have been synthesized to overcome this problem
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[1,12,13]. Statistical B-CD derivatives, such as hydroxypropyl-
B-CD [14], methylated $-CD [15], and sulfobutyl-B-CD [16] are
indeed in use, but quality control for such mixtures of com-
pounds remains a difficult issue [17,18]. Also binding poten-
tials of statistical B-CD derivatives like hydroxypropyl-p-CD
are often smaller than those of native B-CD [19].

We recently found out that full methylation of all secondary
hydroxy groups of B-CD causes a significant drop of binding
potential, while substitution at the primary site does not alter the
binding potential or even increases it [20]. Especially substitu-
tion of all primary hydroxy groups by thioether groups gives
rise to compounds with very high binding potentials due to the
higher hydrophobicity of sulfur compared to oxygen [21-23].
The octa-substituted carboxyethyl thioether of y-CD is already
in use under the name sugammadex (Bridion®) for the reversal
of neuromuscular blockade, making use of its extremely high
affinity towards rocuronium [24,25]. Furthermore, hydrophilic
v-CD thioethers show high affinities to other guests such as
polycyclic aromatic hydrocarbons [26], botulin [27,28], and
fullerene Cg [29].

Hydrophilic B-CD thioethers also tightly complex volatile
benzene derivatives leading to a significant decrease of their
vapour pressure [30]. Therefore we were encouraged to investi-
gate the inclusion of volatile hydrophobic APIs, e.g., sevoflu-

rane, in CD thioethers. Sevoflurane, a versatile inhalational
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anaesthetic [31], was already included in native CDs and
hydroxypropyl-B-CD, but these complexes are either nearly
insoluble in water or the binding constants are rather low [32-
34].

We focussed our effort on the design of hydrophilic and/or
amphiphilic CD thioethers, because only amphiphilic mole-
cules can form [35,36] or incorporate into bilayer membranes
[37,38]. Amphiphilic CD carriers can enter a bilayer membrane
to support the API to overcome cellular barriers, such as the
intestinal barrier [39] or the blood-brain barrier (BBB) [40].
Long alkyl chains (C4—C,) have already been attached via
thioether or sulfoxide linkages to all primary positions by
Kawabata and Ling et al. to form hydrophobic f-CD deriva-
tives [41,42]. Mazzaglia et al. reported on amphiphilic $-CD
derivatives with alkyl chains (C,—C;¢) connected by the
thioether linkages to the primary site and a statistical substitu-
tion with oligoethylene glycol at secondary sites [43]. Becker et
al. describe similar hosts with 2,2,2-trifluoroethyl groups at all
primary sites and also oligoethylene glycol at secondary sites
[44]. In both latter cases statistical CD derivatives have been
employed, where both the lengths of the oligoethylene oxide
side chains and their locations were scattered.

Herein, we report on the synthesis of water soluble CD deriva-
tives (Scheme 1) with well-defined molecular structure and high

binding affinities towards volatile anaesthetic APIs.
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Scheme 1: Synthetic route to neutral water-soluble CD thioethers.
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Results and Discussion
Heptakis-6-deoxy-6-bromo-B-CD, synthesized according to
Defaye et al., was reacted with sodium methanethiolate, and
ethanethiolate, respectively [45]. The reaction was performed in
DMEF solution leading to the corresponding thioethers 1by/1b,
in excellent yields (up to 92%). Afterwards, these thioethers
1b¢/1by were hydroxyethylated with ethylene carbonate to the
water soluble derivatives 2bq/2b;, according to Mazzaglia et al.
[43]. The ESI MS of 2bq (Figure 1) showed a rather broad
molecular weight distribution typical for CD derivatives with
statistical substitution pattern. On the other hand, nearly
uniform CD derivatives were synthesized by regioselective
deprotonation of all 2-OH positions with NaH in DMF solution
according to Tian and D’Souza [46], and subsequent complete
alkylation with I-(CH;-CH,-0),-CHj3 (n = 3,4) for 4-7 d at
60—80 °C. The resulting derivatives 3 and 4 were isolated by
liquid-liquid extraction at 50 °C with a Kutscher—Steudel
extractor and subsequent column chromatography. Yields were
high as shown in Table 1. The ESI MS of 3by (Figure 1)
showed a significantly lower polydispersity than 2by. Also the
TH NMR spectrum of 3b; was much better resolved than the
one of the statistical derivative 2b; due to its homogenous
substitution pattern and uniform lengths of the oligoethylene
oxide groups (Figure 2).

All B-CD derivatives 2, 3 and 4 were indeed highly soluble in
water at 25 °C but upon heating the clear solutions turned turbid
at a certain temperature and the compounds precipitated. The
observed phase separation at the so-called lower critical solu-
tion temperature (LCST) is typical for uncharged polymeric
amphiphiles, such as methyl cellulose [47], poly(N-isopropyl-
acrylamide) (pNiPAAm) [48], and also for methylated CDs
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Table 1: List of the synthesized CD derivatives and their lower critical
solution temperatures (LCST).

Ring size RS R2 Y[',Z']d L[Cng
3a 6  SMe (CH,CH.O)Me 42% 43
4a1 6 SMe (CH20H20)4M6 10%2 65
3by 7 SMe (CH,CH,O)Me 68% 42
3b, 7 SEt (CHoCH,O)Me 89% 61
4b, 7 SMe (CH,CH,OlMe 14%° 54
3¢c4 8  SMe (CH,CH,O)3Me 89% 49

3Loss of compound during ultrafiltration.

[49], and CDs completely modified with oligoethylene glycol
units [50]. While the LCST transition of the statistical deriva-
tive 2by was within a rather broad temperature range
(30-40 °C), the uniform derivative 3b; showed a sharp tran-
sition at 42 °C (Figure 3). The LCST was only scarcely depen-
dent on the ring size of CD but increased with the length of the
hydrophilic oligoethylene oxide chain, as listed in Table 1. The
LCST should be beyond 40 °C for being applicable for the
delivery of drugs into a mammalian body.

Investigation of the inclusion of sevoflurane
The inclusion of the anaesthetic sevoflurane by our hosts was
investigated by the measurement of the vapour pressure of the
guest by gas chromatography as a function of the host concen-
tration as described by Armstrong [51] and Fourmentin et al.
[30,52]. As shown in Figure 4, the vapour pressure of the guest
sevoflurane significantly drops due to complexation by host
3b;.
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Figure 1: ESI MS spectra of CD derivatives 2b4 (left) and 3b4 (right).
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Figure 2: "H NMR spectra of a) the statistical CD derivatives 2b4 and b) the corresponding uniform derivative 3bq in DMSO-dg (numbers in red are
the integrals of the respective signals).

1,0
100 ]
4 0,8 -
X 804 ]
S . 0,6 -
E 60+ 044
)
c ]
@ 1
— 0,2 -
40 H i
T T T T T T T | 0,0 T T T T T T T T
25 30 35 40 45 0 2 4 6 8
Temperature [°C] Host 3b, [mM]
Figure 4: Decay of the relative vapour pressure A/Ag as function of the
Figure 3: Transmission (A = 670 nm) of aqueous solutions (1.0 wt %) host concentration 3bq measured by GC headspace; the curve was
of 2b4 (red) and 3b4 (blue). fitted according to Equation 1.
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The corresponding binding constant K was calculated from the
hyperbolic decay of the area 4 of the sevoflurane signal with
the total concentration of the CD derivative [CD], by non-linear
regression according to Equation 1, as described previously in
this journal [30]. The Henry constant was determined according
to a known GC method [30] to kg = 2.0 at 25 °C and kg = 3.05
at 37 °C in good agreement with literature data [53]. The occu-
pancy x of employed CD host by the guest was calculated by
the law of mass action according to Equation 2. The solubility
of the free guest sevoflurane in water [G] = 5.4 mM at 25 °C
was calculated by the ideal gas law from its Henry constant and
vapour pressure p = 263 mbar [54,55], according to Equation 3:

4 _ 1
4 14 X cp) O
1+ fhy 0
_[¢pG] K
[CD]O K+L @
[G]
_p
9= % 3)

Commercially available native CDs and B-CD derivatives
showed rather poor affinities to sevoflurane, as shown in
Table 2. Among the native CDs B-CD had far the highest
binding constant which was attributed to the best space filling
of this host by sevoflurane. We recently demonstrated also for
other guests that space filling has a very significant influence on
the binding constants [30]. We found indeed an even higher
binding constant for heptakis-2,6-di-O-methyl-3-CD (DIMEB),
but medical applications remain questionable for this host
because of its known high toxicity [6]. On the other hand,
heptakis-2,3,6-tri-O-methyl-B-CD (TRIMEB) and the less toxic
derivative hydroxypropyl-p-CD performed much worse. The
low binding potential of TRIMEB was already found for other
guests and can be attributed to the lack of intramolecular
hydrogen bonds stabilizing the CD framework.

Table 2: Binding data for sevoflurane in native CDs and commercial
CD derivatives at 25 °C.

Host K [L/mol] Occupancy x [mol %]
a-CD 18 9
B-CD 150 45
y-CD 9 5
DIMEB 713 79
TRIMEB 27 13
HP-B3-CD 163 47
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The new hydroxyethylated CD thioethers, listed in Table 3,
generally showed higher binding constants than the respective
native CDs. The higher binding potential of CD thioethers was
already found for other guests as well [21-23]. The binding
constants of the a-CD derivatives 3a; and 4a; were much lower
than the ones of the corresponding B-CD derivatives 3b; and
4b; which can be again rationalized by the better space filling
of the seven membered rings by sevoflurane. The binding
constant decreased with increasing lengths of the alkyl
substituents at the sulfur atoms as well as with the lengths of the
oligoethylene oxide chains. This fact was attributed to an
increasing loss of entropy upon complexation of the guests. The
longer the substituents the higher the conformational freedom of
the host leading to higher intrinsic entropy. Also the two statis-
tical derivatives, 2by and 2b, showed somewhat lower binding
constants than the regioselectively modified derivatives 3,
which might be due to a smaller amount of residual secondary
hydroxy groups known to stabilize the CD framework by
intramolecular hydrogen bonds [20]. Among the CD thioethers

3b performed best reaching occupancies close to 100%.

Table 3: Binding data for sevoflurane in the new CD thioethers at
25 °C.

Host K [L/mol] Occupancy x [mol %]
3a4 64 26
4a, 9 5
2b4 2270 92
2b, 263 59
3bq 2801 94
3by 286 61
4b, 722 80

Although all binding measurements were already performed
under physiological pH and ionic strength, we were interested
in the binding potential of the best host 3by approaching in vivo
conditions to estimate the performance of this CD derivative for
the delivery in the bodies of animals or humans. As anticipated,
the binding constant slightly dropped in 5 wt % albumin solu-
tion and further dropped in human serum (Table 4). At 37 °C a
further decrease of K was observed, but it still remained rather
high. The occupancy of 3by was still 87 mol % in human serum
at body temperature. Therefore this compound should be well
suitable for the delivery of sevoflurane. Potentially oral aqueous
dosage forms can be developed for both anaesthesia and the
treatment of pain. 3by is also able to complex other hydro-
fluoric anaesthetics, like halothane [54], where the binding
constant K = 9090 L/mol (occupancy of the host 98%) was even
higher than for sevoflurane.

2924



Table 4: Binding data for sevoflurane in 3b4 for various media and
temperatures.

Medium Temperature K Occupancy x
[°C] [L/mol] [mol %]

albumin? 25 2175 92
human serum 25 1802 90
water 37 1427 88
albumin? 37 1382 88
human serum 37 1331 87

a5 wt %.

Conclusion

The water-soluble B-CD thioether 3by with the smallest
possible substituents at both the sides of the CD torus showed
the highest binding affinities for the anaesthetic APIs sevoflu-
rane and halothane, much higher than native CDs and known
CD derivatives. Since the LCST is sufficiently higher than body
temperature, 3b; is a very promising candidate for oral or intra-

venous delivery of these anaesthetics.

Experimental

Methods. Characterization of all products was operated using
NMR and ESIMS spectroscopy. All NMR spectra including 'H,
13¢, H,H-COSY and C,H-COSY were measured at room
temperature by a BrukerBioSpin spectrometer Magnet System
400 MHz Ultra shield plus ("H: 400 MHz, 3C: 100.6 MHz).
The chemical shifts are given in parts per million (ppm) in rela-
tion to the corresponding solvent signal. The data analysis was
performed with SpecManager included in ACDLabs 10.0 from
Advanced Chemistry Development Inc., Toronto, Ontario,
Canada. The proton and carbon atoms of the glucose units were
marked with 1, 2, 3 etc. starting from the anomeric proton/
carbon. The multiplicities were assigned as follows: s for
singlet, d for doublet, t for triplet, bs for broad signal and m for
multiplet. Mass spectra were recorded by a LC-MS spectrom-
eter ZQ-4000 from Waters GmbH, Eschborn, Germany, oper-
ated in ESI™ and ESI™ mode.

Some products were purified by cross-flow nanofiltration using
a membrane called Mini Mate TPP Capsule from Pall, Crails-
heim, Germany, further a membrane called Omega with a Cut-
off of 650 Da was used. Freeze-drying was carried out with a
lyophilizer Lyophille Alpha 1-4 produced by Christ, Osterode
am Harz, Germany. The LCST transitions were recorded with a
UV-vis spectrometer Evolution 220 from Thermo Scientific,
Waltham, MA, USA, equipped with a heating device from
Harrick, Pleasantville, New York. The inclusion properties of
the host molecules were investigated by head space gas chroma-
tography with a Shimadzu GC-17A GC equipped with a head
space unit from Shimadzu, Kyoto, Japan. Vials of 5 mL volume
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were used, the ratio between gas (V' = 3.2 mL) and aqueous
(V'=1.8 mL) phase was f=1.77.

Materials. All chemicals (except CDs) were purchased from
Sigma-Aldrich, Merck, Acros Organics, Fisher Scientific or
TCI Europe and were used without further purification. a-, B-
and y-CD were kindly provided by Wacker Chemie AG,
Munich, Germany and were used after drying overnight at
60 °C under reduced pressure. Human serum was kindly
provided by University Hospital of Wiirzburg. All measure-
ments were performed in saline HEPES-buffer solution
(pH 7.4) with a NaCl concentration of 0.9 wt %.

3by: Heptakis[6-deoxy-6-methylsulfanyl-2-(2-(2-(2-
methoxyethoxy)ethoxy)ethyl)]-p-cyclodextrin:

)

13
9 (@]
0 o—/_
\ / 12
10 11

2.60 g (65 mmol) NaH (60 wt % dispersion in mineral oil,
Sigma-Aldrich) was washed twice with 25 mL of n-pentane
under N, and stirred at rt for 1 h. After addition of 6.25 g
(4.64 mmol) heptakis(6-deoxy-6-methylsulfanyl)-p-cyclodex-
trin dissolved in 130 mL of DMF, 17.8 g (65 mmol) 2-(2-(2-
methoxyethoxy)ethoxy)ethyl iodide and 17.5 mg (0.05 mmol)
tetra-n-butylammonium iodide were added and the resulting
reaction mixture was stirred at 60 °C under N, for 6 d. The
reaction was quenched by the addition of 50 mL of ethanol and
stirred at rt for further 30 min. The solvents were completely
removed by vacuum distillation (bath temperature 70 °C,
1 mbar) and the residue was dissolved in 200 mL of water and
neutralized by addition of 1 M HCI. The crude product was
isolated by extraction with ethyl acetate at 70 °C using a
Kutscher—Steudel extractor. The organic phase was concen-
trated in vacuo and the remaining residue was fractionized by
column chromatography over 1.0 kg of silica (60 A,
70-230 mesh, Fluka) with an ethyl acetate/methanol gradient
(100/0 — 90/10 — 0/100 v/v) as eluent. The product (7.5 g,
68%) was obtained as a yellowish oil after complete removal of
the eluent by vacuum distillation and drying at 60 °C in vacuo
(0.03 mbar) for 3 d. TLC: Ry (EtOAc/MeOH 9:1 v/v) = 0.06; R¢
(MeOH) = 0.57; 'H NMR &/ppm (DMSO-dg, 400 MHz) 5.03
(d, 3J = 3.3 Hz, 1H, H-1), 4.89 (s, 1H, OH-3), 4.01-3.96 (m,
1H, H-8a), 3.79-3.69 (m, 3H, H-3, H-5, H-8b), 3.53 (s, 8H,
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H-8, H-9) 3.50 (m, 1H, H-4), 3.44-3.38 (m, 3H, H-2, H-9), 3.24
(s, 3H, O-CH3), 3.10-3.07 (m, 1H, H-6a), 2.75 (dd, 3 = 14.1
Hz, 7.8 Hz, 1H, H-6b), 2.08 (s, 3H, H-7); '3C NMR &/ppm
(DMSO-dg, 100 MHz) 100.5 (C-1), 85.5 (C-4), 71.3 (C-2, C-3,
C-5), 69.8-69.6 (C-8, C-9), 58.0 (C-10), 35.0 (C-6), 16.0 (C-7);
ESIMS m/z: 2390.90 [M + Na]™.

Supporting Information

Supporting Information File 1

Experimental procedures for CD derivatives 1b,, 3a;, 4ay,
3b2, 4b1, and 3C1.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-10-310-S1.pdf]
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