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Single-cell open-chromatin profiles have the potential to reveal the pattern of chromatin-
interaction in a cell type. However, currently available cis-regulatory network prediction
methods using single-cell open-chromatin profiles focus more on local chromatin
interactions despite the fact that long-range interactions among genomic sites play
a significant role in gene regulation. Here, we propose a method that predicts both
short and long-range interactions among genomic sites using single-cell open chromatin
profiles. Our method, termed as single-cell epigenome based chromatin-interaction
analysis (scEChIA) exploits signal imputation and refined L1 regularization. For a few
single-cell open-chromatin profiles, scEChIA outperformed other tools even in terms of
accuracy of prediction. Using scEChIA, we predicted almost 0.7 million interactions
among genomic sites across seven cell types in the human brain. Further analysis
revealed cell type for connection between genes and expression quantitative trait locus
(eQTL) in the human brain and making insight about target genes of human-accelerated-
elements and disease-associated mutations. Our analysis enabled by scEChIA also
hints about the possible action of a few transcription factors (TFs), especially through
long-range interaction in brain endothelial cells.

Keywords: chromatin-interaction, single-cell epigenome, single-cell ATAC-seq, GWAS target, long-range, brain
cis-interaction

INTRODUCTION

Spatial interactions between different genomic loci are required for multiple regulatory functions
(de Wit and de Laat, 2012). Many groups have profiled chromatin-interaction in multiple cell
types using different experimental high-throughput methods to study such complex patterns in
chromatin architecture and gene regulation. The experimental methods based on chromosome
conformation capture (3C) are more focused on local genomic loci (Dekker et al., 2002). The
Chromatin-interaction Analysis by Paired-End Tag Sequencing (ChIA-PET) method captures
distal interactions, but it is limited to only binding sites of the protein of interest (Tang et al.,
2015). The high-throughput chromosome conformation capture (HiC) assay provides a genome-
wide chromatin-interaction profile but requires deep-sequencing to achieve high resolution
(de Wit and de Laat, 2012).
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Several groups have recently attempted to predict chromatin
interactions using linear one dimensional genetic and epigenetic
information (Li et al., 2019). Most of the tools proposed
for predicting interaction depend on the use of epigenetic
information from bulk samples, often consisting of multiple
cell types (Whalen et al., 2016). Simultaneous availability of
many epigenome profiles is currently possible for only a few cell
types. Hence predicting cell-type-specific chromatin-interaction
is not trivial for many cell types. On the other hand, if we
exploit heterogeneity in the activity of genomic sites in single-
cells, we could predict chromatin interactions in a cell type.
Especially for understanding regulatory mechanisms in minor
cell types in heterogeneous clinical samples for personalized
therapy, single-cell epigenome profiles can provide the landscape
of genomic sites’ activity and the prediction of chromatin-
interaction. With experimental assays like 3C and HiC and
computational methods using bulk epigenome profiles, it would
not be trivial to profile chromatin-interaction maps for multiple
cell types for heterogeneous clinical samples from patients
on a regular basis. Recently, Pliner et al. (2018) proposed a
method called Cicero to predict local chromatin-interaction
using single-cell Assay for Transposase-Accessible Chromatin
using sequencing (scATAC-seq) profile. However, Cicero is
designed for predicting interactions among genomic sites, which
are within 500 kbp (kilobase pairs) of each other. Another
method called jointly reconstruct cis-regulatory interaction maps
(JRIM) (Dong and Zhang, 2020) uses open chromatin profiles
of multiple cell types to infer reliable chromatin interactions;
hence it is of less use for prediction for a single cell type.
JRIM is also designed to predict chromatin interactions within
500 kbp window. However, it has been shown before that
mutation identified by genome-wide association studies (GWAS)
could be influencing genes lying more than 500 kbp away. The
median size of the topologically associated domain (TAD) in
mouse cells have been reported to 880 kbp (Dixon et al., 2012).
Previously Novo et al. (2018) highlighted the significant role
of long-range interactions (>800 kbp) among promoters and
super-enhancers in poising and activation of embryonic stem
cells (ESCs). Similarly, other studies have also highlighted the
importance of long-range interaction for understanding gene-
regulatory patterns and related epigenetic profiles (Ling and
Hoffman, 2007). Hence, predicting long-range (distal) chromatin
interactions using a single-cell epigenome profile is an important
open problem of high utility. Here we developed a method called
as single-cell Epigenome based chromatin-interaction Analysis
(scEChIA), which can predict interactions among distal sites
with high accuracy using single-cell open-chromatin profiles. We
have further shown its utility in the prediction of chromatin
interactions in brain cells for making useful insights.

MATERIALS AND METHODS

Pre-processing of Data
Our tool first divides the genome into bins of the required size.
By default, it uses a bin of size 25 kbp. For a read-count matrix,
it merges the peaks lying within the same bin. For merging two

peaks, it adds their read-counts. After merging the peaks, it takes
log transformation of the new read-count matrix as

xij = log( xij + 1) (1)

Gaussian Graphical Model With an
Improved Penalizing Parameter to
Embed Previous Knowledge
In the read-count matrix of the single-cell open-chromatin
profile, the number of peaks is often more than cells. Hence
the estimation of a matrix with covariances of peak activity
is not trivial. For such problems, Gaussian graphical model,
such as graphical-Lasso (Friedman et al., 2008) method helps
in estimating regularized covariance matrix and its inverse.
The inverse of the covariance matrix can be used to calculate
partial correlations. Here partial correlation provides the degree
of co-accessibility between peaks after removing the effect of
confounding factors due to other peaks. Graphical Lasso is used
for detecting such direct association among variables. The penalty
term in Graphical lasso causes shrinkage of partial correlations
between peaks pairs (Friedman et al., 2008), when the strength
of their association is low. The Graphical Lasso method tries to
maximize:

logdet2− tr (U2)− ρ ‖ 2 ‖1 (2)

where 2 is the inverse covariance matrix and U is the
covariance matrix, and ρ is the penalty term for L1 norm based
regularization. The penalty term can be a matrix consisting of
different ρ values for each pair of variables (peaks). Our method
uses a penalty matrix which is designed differently based on
the knowledge of pre-existing chromatin-interaction profile. The
elements of the penalty matrix are calculated as

ρij =
δ

hij + ε
(3)

where [hij] is the average enrichment level of chromatin-
interaction between genomic bins [i and j] estimated using
published HiC profile of multiple cell-types. The term ε stands
for a pseudo-count to stop the inflation of penalty terms in case
no chromatin-interaction is found in the available HiC profiles.
Whereas [δ] is a constant which can be adjusted to increase
or decrease the number of predicted interactions at the cost of
accuracy. The design of our method is also meant to handle the
following cases:

1. When two interacting sites have high activity in all cell
types, and the drop-out in their read-counts is due to
stochasticity and lower sensitivity during scATAC-seq
profiling, then the covariance between them might be
under-estimated. However, if their interaction is present in
all cell types, giving a lower penalty or higher prior value
would help retrieve that information.

2. If the noise level in read-counts of single-cell
open chromatin profile is high, then a prior guess
about the background could lead to an improved
prediction of interaction.
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3. If two sites have cell-type-specific interactions and have
a decent covariance value, it could still be retrieved as
the penalty is not exponentially high. Here decent means
higher value in comparison to most of the other elements
in the covariance matrix.

Hence prior knowledge (or guess of penalty matrix) is a
crucial step. In order to further improve the prediction, scEChIA
uses matrix-factorization to reduce noise in the read-count. The
matrix-factorization used by scEChIA is described below.

Matrix Factorization to Improve
Co-occurrence Estimation
Matrix factorization is a method for low-rank matrix completion
problems. An observed read-count matrix Y, where columns
represent peaks, and each row represents a cell, can be called a
sampled version of true ideal matrix X of the same dimension
(m× n). Such that

Y = A(X) (4)

Here A is an operator matrix and has 0′s where the elements
of X is missing in Y and 1′s where it is present. However, if X is
known to have a rank r (<m, n), X can be written as a product of
two matrices Um × r and Vr × n. Therefore, Y can be written as

Y = A(X) = A(UV) (5)

In order to recover X we try to find matrix U and V by
minimizing the Ferbius norm of following cost function

min
u, v
| |Y − A (UV)| |

2
F

(6)

In order to optimize such bilinear problems, we use Majorization-
Minimization (MM) (Sun et al., 2017). For MM based
optimization, a surrogate function that majorizes the objective
function is chosen. The surrogate function is then minimized
until a local optimum is achieved. To minimize our cost function
given in Eq. 6 the majorization step is implemented such that we
optimize

min
u, v
| |B− A (UV)| |

2
F

(7)

where [Bk+1 = Xk +
1
aA

T(Y − A (Xk))] at each iteration k. Here
[a] has scalar value and [Xk] is the matrix calculated as iteration
k as [Xk = UkVk]. Here the matrices U and V are updated in
an alternative manner such that when U is updated when V
is considered to remain unchanged. Then V is updated while
keeping U as fixed.

Uk = |
∣∣B− Uk−1 Vk−1

∣∣ | 2
F

(8)

Vk = |
∣∣B− Uk Vk−1

∣∣ | 2
F

(9)

We keep a non-negativity constraint on X such that after every
iteration, we truncate the element with a negative value in [Xk]

to zero. We initialize factor V as a matrix with r right singular
vector of X after singular value decomposition (SVD) of X. SVD
is a generalization of eigenvalue decomposition for rectangular
matrix such that matrix X (size: m× n) can be represented as

X = L
∑

R (10)

where [
∑

]is rectangular diagonal matrix of size m × n and
matrix and [L] is m × m matrix and [R] is n × n matrix. Here
choose r vectors from the right matrix [R] to make initial guess
of matrix [V].

Evaluation of the Accuracy of Prediction
of Chromatin Interaction
For evaluation of the accuracy of prediction of chromatin-
interaction, we used published HiC profile in respective cell-type.
We first extracted chromatin interaction in text format at 25 kbp
resolution from .hic file using juicer-tool (Durand et al., 2016).
The three column output from juicer-tool was converted to seven
column format. For the evaluation purpose, a threshold was used
to choose only top enriched chromatin interactions from HiC
profile. We used two ways to choose top enriched chromatin
interactions from HiC profile. In the first way, we chose top
60,000 chromatin-interaction in every chromosome from .hic file.
According to the second way, the number of selected chromatin
interactions from HiC profile was proportional to the size of
chromosomes such that the highest number of interactions
was 60,000 for the longest chromosome. PGLtool was used to
intersect the predicted chromatin-interaction with HiC based
output (Greenwald et al., 2017).

Parameters Used for Predicting
Chromatin-Interaction
Cicero provides a few functions for pre-processing, such
as make_atac_cds, aggregate_nearby_peaks, detectGenes,
estimateSizeFactors, reduceDimension, make_cicero_cds,
estimate_distance_parameter, generate_cicero_models,
assemble_connections. The parameter for function
aggregate_nearby_peaks was distance = 25,000 and
for function reduceDimension, max_components = 2,
num_dim = 3, reduction_method = tSNE, perplexity = 5.
For subset function the Hg19 genome version was used
and estimate_distance_parameter function was given the
window size of 500,000. The rest of the functions were used as
default parameters.

For scEChIA, we used functions with different rho options,
such as rhomatAvg and Interaction_Prediction_1. Using the
function rhomatAvg, we calculate the average of two different
HiC file. The bin size was chosen to be 25 kbp and provided
chrNo and patternf according to the chromosome number. The
function Interaction_Prediction_1 was used to predict chromatin
interaction using background information as an average HiC
matrix and other variables like chrinfo, data, rhomatrix, chrNo,
startCell, endCell, and chromSize. Function ucscTrack was
used to make a UCSC Track file, and that was based on
predicted interaction. For constant_rho we used a function
Interaction_Prediction_2 that was based on constant rho 0.01.
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Data Sources
The scATAC-seq profile for K562, H1ESC, and GM12878 cells is
available by Buenrostro et al. (2015) with GEO ID: GSE65360.
The single-cell open chromatin and expression profiles of brain
cells published by Lake et al. (2018) and used here are available
in GEO database (GEO ID: GSE97942). The single-cell open-
chromatin profile for cardiomyocytes (Domcke et al., 2020) is
available with GEO ID:GSE149683. The chromatin interaction
profile determined by HiC and used here for evaluation are
available at 4D_nucleome database1 with IDs: Astrocytes-
4DNFITPO1WTY, cardiomyocytes- 4DNFIN39NO4O,
GM12878- 4DNFIPAI8XB5, hESC- 4DNFIOX3BGNE, K562-
4DNFI8Y9SRP2. For K562, H1ESC, and GM12878 cells HiC
data from Rao et al. (2014) (GEO ID: GSE63525) was also used
to confirm the results.

RESULTS

Tang et al. (2015) have shown that in spite of many cell-type-
specific interactions, multiple chromatin interactions show high
similarity across different cell-type. It is known that CCCTC-
binding factor (CTCF) mediated chromatin-interaction and
looping are mostly conserved and have a major impact on
chromatin architecture. Similarly, many short tandem repeats
define boundaries of the TADs, which tend to be conserved
across different cell types (Sun et al., 2018). Our computational
approach is based on the well-known property of conservation
of DNA looping and chromatin conformation. Hence, to
avoid limitations faced by previous methods, we used existing
knowledge of chromatin-interactions in multiple cell-types as a
constraint factor while estimating the Gaussian graphical model,
using L1 regularization to predict chromatin-interaction using a
single-cell open-chromatin profile. For this purpose, we use the
average value of enrichment of known chromatin-interactions in
multiple cell-types to calculate L1 regularization (ρ) parameter.
In addition to using sensitive L1 normalization, scEChIA uses its
inbuilt function for matrix factorization to reduce noise in the
read-count matrix to further improve the accuracy of prediction
of chromatin-interaction (see section “Materials and Methods”).

Single-Cell Epigenome Based
Chromatin-Interaction Analysis Improves
Sensitivity for Predicting Distal
Interactions With High Accuracy
We compared our method’s accuracy and sensitivity with
the famous method Cicero (6). For this purpose, we used
scATAC-seq data-set of K562, GM12878, and H1ESC published
by Buenrostro et al. (2015) and single-cell open-chromatin
profile of astrocytes (Lake et al., 2018) and cardiomyocytes
(Domcke et al., 2020). We calculated the regularization
parameter ρ in graphical Lasso (Glasso) model using the
average of known chromatin-interaction in other cell-types for
predicting chromatin-interaction for a cell-type. For example,

1https://www.4dnucleome.org/

for predicting chromatin-interaction in K562 cells we used prior
(or regularization parameter ρ) estimated using the average of
HiC profile of GM12878 and H1ESC cells (Rao et al., 2014).
For GM12878 cells we used scATAC-seq profile published
by Buenrostro et al. (2015) and the average of HiC profile of
K562 and H1ESC to calculate the regularization parameter. We
performed an evaluation using HiC based enriched chromatin-
interaction profile of relevant cell types (see section “Materials
and Methods”). We found that using a single regularization
parameter (constant ρ) value with Glasso did not provide
comparable accuracy in predicting chromatin-interaction
(Figure 1A). Due to the refined regularization matrix, scEChIA
had better performance than Cicero for all chromosomes for
2 out 5 cell lines used for evaluation (cardiomyocytes and
astrocytes) (see Figure 1A and Supplementary Figure 1).
Whereas for the other three types scEChIA and Cicero
had similar performance. We confirmed our results with
two types of thresholding criteria for choosing significant
chromatin interaction using HiC data. As shown in Figure 1A
and Supplementary Figure 1, we first used the top 60,000
chromatin interactions in HiC profile of every chromosome as
a positive set for evaluation of predicted interactions. Further,
we also confirmed our finding when the number of HiC based
interactions varied according to the size of the chromosome
(Supplementary Figure 2A and Supplementary Table 1). Thus,
scEChIA also tend to outperform other methods on some
data-sets of the single-cell open-chromatin profile in terms of
predicting correct interactions.

It has been shown that the median size of the TAD in
mouse cells is approximately 880 kbp (Dixon et al., 2012).
Since we used the scATAC-seq profile of human cells, it was
important to measure size of TADs in human cells. Therefore,
we used published TAD boundaries at TADKB database and
found that the median TAD size in human cells is also more
than 500 kbp (Figure 1B). having confirmed the large sizes of
TADs, we further counted the number of long-range interactions
predicted by different methods. As expected, scEChIA predicts
a substantially higher number (almost 100 times) of long-range
interactions with a gap of more than 500 kbp among interacting
sites (Figure 1C) without losing sensitivity for short-range
chromatin-contacts (Supplementary Figure 2B). We confirmed
the substantially higher sensitivity for scEChIA for long-range
interaction (>500 kbp) for five cell types (GM12878, K562,
H1ESC, astrocytes, and cardiomyocytes). Overall, the estimate
of large TAD sizes, highlights the importance of detecting long-
range interaction to capture interTAD interactions, which could
be made feasible using scATAC-seq by scEChIA.

Evaluating Cell-Type Specificity of
Predicted Interactions and Their Effect
on Gene Expression
Even though we could predict both short and long-range
interactions, a doubt remained about their relevance with
gene expression and cell-type specificity. Our further analysis
revealed that genes with more number of predicted chromatin
interactions had higher expression in comparison to genes with
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FIGURE 1 | Evaluation of accuracy and sensitivity of chromatin-interaction prediction. (A) Accuracy of prediction of chromatin-interaction using single-cell open
chromatin profile is shown for three methods: Glasso used with constant regularization parameter (constant_rho), Cicero, and scEChIA. For Cicero, two results are
shown; one without taking predicted interaction with zero scores and the other comprising all interactions. Accuracy was measured as the fraction of predicted
chromatin interactions, which overlapped with enriched interactions (top 60,000 in each chromosome) in the HiC profile of the respective cell (see
Supplementary Material). (B) The sizes of topologically associated domains (TADs) in different types of human cells. The TAD boundaries are made available by Liu
et al. (2019) at (http://dna.cs.miami.edu/TADKB/). The median TAD size is more than 500 kbp. (C) The sensitivity of prediction of distal chromatin-interaction is
shown here for different ranges of the distance between interacting genomic loci. scEChIA breaks the barrier of fixed-distance criteria and is 1,000 times more
sensitive in predicting long-range chromatin-interactions (>500 kbp).

low connectivity (Supplementary Figure 3). Thus, predicted
interactions by scEChIA tend to be coherent with gene-
expression profiles. We also tried highlighting predicted cell-
type-specific interactions and their consequential effect on gene
expression. Comparing predicted chromatin interactions in three
cell types (K562, GM12878, and H1ESC) we found many genes
with a higher relative number of chromatin-interaction at their
promoters. Such results show that the number of predicted
chromatin interactions at promoters of different genes varies
according to cell types.

Moreover, genes with a higher relative number of predicted
chromatin-interaction had higher expression in respective
cell-type whose scATAC-seq profile was used for prediction
(Figure 2A). Thus, scEChIA also predicts cell-type-specific
interactions, which regulate the specificity of the activity of genes
according to cell types. Further, we repeated the same procedure
using only predicted long-range interactions. Again we found
that genes with a higher relative number of predicted long-
range chromatin-interaction had higher expression in respective
cell types (Figure 2B). These results confirm that scEChIA also
predicts cell-type-specific long-range chromatin interactions,
which influence the specificity of the activity of genes.

The Chromatin-Interaction Landscape of
the Human Brain
Recently, Lake et al. (2018) published single-cell RNA-seq and
single-cell open-chromatin profiles of cells derived from the

adult human brain. For profiling single-cell open chromatin
patterns, Lake et al. (2018) used single-cell transposome
hypersensitive-site sequencing (scTHS-seq), to achieve higher
sensitivity than ATAC-seq. The high accuracy in predicting
chromatin interactions astrocytes using scTHS-seq profile by
scEChIA (Figure 1A) also hints about higher chances of
accurate prediction for other six brain cell types. Thus, we
used scEChIA to predict chromatin-interaction in other six
brain cell-types using scTHS-seq profile published by Lake
et al. (2018). The cell types for which we predicted chromatin-
interaction are inhibitory neurons, excitatory neurons, astrocytes,
oligodendrocytes, oligodendrocyte precursor, microglia, and
endothelial cells. The number of predicted chromatin-interaction
in different cell types ranged from 188857 in Microglia to
25838 in Oligodendrocytes (total ∼0.7 million interactions) (see
Supplementary Table 2).

Intersecting our predicted chromatin-interaction with
available expression quantitative trait locus (eQTL) in the
brain (Ng et al., 2017) using PGLtool (Greenwald et al., 2017)
revealed possible cell-type in which the eQTLs are connected to
their target genes. In the absence of availability of chromatin-
interaction in brain cells, it is not trivial to retrieve information
about possible cell-type for the action of the published brain
eQTLs. The results of the intersection of eQTL data-set and
predicted chromatin interaction in seven brain cell types are
provided in Supplementary File 1. In the intersection result, we
found many eQTLs whose target gene lied more than 500 kbp
away and were supported by predicted long-range chromatin
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FIGURE 2 | Evaluation of prediction of cell-type-specific cis-regulation by scEChIA. (A) The cell-type-specific expression (fold-change above-median across different
cell-types) of top 200 genes with the highest relative interactions in the respective cell-type of the figure panel. Such as, for the panel with label GM12878, top 200
genes with the highest relative number of chromatin-interaction in GM12878 cells (compared to K562 and hESC) were chosen and their expression values in three
cell types (GM12878, K562, and hESC) are shown as box-plot. These results indicate that scEChIA can predict cis-regulatory interactions, which are associated with
cell-type-specific expression. (B) The cell-type-specific expression of top 200 genes with the highest relative long-range interactions (>500 kbp) in the respective
cell-type of the figure panel. Many long-range interactions (>500 kbp) predicted by scEChIA are also associated with cell-type-specific expression. *Significant,
**Most Significant. p-values were calculated using Wilcoxon rank sum test.

interaction by scEChIA. The number of eQTLs with the target
gene lying more than 500 kbp away and supported by predicted
interaction is shown in Figure 3A and Supplementary Figure 4.
One such example of the long-range effect is eQTL (rs12165519)
of SOX10 expression in the brain. Our analysis revealed that
eQTL (rs12165519) overlaps a peak of open-chromatin profile
(ATAC-seq) in the brain and could be connected to target
SOX10 promoter through a long-range chromatin interaction in
oligodendrocyte precursor cells (Figure 3B).

Coverage of Genome-Wide Association Studies
Mutations and Cell-Type Specificity
Lake et al. (2018) investigated the enrichment of open chromatin
signal within 100 kbp around GWAS mutations single nucleotide
polymorphisms (SNPs) to estimate the cell-type specificity
associated with a mental disorder. However, they did not
try to find the target gene of GWAS SNP. Using our data-
set of predicted chromatin-interaction in seven brain cell
types, we found target genes of GWAS mutations associated
with mental disorders. We label a gene as a target only
when the 25 kbp genomic bin containing its promoter is
interacting with the bin containing the GWAS mutation. We
further compared the enrichment of mental disorders with
GWAS loci overlapping with sites interacting directly with a
gene. Enrichment was calculated by normalization with the
fraction of GWAS SNP of non-brain disorder overlapping
with sites interacting with promoters (promoter-connected). To
find relative enrichment, we used a null-model comprising of

GWAS mutations associated with non-brain disorders namely;
Ulcerative colitis, lung cancer, breast cancer, bladder cancer,
hepatitis A, hepatitis C, waist to hip, platelet count, bone mineral
density, lung adenocarcinoma, and lung disease severity in cystic
fibrosis. Compared to the null model, the higher enrichment
of risk variants of a few mental disorders showed cell-type-
specificity in connectivity to promoters, which corroborated with
previous reports (Figure 4A). Such as, Alzheimer’s disease risk
variants had higher enrichment in promoter-connected regions
in microglia (Figure 4A and Supplementary Table 3). It has been
reported that microglia signature genes have higher activity in
the cortex on the development of late-onset Alzheimer’s disease
(Zhang et al., 2013).

Our analysis also revealed a few genes with unknown
associations with mental disorders. While for others, it revealed
the possible cell type involved in disease development through
the gene. Such as a region containing a mutation (SNP id:
rs3758354) associated with schizophrenia and bipolar disorder
and depression appear to be interacting with promoter of gene
ALDHA1 in oligodendrocyte precursor (Figure 4B). Interestingly
ALDHA1 is also known to be involved in the activation of retinoic
acid receptor (RXR) for proper differentiation of oligodendrocyte
precursors (Huang et al., 2011). However, its link with the SNP
rs3758354 is not known, especially in oligodendrocyte precursor
cells. More such results can be seen in Supplementary Figure 5
and Supplementary File 2. Many predicted target genes of
GWAS mutations lay more than 500 kbp away (see Table in
Supplementary File 2).
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FIGURE 3 | Inference about the cell-type of action and associated known target genes for expression QTL (eQTL) in the human brain. (A) The number of brain eQTL
with target genes lying more than 500 kbp and over-lapping with predicted chromatin interaction in seven brain cell types. (B) UCSC browser snapshot showing a
Brain eQTL and its target gene SOX10 connected with predicted long-range chromatin interaction in oligodendrocyte precursor (OPC).

FIGURE 4 | Inference about target genes for disease-associated mutations in Brain cells. (A) Enrichment of interaction among GWAS loci associated with mental
disorder and gene promoters in seven brain cell-type. Star (*) represents p < 0.05. The p-value calculation was done using two proportion z-test. (B) The UCSC
browser snapshot showing estimated chromatin interaction between the region with GWAS SNP (rs3758354) and promoter of ALDH1A1 gene in oligodendrocyte
precursors (OPC).

Targets of Human Accelerated Regions in Different
Brain Cell Types
Multiple Human accelerated regions (HARS) have been
discovered; however, the mechanism of effect and influence is
known only for a few HARS (Hubisz and Pollard, 2014). Given
the fact that humans have more complex Brain structures than
other species, our prediction could be a valuable resource to
find target genes for HARS in brain cells. Hence, we intersected
genomic sites involved in predicted chromatin-interaction with
known HARS (Hubisz and Pollard, 2014). Our analysis revealed
several target genes for HARS, provided in the Supplementary
File 3 (see Figure 5). Such as scEChIA predicted interaction
between a HAR named ANC980 and promoter of gene SOX2OT
(Figure 5A). SOX2OT is known to have multiple transcription-
start sites (Amaral et al., 2009) and a role in the regulation of
expression of SOX2 and neurogenesis. Our result also revealed
another interesting interaction between a HAR (ANC518)
and promoter region of the NRBF2 gene in astrocytes. The
HAR ANC518 is located in the intron of gene ZNF365 and
appeared to be interacting with the promoter of NRBF2 lying
more than 500 kbp away (Figure 5B). Hence the prediction

of such distal interaction (distance > 500 kbp) could not have
been possible by current methods using a single-cell open-
chromatin profile. NRBF2 gene also seems to have detectable
expression astrocytes (Supplementary Figure 5). NRBF2 gene
is known to be associated with Alzheimer’s disease, which some
researchers have hypothesized to be a human-specific disorder
(Finch and Austad, 2015).

Insights About Regulatory Transcription
Factors From Predicted Distal Chromatin
Interactions
In order to further elucidate the importance of detecting
long-range chromatin contacts to infer regulatory networks in
brain cells, we performed enrichment of transcription factor
(TF) motif at non-promoter sites with predicted chromatin
interactions. First, we performed motif enrichment analysis
using HOMER (Heinz et al., 2010) for non-promoter genomic
loci with chromatin interactions in endothelial cells. Then we
selected non-promoter genomic loci with long-range chromatin
interactions (>500 kbp) in endothelial cells. We found that
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FIGURE 5 | UCSC browser snapshots for genes connected to Human accelerated elements (HARS). (A) The UCSC browser snapshot, showing an interaction
estimated to exist between a genomic bin containing a human-accelerated-region (HAR) and promoter of SOX2OT, in microglia. (B) The snapshot showing an
interaction between a region with HAR and a promoter of NRBF2 gene which is associated with Alzheimer’s disease.

FIGURE 6 | Enrichment of transcription factor motifs at sites with predicted chromatin-interaction in endothelial cells. (A) Top 3 enriched motifs at sites with all kinds
of chromatin interaction (both short and long-range). The p-value of enrichment in two types of sites (all and only long-range) are also shown. (B) Top 3 enriched
motifs at sites with long-range chromatin interactions. The p-values of enrichment in two types of sites are also shown. None of the top 3 enriched motifs in sites
with predicted long-range interaction is enriched in loci with all predicted interactions.
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most of the TF motifs enriched in all interacting sites also
had significant enrichment in genomic loci with long-range
interactions (Supplementary File 4). However, among top 3
enriched motifs in all genomic-loci with predicted chromatin
contact, interferon regulatory factors (IRF) did not appear as
enriched in sites with long-range interactions (>500 kbp) in
endothelial cells (Figure 6A). A few other TF motifs highly
enriched in genomic-loci with predicted long-range contact did
not appear to have significant enrichment in sites with all
chromatin interactions in endothelial cells. Such as top 3 TF
motifs [STAT6, histone nuclear factor P (HINFP), and EBNA1]
enriched in sites with long-range interactions in endothelial cells
had no significant enrichment in sites with all kinds of chromatin
interactions (Figure 6B). EBNA1 is a viral protein associated
with the Epstein-Barr virus. The role of HINFP (or MIZF) in
endothelial cells need further investigation. However, the most
interesting enriched motif is for TF STAT6, which get activated
in endothelial cells from the brain due to external stimuli,
as reported by few studies (Fasler-Kan et al., 2010; Tozawa
et al., 2011; Dozio and Sanchez, 2017). Such a result suggests
that STAT6 could be poising or controlling gene expression in
endothelial cells through long-range chromatin interactions. It
also highlights the fact that our method can create the possibility
of making such insights about the regulatory action of TFs in cells
using their scATAC-seq profile.

DISCUSSION

The problem of predicting chromatin interaction using single-cell
epigenome profiles can be partially solved using co-accessibility.
However, co-accessibility among genomics sites could be due
to several reasons; therefore, previous methods were limited to
predicting interaction within 500 kbp. Our approach breaks such
barriers by using pre-existing knowledge as a prior for calculating
the constrained estimate of chromatin-interaction. Our adaptive
L1 normalization approach for estimating Gaussian graphical
model and noise reduction through matrix factorization predicts
a higher number of distal interactions (distance >500 kbp)
using a single-cell open-chromatin profile than existing methods.
We have also shown that our method could be better for few
sparse single-cell open-chromatin profiles than existing similar
methods, even in terms of accuracy.

Chromatin interaction prediction using a single-cell open
chromatin profile can be useful in multiple ways. The predicted
chromatin-interaction in seven brain cell types in this study
could be a valuable resource for researchers to understand
regulation in the human brain. Especially for cells in the
natural state from the in vivo brain sample, the chromatin-
interaction profile availability is rare. The utility of predicted
long-range chromatin-interaction by scEChIA is reflected by
the high number of overlapping brain eQTL and target gene
contacts (for 1,000–4,500 eQTLs) with prediction. Using our
tool and predictions, one can make multiple inferences such
as: cell-type specificity of the target of GWAS loci, novel
associations between genes and alternative promoters with
diseases, targets of HARS and alternative splicing due to

cis-regulation. Such as, our analysis reveals that one of the
promoters of SOX2OT gene could be regulated by a HAR,
and it could have a human-specific mechanism of controlling
brain architecture and function. Our prediction of chromatin
interaction in astrocytes revealed a connection between a HAR
and NRBF2 gene lying more than 500 kbp apart as a very
relevant example. The autophagy associated gene NRBF2 is
known to have a reduction of expression in the human brain
with Alzheimer’s disease (the seventh cause of death worldwide)
(Lachance et al., 2019). Thus our method has the potential
to highlight chromatin-interactions for making insight about
clinically relevant regulatory mechanisms.

Previously other studies have highlighted a few examples of
the regulatory effect of TFs by long-range chromatin interaction.
A very relevant example is the priming of ESCs by NANOG
(Novo et al., 2018). Novo et al. (2018) showed that long-
range promoter-SE interactions are more prevalent in ESCs
than in Nanog-deficient ESCs. Our result showing differential
enrichment of TF motifs in sites with all predicted interactions
and only long-range contacts in endothelial cells also highlights
an interesting regulatory pattern. Both IRF and STAT6 are
involved in the inflammatory response in endothelial cells
(Tozawa et al., 2011; Yan et al., 2017). We found the IRF motif to
be enriched at the site with chromatin interaction but missing at
genomic loci with distal interactions. However, STAT6 motif was
enriched only at sites with distal interactions in brain endothelial
cells. Thus, our results generated a hypothesis that STAT6 could
be preferably activating genes in brain endothelial cells through
long-range chromatin contact, and IRF could be acting through
short-range chromatin-interaction. Such examples highlight the
utility of our method in inferring gene-regulatory networks using
single-cell open chromatin profiles. Especially for less-abundant
cells from in vivo samples, it could prove to be highly useful
in inferring gene-regulatory networks influenced by long-range
chromatin interactions.
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