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Abstract: Lysosomes are membrane-bound cell organelles that respond to nutrient changes and
are implicated in cell homeostasis and clearance mechanisms, allowing effective adaptation to
specific cellular needs. The relevance of the lysosome has been elucidated in a number of different
contexts. Of these, the retina represents an interesting scenario to appreciate the various functions
of this organelle in both physiological and pathological conditions. Growing evidence suggests
a role for lysosome-related mechanisms in retinal degeneration. Abnormal lysosomal activation
or inhibition has dramatic consequences on photoreceptor cell homeostasis and impacts extensive
cellular function, which in turn affects vision. Based on these findings, a series of therapeutic
methods targeting lysosomal processes could offer treatment for blindness conditions. Here, we
review the recent findings on membrane trafficking, subcellular organization, mechanisms by which
lysosome/autophagy pathway impairment affects photoreceptor cell homeostasis and the recent
advances on developing efficient lysosomal-based therapies for retinal disorders.
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1. Introduction

Lysosomes, previously considered simple static organelles employed in the recycling of
cellular waste, are acquiring relevance as dynamic organelles that control cell homeostasis
and metabolism in response to environmental cues. They are actively involved in the
balance between synthesis and degradation processes and, as such, they are now considered
major players in ensuring cell survival.

Their size, number and content vary across cell types. These membrane-bound or-
ganelles are characterized by more than 60 acid hydrolases responsible for the degradation
and recycling of biological macromolecules. These include extracellular and cellular com-
ponents delivered to the cytoplasm through endocytosis, phagocytosis and autophagy
processes [1,2]. Furthermore, lysosomes have also been associated with secretory pathways,
cell signalling, gene regulation, cell adhesion, migration and membrane contact sites [3,4].
The impact of lysosomal dysfunction on cellular health may result from abnormal func-
tioning of lysosomal proteins. Lysosomal dysfunction underpins the pathogenesis of many
common genetic and acquired disorders, including neurodegenerative and metabolic dis-
eases, as well as cancer. However, the affected tissue and disease phenotypes are often
disease specific. In this review, we focus on the molecular pathways and mechanisms
by which lysosomal functions are regulated in photoreceptor cells. These mechanisms
may be unique to photoreceptors and represent potential new therapeutic targets to treat
retinal diseases.

2. Photoreceptor Cells

Photoreceptors are specialized light-sensitive retinal cells involved in converting light
stimuli into neural signals for image processing in the brain [5,6]. Rod cells operate under
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dim lighting conditions and are highly light sensitive, whereas cones exhibit less light sen-
sitivity and are responsible for colour vision and high visual acuity [7–10]. Rods and cones
have five primary structural/functional regions: the outer segment (OS), connecting cilium
(CC), inner segment (IS), cell body (CB) and synaptic regions. The OS comprises tightly
packed membrane discs containing the visual pigments and other proteins involved in the
conversion of light stimuli into electrical signals in a process known as phototransduction
(Figure 1 left). The CC allows the trafficking of molecules from the IS to the OS. The IS
contains all the organelles including mitochondria, endoplasmic reticulum, Golgi complex
and lysosomes. The CB is continuous with the IS and includes the nucleus. Photoreceptor
cells terminate with the synaptic region, which is responsible for glutamate-mediated
signalling to bipolar cells or other secondary retinal neurons. To avoid light-dependent
metabolic stress, and to constantly ensure maximum photosensitivity, photoreceptor cells
undergo daily shedding of the most distal portion of the OS [11,12]. Older discs undergo
phagocytosis by the adjacent retinal pigment epithelium (RPE), and newly formed discs
are continuously incorporated at the base of OS. This is a highly demanding procedure,
necessary for photoreceptors’ health and survival, relying on a perfect balance between
metabolic and catabolic mechanisms in the IS. The equilibrium between synthesis and
degradation is essential to ensure photoreceptor homeostasis and function. Unsurprisingly,
lysosomes appear to be ideal candidates to orchestrate the special metabolic needs of these
cells.
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Figure 1. Distal-to-proximal trafficking of rhodopsin in photoreceptors. (Left) Schematic repre-
sentation of primary structural/functional region of rod photoreceptor with a magnification of
outer segment discs. (Right) After light-induced activation, rhodopsin receptor is de-activated by
rhodopsin kinase-dependent phosphorylation and binding with arrestin. The subsequent interaction
with AP-2 protein allows the formation of the early endosome which travels from the outer to inner
segment to enter the endolysosomal system. Late endosome–lysosome fusion ultimately led to
rhodopsin degradation.

3. Endolysosomal System and Membrane Trafficking in Photoreceptors

Among the different cellular mechanisms essential for proper cellular homeostasis,
endocytosis and trafficking systems strongly rely on lysosomes [13–16]. Much is now
known about the molecular mechanisms involved in the endolysosomal system, however,
we know less about this process in the retinal photoreceptor cells. Under physiological
conditions, cells can internalize the plasma membrane, transmembrane proteins and sol-
uble molecules destined for degradation or recycling through endocytosis. This process
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begins with the embedding of the plasma membrane, resulting in early endosomes’ forma-
tion; this structure passes through a series of maturation events, including morphological
changes and pH acidification, ultimately leading to the late endosome stages. Late en-
dosomes undergo homotypic fusions with each other, as well as fusion with lysosomes
for cargo degradation. Photoreceptor cells are unique in their highly polarized compart-
mentalization of cell body/soma and processes including OS, IS and synaptic regions.
This organization enables them to form complicated networks that mediate specialized
functions. Consistent with this structural complexity, it is also very difficult to characterize
the different endolysosomal intermediates at the molecular level. Studies from different
laboratories recognized Rab5 as an early endosome marker, while late-endosome/lysosome
distinction is hardly detectable, apart from the lack of M6P receptor in the latter [17,18].
Photoreceptors strongly rely on the endolysosomal system for the degradation of rhodopsin
which, similarly to other G-protein coupled receptors, is internalized after activation. In
healthy photoreceptors, this process is triggered by the transient binding of rhodopsin
and arrestin 2 (Arr2), which interact with the AP-2 adaptor protein to enter the endocytic
network [19] (Figure 1 right). Taking advantage of different Drosophila mutants, it has been
demonstrated that post-translational modifications, of both rhodopsin and arrestin, are
crucial in the receptor’s internalization process. In norpA mutants, for example, mutations
in the eye-specific phospholipase C result in a block in light-triggered Ca2+ dependent
phosphorylation of Arr2. Arr2 phosphorylation is essential to release its binding with
rhodopsin; as a result, norpA mutants show stable rhodopsin–arrestin complexes which
are massively internalized and engulf the endolysosomal system [20–23]. Similarly, rdgC
Drosophila mutants, a loss-of-function model for the Ca2+ -dependent serine/threonine
protein phosphatase, also show light-dependent photoreceptor degeneration [24]. In this
model, the persistence of the phosphorylated form of rhodopsin facilitates the formation of
stable rhodopsin–arrestin complexes which accumulate in the internal cellular compart-
ment and trigger apoptosis [25]. Similar retinal degeneration phenotypes are also observed
in Drosophila mutants where only the final endosome to lysosome trafficking (car mutants)
is impaired [26]. Interestingly, the degeneration phenotypes of these flies can be rescued if
a mutant form of rhodopsin, lacking the C-terminal phosphorylation sites, is introduced
in the car background [23]. Altogether, these results strongly support the hypothesis that
massive rhodopsin endocytosis can be causative of retinal degeneration observed in flies
with both normal or impaired endolysosomal systems. This raises the intriguing question
about how photoreceptors regulate the transport and degradation of rhodopsin across their
cellular compartments, and how impairment of this process impacts their homeostasis and
survival. Interestingly, Hargrove-Grimes et al. identify Rabgef1 as a key factor participating
in the photoreceptor’s endolysosomal system by regulating Rab5-GTPase. Rabgef1-KO
mice showed reduced early endosome levels and increased autophagic substrates, leading
to early loss of both photoreceptor morphology and function [27]. These findings suggest
that distal–proximal membrane trafficking can affect photoreceptor homeostasis as endo-
somes are transported toward the IS, and that they progressively acidify and gain lysosomal
hydrolases as they approach the IS. Consistent with this intriguing hypothesis, sphingosine
kinases and their metabolites were shown to affect trafficking of the G protein-coupled
receptor rhodopsin and the light-sensitive transient receptor potential (TRP) channel by
influencing endolysosomal trafficking and altering photoreceptors’ homeostasis [28]. More-
over, endolysosomal system and synaptic vesicle trafficking abnormalities were observed
in a knockout zebrafish model for the synaptojanin 1(SynJ1) gene, which was previously
demonstrated to participate in the hydrolysis of phosphatidylinositol 4,5-bisphosphate
(PI(4,5)P2) and the uncoating of clathrin-coated vesicles [29]. In vivo studies revealed that
ablation of SynJ1 induced an aberrant distribution and accumulation of acidic vesicles,
aberrant shaped Rab7 positive late endosomes and LC3 positive autophagosomes in the
IS, accompanied by late disruption of the Golgi apparatus. Together, these results strongly
support the idea that perfect control of endolysosomal system and membrane trafficking
events across photoreceptor compartments is necessary to maintain their homeostasis. Con-
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sistently, alterations in the morphology and positioning of Arl8, Rab7 and Atg8-carrying
endolysosomal and autophagosomal compartments were observed in pre-degenerative
conditions in the crumbs mutant Drosophila retina [30].

4. Autophagy Pathway

Autophagy is one of the most important biological processes in which lysosomes are
involved. It consists of a series of catabolic events essential to ensure the specific degrada-
tion of different cellular components (i.e., mitochondria, ribosomes, pathogens, aggregated
proteins) to maintain cellular homeostasis and to recycle useful organic substrates [31]. The
classical form of autophagy is called macroautophagy and, in an oversimplified view, it can
be described as a three-step process starting with (1) formation of the autophagosome, a
double-membrane vesicle surrounding degradable cargo, (2) fusion of the autophagosome
with a lysosome leading to the formation of an autolysosome and (3) degradation of cargo
via acidic hydrolases. Different molecular players are involved in the fine regulation of
this process in response to specific cellular needs. According to the specific environmental
context, autophagy can function as an adaptive mechanism to avoid cell death under stress
conditions, but can also contribute to apoptotic programs if the autophagic stress threshold
is exceeded [32]. The pro-survival role of autophagy is represented by its ability to eliminate
protein aggregates and non-functional organelles that may be toxic for the cells. Conversely,
cytotoxic-autophagy can result from the activation of signals triggering pro-apoptotic
pathways (type I cell death) or due to the detrimental effect of massive autophagy (type
II cell death). Interestingly, pro-survival and pro-apoptotic signalling machinery can be
triggered by the same cue and also share many molecular components, resulting in an
intricate network of players. Increased ROS and free calcium concentration, for example,
represent two common signals for both activation of apoptotic cell death and pro-survival
autophagy pathways [33,34]. The intensity and persistence of the triggering stimulus,
as well as the existence of cross-inhibitory loops, will determine the resulting dominant
pathways and the final outcome on cell survival [32]. In this context, an important player in
regulating the induction of autophagic flux, according to environmental conditions such as
nutrient availability, is the AMP-activated protein kinase (AMPK). In particular, upon star-
vation, AMPK can directly phosphorylate UNC51-like kinase (ULK1) at Ser 317 and Ser 777,
allowing the formation of the autophagosome initiation complex together with autophagy-
related 13 (ATG13) protein and family-interacting protein of 200 KDa (FIP200) [35]; on the
other hand, when nutrients are available, AMPK is inactive and the mammalian target
of rapamycin complex 1 (mTORC1) can phosphorylate ULK1 in Ser 757, preventing the
interaction between ULK1 and AMPK [35]. AMPK works as an energy sensor to adjust
cellular metabolism according to environmental conditions and, by triggering autophago-
some formation, is the major regulator of starvation and stress-mediated cell response in
different cell types, including photoreceptors (Figure 2). Another player involved in the
regulation of AMPK/mTORC1-mediated phosphorylation of ULK1 is the TSC1/2 complex.
TSC2, in fact, negatively regulates mTORC1, facilitating pro-autophagic AMPK signalling.
Interestingly, it has been demonstrated that, specifically in neurons, TSC2 knock-down,
despite being associated with mTORC1 activation, also induces a concomitant increase in
AMPK activity, Ser 317/Ser 777 ULK1 phosphorylation and autophagic flux [36]. First, this
result reveals that AMPK- and mTORC1- pathways cannot be fully reciprocally inhibited;
it further suggests that a low ULK1 phosphorylation level, at Ser 317/Ser 777 residues,
might be sufficient to activate autophagic flux. These findings may represent potential
safety mechanisms to face neuronal sensitivity to starvation. AMPK activation upon stress
condition is a typical trigger of the pro-survival role of autophagy. When nutrients are not
available, in fact, autophagy activation is the first compensatory mechanism to provide
organic substrates and sustain cell metabolism. Furthermore, it has been demonstrated
that AMPK activation is also accompanied by phosphorylation of cyclin-dependent kinase
inhibitor p27 which, once stabilized, permits cells to survive starvation by implementing
autophagy instead of undergoing apoptosis [37]. In other environmental contexts, however,
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activation of AMPK signalling can also converge on autophagic-cell death. This aspect,
for example, has been addressed in different studies on anticancer compounds which can
induce cell death through AMPK-dependent autophagy activation [38,39].
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Figure 2. AMPK-dependent stress response in photoreceptors. (Left) In basal condition, the healthy
state of photoreceptors is ensured by the correct balance between biosynthetic and degradative
pathways. (Right) In case of stress conditions (starvation or oxidative stress), the AMPK pathway is
activated allowing autophagosome formation and autophagy induction as protective, compensatory
mechanisms to recycle organic substrates and avoid stress-dependent cell damage.

5. Autophagosome to Autolysosome Route Impacts on Photoreceptors’ Survival

Once pro-autophagic signals are activated, autophagic related genes (ATGs) and their
respective protein products oversee autophagosome formation and maturation [40]. The
ATG protein group includes different complexes with specialized functions, such as the
Atg5/ULK kinase complex, which recruits Atg13 and FIP200 to promote autophagosome
induction [41]; the PI3K3C complex (composed of Atg6/Beclin1, Atg14/ Atg14L, PI3K3C
and UVRAG), which recruits other ATG proteins thus contributing to autophagosome for-
mation; and the Atg8/LC3 complex, which is essential for autophagosome closure [42,43].
Different experimental evidence revealed that the basal molecular machinery mediating
autophagosome processing is highly conserved among species and is also shared between
different cellular subtypes [44]. Consistent with that, the evaluation of the LC3I to LC3-II
(lipidated form of the protein) transition is a well-established read-out of autophagy acti-
vation and is used to properly interpret autophagic flux, since the total amount of LC3 is
not sufficient to allow precise prediction [45]. ATG proteins are significantly involved in
the photoreceptor stress-dependent response. For example, knockdown of Atg5 or Beclin
in 661W cells is sufficient to rescue cell death induced by hydrogen peroxide treatment,
suggesting a triggering role for autophagy in caspase-3 dependent cell death [46]. In vivo
studies on Drosophila, however, show that knock-down of or mutation in ATGs negatively
impact photoreceptors’ survival due to the accumulation of activated rhodopsin [47]. In
line with previous results revealing autophagy-like processes in maintaining a stable level
of rhodopsin in photoreceptors [48], the latter study confirms that basal autophagic activity
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is essential for the normal metabolic requirements of photoreceptor cells. Autophagy acti-
vation, by contrast, despite being protective in short-term stress models, can be detrimental
for overall retina health (Figure 3). This hypothesis is supported by strong evidence from
studies on both murine and human in vitro retinal models of metabolic stress. In particular,
short treatment (2 h) of ARPE-19 cells with blockers or inductors of autophagy can increase
and reduce cell death mediated by inhibitors of Na+/H+ exchangers, respectively; however,
slightly prolonged treatment (4 h) inverted the result [49]. Similarly, 661W cell death,
observed upon prolonged exposure to tamoxifen (18 h), can be prevented via adminis-
tration of either 3MA, which blocks autophagy activation, or bafilomycin, which blocks
autolysosome formation [50]. In vivo studies on Drosophila further confirm the relevance
of correct lysosomal fusion events for photoreceptor survival. In flies, the carnation (car)
gene encodes for the Vps33a protein, which is involved in membrane fusion events. Condi-
tional knock-out of car in Drosophila eyes impedes autolysosome formation and leads to
autophagosome accumulation, causing light-independent degeneration of photoreceptor
cells. These results confirm that the fusion between the autophagosome, carrying the
degradative cargo, and the lysosome, providing soluble hydrolases, is also a crucial step
impacting the overall success of the degradative machinery in photoreceptors [51].
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Figure 3. Impact of autophagy activation on photoreceptors’ health. Schematic representation of
short- and long-term effects of autophagy activator treatment on photoreceptors’ health.

6. Pro-Survival Role of Autophagy in Photoreceptor Cells

In photoreceptors, apart from starvation, autophagy is also triggered by oxidative
stress due to light exposure and represents one of the major mechanisms used by these cells
to face reactive oxygen species (ROS) damage. In particular, significant insights have been
obtained by studying circadian- and light-mediated activation of autophagy pathways in
the photoreceptor cells. Firstly, Reme et al. [52] documented a daytime peak of autophagy
in the rod photoreceptor IS, characterized by the formation of autophagosomes three hours
after the peak period of disc-shedding. Autophagy is, in part, regulated in a circadian
manner, but it could be evoked by light pulses in a non-circadian rhythm as measured
by conversion of LC3-I to LC3-II in response to light stimuli and oxidative stress [52,53].
However, whether autophagy activation has a positive or negative impact on photorecep-
tor cells’ survival is a significant and challenging question in the retina-research field [54].
What is becoming undeniable is that the “pros and cons balance” of autophagy induction
strongly depends on the precise environmental context in which photoreceptor cells lie. The
protective effect of autophagy activation on photoreceptors has been demonstrated in dif-
ferent models of retinal degeneration. Besirli et al. demonstrated that autophagy inhibitor
administration is accompanied by an increase in apoptotic photoreceptor cells in in vitro
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models of retinal detachment [55]. Consistent with that, administration of the autophagy
activator rapamycin rescues photoreceptor cell death induced by constant illumination [46].
Similarly, artificial activation of AMPK by the drug metformin protects photoreceptor cells
in case of light damage, as demonstrated in the Rd10 model of retinitis pigmentosa (RP)
and oxidative stress-induced injury [56]. Despite metformin being reported to significantly
induce autophagy [57,58], the positive effect of the drug on photoreceptors is also associated
with a general increase in the metabolic activity of these cells, represented by an increase in
ATP production, mitochondrial DNA copy number and NADH/NAD+ ratio [56]. These
results suggest that alternative AMPK pathways, independent from autophagy, might
also be activated in photoreceptors to counteract the degeneration associated with aging
or oxidative stress. Different experimental evidence, by contrast, supports the hypothe-
sis that mTOR signalling could be a crucial mediator of photoreceptor degeneration in
response to nutrient changes in different models of retinitis pigmentosa (RP), including
Rd10, Pde6b−/−, Pde6g−/−, Rho−/− and RHO-P23H transgenic mouse models [59,60].
In particular, transcriptome, molecular and morphological analyses on the retina from
these mice revealed that the insulin-mTOR pathway is reduced compared to the WT retina,
a condition likely mimicking a cellular starvation signal. Notably, inhibition of mTOR
activity via in vivo administration of rapamycin is sufficient to recapitulate cones’ degener-
ation observed in the different mouse models of RP, and this phenotype can be rescued by
systemic treatment of insulin [60]. In all four models of RP, the molecular machinery un-
derpinning mTOR inhibition-dependent cones’ degeneration includes a particular form of
autophagy, namely, chaperone-mediated autophagy (CMA), as evidenced by cone-specific
increased levels of LAMP2A, a common marker of CMA typically activated upon a pro-
longed period of starvation [61]. The relevance of mTORC1 activation in cones’ survival
has also been demonstrated through cone-conditional knock-out of TSC1 in the Rd1 mouse
model of RP, which is sufficient to rescue photoreceptor degeneration by implementing
cell metabolism [59]. Consistently, more recently, the same results were further confirmed
by in vivo evidence that conditional cone depletion of phosphatase and tensin homologue
(pTEN), which activates the PI3K-mTORC1 pathway, is sufficient to recover the retinal
phenotype of Rd10 RP mouse model [62]. The apparent discrepancy between the positive
effect of both AMPK and mTORC1 signalling on photoreceptors’ health has recently been
addressed in a N-methyl-N-nitrosourea (MNU)-induced photoreceptor cell damage in vitro
model [63]. Suppression of the PI3K/mTOR pathway is the major molecular feature of
this treatment and is accompanied by autophagy activation and disruption of lysosomal
degradation efficiency, ultimately leading to caspase-dependent cell death. Autophagy
activation is essential as a primary compensatory mechanism to face MNU-dependent cell
stress, as confirmed by aggravated apoptotic cell death upon treatment with autophagy
inhibitors. However, the activation of degradative machinery alone is not sufficient to
ensure cell survival. The authors, in fact, suggest that impaired lysosomal degradative
efficiency might depend on sustained mTORC1 inhibition, which interferes with lysosomal
relocation and autolysosome formation [64,65]. Taken together, these results confirm that
nutritional imbalance, independent of precise genetic background of the retinal pathology,
can be a common feature of photoreceptor degeneration and can be potentially mediated
by a non-canonical form of autophagy. Furthermore, these results highlight the mTORC1
pathway as a great candidate for new potential therapeutic approaches in the field of retina
degeneration.

7. Lysosomal Dysfunction in Retinal Disease

Retinal diseases are a very heterogeneous class of pathologies affecting millions of
people worldwide and, as such, represent a major health issue. Despite different molecular
backgrounds and specific temporal progression, most retinal diseases are characterized by
photoreceptor cells’ loss [66]. In this background, the retinal research field is working on
identifying common cellular mechanisms at the base of photoreceptor cell death to be used
as hypothetical targets to treat retinal pathologies. Lysosomal and autophagic pathways
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seem to be potential candidates that are often compromised in different models of retina
degeneration and implicated in molecular mechanisms leading to photoreceptor death.
However, whether induction of autophagy would result in amelioration or worsening
of retinal disease progression is still an open issue, as it strongly depends on the precise
pathological context. Recently, Intartaglia et al. reviewed the correlation between defects
in lysosomal proteins or lysosomal-related proteins and retinal dystrophies associated
with lysosomal storage disorders (LSDs) [67]. Importantly, several lines of study also
demonstrated the role of autophagy in RP. RP is a highly heterogeneous inherited retinal
dystrophy, characterized by mutations in genes involved in photo-transduction, trafficking
and recycling pathways. Its identifying feature is the progressive degeneration and death of
rod photoreceptors, followed by non-autonomous death of cones [68,69]. Consistent with
that, first symptoms include initial loss of night vision and later onset central vision loss [70].
Experimental evidence revealed that increased autophagic flux can be either protective or
deleterious for photoreceptor survival in RP. For example, Yao et al. demonstrated that
pharmacological inhibition of autophagy, as well as a rod-specific block of autophagic
flux, significantly improved photoreceptor survival in RHOP23H mouse models of RP [71].
Conversely, Rodríguez-Muela et al. showed that the Rd10 mouse retina is characterized by
a marked reduction in autophagy flux, calcium overload and calpain activation, resulting in
permeabilization of the lysosomal membrane and consequent photoreceptor cell death [72].
Interestingly, induction of autophagy, both in vivo and in vitro, worsens the photoreceptor
death phenotype of Rd10 mice instead of rescuing it. Together, these data first confirm that
despite resembling a major feature of RP, the precise genetic background of each animal
model severely impacts the molecular feature of disease progression [66,73,74]; second,
these results suggest that activation of autophagy in photoreceptors can be detrimental in
the presence of non-functional lysosome [72].

Age-related macular degeneration (AMD) is another great example of the potential in-
volvement of lysosomes and autophagy in the manifestation of retinal dystrophies [75]. The
pathology is characterized by a severe decrease in fine vision due to progressive degenera-
tion of the macula. A major feature of AMD is represented by the accumulation of drusen
(deposit of biological material) throughout the retina, which can be nicely recapitulated
in vitro and significantly depends on lysosomal malfunction [76]. It has been demonstrated
that aging is strongly correlated with the progression of AMD, in fact, molecular machin-
ery essential for degradation of organic substrates and recycling of cellular components
loses efficiency with aging and might contribute to the formation of drusen [77,78]. In
this context, a major role is played by the autophagic system of RPE which is essential
for maintaining healthy photoreceptors [79–81] and, as such, inductors of autophagy are
tempting therapeutic approach in the treatment of AMD. Interestingly, in aging retinas, a
shift from classical autophagy to chaperone-mediated autophagy (CMA) is detectable [82].
Transcriptome and protein levels of Beclin1 and Atg7, two specific regulatory components
of the autophagy initiation complex, in fact, are significantly reduced in aged retinal sam-
ples. Consistent with this, an up-regulation of LAMP-2A CMA marker is also detectable.
According to this study [82], the switch from autophagy to CMA is unidirectional and not
reversible with time. If, on one side, the block of autophagy induces activation of CMA
as a compensatory mechanism, the inhibition of the latter is not sufficient to re-activate
the autophagic machinery. Interestingly, among other retinal cell types, this unidirectional
signalling is a unique feature of photoreceptors [82]. At the cellular level, the autophagy
to CMA switch is followed by a later lipofuscin accumulation, reduction in the number
of photoreceptors in the ONL, outer segment alterations, and an increased number of
apoptotic cells [82]. By contrast, an increase in lysosomal-dependent proteolysis was still
detectable as a result of CMA upregulation in aged retinas. These results first support the
hypothesis that the age-dependent block of the autophagy system takes place at the level
of autophagosome formation rather than at the lysosomal-fusion stage; furthermore, they
reveal that the physiological activation of CMA is a good compensatory mechanism to
significantly delay the macroscopic manifestation of photoreceptors death due to the age-
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dependent autophagy block [82]. Which upstream signal determines the age-dependent
autophagy block and whether this turning point could be important for the treatment of
AMD are still unsolved questions. So far, different drugs have been tested in clinical trials,
including antioxidants, inhibitors of complement cascades and autophagy triggers, among
others [78]. However, given the complexity and heterogeneity of mechanisms leading to
retinal degeneration, none of the presently available therapies are sufficient to cure AMD.

8. Open Issues

Recent discoveries have demonstrated that lysosomes are dynamically employed
in the endolysosomal system, membrane trafficking and circadian and light-induced au-
tophagy pathways to allow photoreceptor cells to adapt to environmental cues. In recent
years, growing evidence has shown how numerous molecular pathways controlling the on-
set and progression of these mechanisms are crucial for the effective recycling of rhodopsin
and/or oxidate proteins, both of which are critical to photoreceptors’ homeostasis. Im-
portantly, additional details need to be explored and added to better define molecular
mechanisms controlling lysosomal response and function to light, oxidative stress and cell
clearance. So far, pieces of evidence from different studies strongly support the hypothesis
that lysosome-associated pathways might be powerful candidates to counteract retinal
degeneration. In particular, despite being characterized by specific genetic backgrounds,
different retinal pathologies share common features including metabolic unbalance, suscep-
tibility to oxidative stress, accumulation of proteins and damaged organelles, which can all
be potentially targeted by autophagy modulation. In this respect, the proper understanding
of the specific context in which autophagy activation or inhibition could exert a beneficial
effect on photoreceptors survival is of extreme importance.

Several questions remain: How does light induce the autophagy pathway in pho-
toreceptor cells? Which signals are required to mediate membrane trafficking across the
compartments of photoreceptor cells? Are there specific molecular networks inducing
lysosomal involvement in the endolysosomal rather than autophagolysosomal systems?
Are there lysosomal proteins contributing to the formation of selective, highly specialized
lysosomes to remove phagocyted photo-oxidate rhodopsin? Defects in both the endolysoso-
mal system and membrane trafficking represent a pathogenic cause for retinal degeneration.
As knowledge of the functions of lysosomes in photoreceptors’ cell death, homeostasis and
function increases, we can look forward to developing new and more promising therapeutic
interventions for retinal diseases.
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