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Simple Summary: Alterations in primary RNA motifs and aberrant expression levels of non-coding
RNA molecules have emerged as biomarkers of disease development and progression. Advances in
antisense oligonucleotide (ASO) techniques and pharmacologic discoveries in targeting of RNA
structures and RNA–protein interactions with small molecules open a new area in RNA therapeutics
that may help in developing a next generation of anti-cancer drugs.

Abstract: RNA molecules are a source of phenotypic diversity and an operating system that connects
multiple genetic and metabolic processes in the cell. A dysregulated RNA network is a common feature
of cancer. Aberrant expression of long non-coding RNA (lncRNA), micro RNA (miRNA), and circular
RNA (circRNA) in tumors compared to their normal counterparts, as well as the recurrent mutations
in functional regulatory cis-acting RNA motifs have emerged as biomarkers of disease development
and progression, opening avenues for the design of novel therapeutic approaches. This review looks
at the progress, challenges and future prospects of targeting cis-acting and trans-acting RNA elements
for leukemia diagnosis and treatment.
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1. Introduction

Leukemia, a wide spectrum of blood cancers displaying abnormal proliferation and differentiation
capacity of myeloid or lymphoid blood progenitors, is the most frequent type of cancer in children and
one of the most common in adults [1]. Acute myeloid leukemia (AML) and acute lymphoblastic or
lymphocytic leukemia (ALL) show rapid development and little or no cell differentiation. AML is
primarily found in older adults, with a median age of 70 years at diagnosis. Highly heterogeneous
clinically and genetically, AML is fatal in about ~80% of elderly patients, and about 60% of people
younger than 60 years old [2]. ALL is the most common form of pediatric leukemia, accounting for
nearly 30% of all pediatric cancers. While most pediatric patients with ALL achieve remission, 30–35%
of these therapies fail, and only 30–40% of adult patients with ALL achieve long-term, disease-free
survival [3]. Myelodysplastic syndrome (MDS), myeloproliferative neoplasm (MPN), and chronic
forms of myeloid and lymphocytic leukemia (CML, CLL), typically diagnosed in older patients,
retain some functional blood cells and develop slowly, but are prone to progression into a hard-to-treat
acute leukemia [4,5].

The genetics of adult and pediatric leukemia have been intensively studied [6–9]. Several studies
performed a side-by-side comparison of pediatric and adult myeloid and lymphoblastic leukemia,
focusing on protein coding genes with oncogenic and tumor-suppressor functions [10,11]. The research
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shows that within the same genetic subtypes of ALL, the leukemic cells of older children and adults
have more cooperative somatic mutations and a greater enrichment for alterations of epigenetic
modifiers than younger patients [12]. The molecular backgrounds of pediatric and adult ALL underlie
a profound difference in response to therapies between age categories.

The updated human reference genome, GRCh38.p13, contains 2.95 Gb of sequence, approximately
98% of which does not code for proteins [13]. The primary structure of ~20,000 protein-coding genes is
also dominated by non-coding sequences or introns, comprising around 26% of the human genome.
Approximately 20% of DNA belongs to structural and regulatory chromosomal sequences, more than
50% of DNA is recognized as intergenic, and only ~2% of DNA is occupied by protein-coding exons.
It is believed, however, that at least 80% of the human genome serves a biological purpose beyond
defining proteins, either through transcription to functional RNA molecules or other biochemical
activities [14,15].

Genes are generally defined as a fragment of chromosomal DNA that is transcribed into a
functional RNA molecule or into RNA translated into a functional protein. As such, the total number of
human genes is in the range of 40,000 to 50,000 genetic units [16]. However, this is not the whole picture.
In addition to a variety of non-coding RNA molecules (ncRNAs) transcribed from intronic, intergenic,
and antisense of protein-coding DNA sequences, more than one variant of messenger (mRNA) is
usually produced from one gene by the alternative transcription initiation and termination, and the
alternative splicing of pre-mRNA. Similar to DNA sequences, the cis-acting elements of RNA influence
transcripts’ fate internally, while trans-acting RNA regulatory factors function through binding with
proteins, DNA, or other RNA. Therefore, transcriptomes, a collection of all RNA sequences transcribed
from the genomic code, capture gene expression complexity beyond a simple reproduction of a nucleic
acid order [17].

Attempts to catalogue genomic variations across the human population brought to light
large-scale structural variants in human genomes which were previously disregarded [18,19].
Thousands of deletions, duplications, and copy number variants differ between healthy individuals,
suggesting significant variations in transcriptomes. Most of these variants, including individual
single-nucleotide variants (SNV) and population-wide single nucleotide polymorphisms (SNPs)
are located in non-coding genomic areas and influence gene expression by various mechanisms,
e.g., changing promoter or enhancer activity, modifying the primary and secondary structure
of non-coding RNA, or altering pre-mRNA processing. Some genetic variants are found to be
clinically relevant and can be associated with higher or lower risks of cardio and neurodegenerative
diseases [18]. Certain SNPs significantly increase chances of developing cancer [20], including pediatric
leukemia [21,22], while acquisition of somatic mutations in non-coding and untranslated regions of
RNA transcripts as well as dysregulated expression of ncRNAs acting in trans play an important role
in neoplasm development and progression [23,24].

Here, we overview the role of cis-acting motifs and regulatory ncRNA such as lncRNA, circRNA,
and miRNA in blood cancer, giving special attention to pediatric tumors. We discuss how alterations
in primary RNA structure and expression levels of regulatory RNA molecules may serve as leukemia
biomarkers. Finally, we look at current approaches for chemical and antisense oligonucleotide (ASO)
RNA targeting.

2. cis-Acting RNA Regulatory Motifs

RNA cis-acting regulatory motif is a primary RNA sequence, often folded into a distinctive
secondary structure (e.g., AU-rich elements (ARE), internal ribosome entry site (IRES)) that regulates
fate and activity of RNA itself through interaction with other RNA molecules, DNA, or RNA-binding
proteins (RBPs). When located in introns of messenger RNA precursors (pre-mRNA) and untranslated
regions (UTRs) of mature mRNA, these regulatory sequences influence pre-mRNA processing,
mRNA stability, translation, transport, and decay. The structural integrity of cis- and trans-acting
elements defines the strength and physiological outcomes of their interactions, presenting an additional
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layer of gene expression control. Alterations in cis-acting regulatory RNA motifs are often detected in
the context of cancer and other diseases.

2.1. Aberrant Pre-mRNA Splicing

Pre-mRNAs are primary transcripts consisting of exons (protein-coding regions with an average
size of about 200 base pairs) and introns (much lengthier non-coding sequences flanking exons).
Splicing, a process of intron removal and connection of exons by a mega-Daltons spliceosomal
complex [25], produces either a constitutive mRNA isoform, or several alternatively spliced mRNA
isoforms via differential exon usage. During splicing, the protein components of the spliceosome
recognize and bind with cis-regulatory pre-mRNA motifs at the 5′ splice site (GT), the polypyrimidine
tract (PPT), the 3′ splice site (AG), and the branch point sequence (BPS). Auxiliary or supplemental
splice regulatory elements known as exonic and intronic splicing enhancers and silencers are defined
by their effects on adjacent splice sites by either promoting or inhibiting exon inclusion [26].

Somatic or hereditary mutations at the exon-intron boundaries and splicing regulatory motifs are
the most common types of mutations leading to mRNA mis-splicing. β-thalassemia, a hereditary blood
disorder characterized by anemia and a variety of growth and metabolic abnormalities, was one of
the first discovered diseases with splicing site mutations negatively affecting production of functional
protein (hemoglobin) [27]. Further studies, however, found hundreds of β-thalassemia-causing point
mutations in other sites of the β-globin gene and its flanking areas, including promoter regulatory
elements, untranslated regions, and protein-coding regions of β-globin mRNA [28].

Relapsed pediatric B-ALL can present with both mutations in protein coding sequences and
aberrant splicing of CD19 mRNA. To investigate the molecular nature of resistance to CAR-19
therapies, Thomas-Tikhonenko’s group compared whole exome and RNA sequencing analysis of
CART-19 relapse to the CD19-positive, pre-CART-19 leukemia samples from the same patients [29].
Researchers detected hemizygous deletions spanning the CD19 locus, de novo frameshifts, and missense
mutations in exon 2 of CD19, which is essential for the integrity of the CART-19 epitope. In addition,
researchers identified the alternatively spliced CD19 mRNA variants encoding the intracellular part
of CD19, enabling cell-growth promoting stimuli, and a defective extracellular part of the receptor.
Authors concluded that both DNA- and RNA-based mechanisms are important for CD19 presentation,
and the convergence of acquired mutations and alternative splicing of CD19 enables resistance to
CAR-19 immunotherapy. The prominent mutations involving exon 2 skipping and synthesis of
truncated cytosolic protein that cannot be targeted by CAR19 were also identified by Fisher et al. [30].
Orlando et al. did not find splice isoforms in a group of 12 patients with relapses after CART-19 and
only identified genetic alterations in exons 2, 4, and 5 [31]. Nevertheless, mRNA mis-splicing is a
powerful mechanism providing evolutionary advantage to cancer cells and has been documented for
adult myeloid [32] and lymphoid leukemia [33].

Genetic studies of leukemia and other types of cancer indicate that splice site mutations span
multiple loci in pre-mRNAs and often coincide with aberrations in protein-coding sequences of the
gene. This is unlike hereditary disorders caused by a single mutation or changes in several base pairs
(e.g., spinal muscular atrophy, myotonic dystrophy) that can be treated with antisense oligonucleotides.
In addition, the molecular mechanisms of mis-splicing in cancer are not limited to mutations in
pre-mRNA sequences but involve dysfunction of protein and RNA components of the spliceosome [34].
For example, analysis of 2434 whole-genome sequenced donors across 37 tumor types from the
Pan-Cancer Analysis of Whole Genomes project identified 277 somatic mutations in U1 spliceosomal
small nuclear RNA genes that affected 240 donors across 30 tumor types. Only two positions, base 3
and 28, were mutated in more than 5% of donors in at least 1 tumor type. Mutations, at various
frequencies, fall in the stem loop positions and highly conserved 5′ splice-site recognition sequences.
The A > C mutation of U1 snRNA was found in 8 out of 78 (10.3%) cases of CLL [35].

Mutations in splicing factor genes are especially common for adult chronic myeloid and
lymphoblastic leukemia [36]. Conversely, somatic mutations in splicing factors were not typical
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for pediatric B-ALL. However, the comparative analysis of splice isoforms in acute pediatric B-ALL
lacking mutations in splicing factors genes and normal pro-B-cells identified thousands of aberrant
local splice variations per sample [37].

High tissue- or context-specificity is another important characteristic of differential splicing in
normal and malignant hematopoietic tissues. The analysis of alternatively expressed isoforms between
aging hematopoietic stem cells (HSCs) and progenitor cells (HPCs) identified a significant divergence
with only few isoforms of transcription and histone regulators being commonly upregulated [38].
Rojas et al. aimed to identify differentially spliced variants between two hematologic entities with
a similar genetic background, 17 p deletion: primary plasma cell leukemia and multiple myeloma.
The results of transcriptome analysis reveal a significant deviation between the two types of
tumors. Interestingly, most of the differences were observed in the spliceosome machinery genes,
which emphasizes the cell type- specificity of alternative splicing [39].

2.2. Alterations in Untranslated Regions (UTR) of mRNA

The untranslated regions in mRNA (5′ UTR and 3′ UTR) originate from pre-mRNA exons and
flank a protein-coding sequence of mature messenger RNA on both sides of an open reading frame
(ORF). The UTRs are rich in cis-acting elements and distinctive secondary structures (hairpins) that are
recognized by regulatory ncRNA and RBPs. Similar to splicing, recurrent UTRs abnormalities were
found in cancer and previously reviewed [23,40,41].

2.2.1. 5′ UTR Alterations in Leukemogenesis

Alterations in 5′ UTRs can disrupt both translation efficiency and protein characteristics.
For example, mutations in the 5′ UTR of ANKRD26, the Ankirin Repeat Domain 26 Gene,
lead to expression of N-terminally truncated protein and cause the autosomal-dominant form of
inherited thrombocytopenia and increase predisposition to AML [42,43]. The rare cases of genetic
predisposition to MDS/AML are linked to SNPs in various regions of the GATA2 gene, including 5′UTR,
that cumulatively lead to GATA2 loss-of-function [44].

With the right sequence context in translation initiation sites (TIS), certain non-AUG start codons
can generate expression comparable to a canonical, AUG start codon, whereas mutations in TIS change
levels of expression [45]. Endogenous nucleotide repeats expansions upstream of coding-region and
a shifts in ORFs is linked to production of abnormal peptides due the repeat-associated non-AUG
translation (RAN) common for inherited neurodegenerative diseases [46,47]. A study of 17 patients
with the family history of chronic lymphocytic leukemia (CLL) and 32 patients with early-onset B-cell
CLL did not observe a pathological CAG repeats expansion [48]. The analysis of polymorphisms in
thymidylate synthase 5′-UTR 28 bp tandem repeats found a lower blast counts in ALL patients with
2R2R allele, but no such genotype-dependent differences were observed in AML cases [49].

In the context of stress-related global repression of translation, the production of certain
oncogenic proteins can increase due to the stress-induced activation of previously repressed upstream
start codons [50]. Sendoel et al. demonstrated that during transformation of skin epithelial cells,
certain cancer related mRNAs such as nucleophosmin (NPM1) exhibited increased ribosome occupancy
in upstream CUG rather than in conventional AUG initiation sites of canonical ORFs. In addition to a
selective generation of oncogenic proteins through unconventional start codons, researchers found a
shift of transcriptome towards pathways of stemness and mediators of Wnt/β-catenin signaling [51,52].
These findings suggest that the adverse changes in the molecular-genetic profile occur before the early
signs of transformation are phenotypically notable.

2.2.2. 3′ UTR Alterations in Leukemogenesis

Alternative cleavage and polyadenylation (APA) are a differential selection of AAUAAA
polyadenylation sites in 3′UTR by APA factors, leading to the expression of different mRNA isoforms
that code for the same protein [53,54]. APA is globally regulated in response to extracellular stimuli that
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regulate proliferation and differentiation. The first example of 3′UTR shortening was described during
T cell activation in response to changes in cell proliferation status [55]. Most fast-proliferating cells,
including embryonic stem cells, express transcripts with shorter 3′UTR, though some transcripts, such
as those encoding for cell adhesion molecules, may have extended 3′UTR [56,57]. The length of 3′UTR
can determine the intracellular protein localization. For example, the long 3′UTR of CD47, a protein
conveying antiphagocytosis through the “do not eat me” signal in leukemic cells, enables efficient
cell surface expression of CD47, whereas the short 3′ UTR primarily localizes CD47 protein to the
endoplasmic reticulum [58].

A meta-data analysis of microarray data by Mayr and Bartel demonstrated that shorter
mRNA isoforms in cancer cells display increased stability through the loss of microRNA-mediated
repression and typically produce ten-fold more protein [59]. The bioinformatics study of alternative
polyadenylation in 358 Pan-Cancer tumor and normal pairs across seven types of cancers identified
that 91% of genes expressed in cancer have shorter 3′-untranslated regions (3′ UTRs) to avoid
microRNA-mediated repression [60]. A somatic mutation in 3′ UTR, however, can create a new site for
miRNAs recognition, causing downregulation of tumor suppressor genes in AML [61].

3′ UTR shortening is associated with increased activity of oncogenes in blood and immune cells.
For example, fusion transcripts of the Mixed Lineage Leukemia (MLL) gene that lack its native 3′ UTR
are associated with the increased activity of those fusions in leukemia cell lines and tumors compared
to fusions that retain MLL 3′ UTR [62]. Strongly proliferative mantle cell lymphoma (MCL) tumors
have exceptionally high Cyclin D1 mRNA levels, expressing short Cyclin D1 mRNA isoforms with
truncated 3′ UTRs [63].

A study of 452 CLL cases and 54 patients with monoclonal B-lymphocytosis, a precursor
disorder, comprised a comprehensive evaluation of recurrent mutations in non-coding regions
and found recurrent alterations in the 3′ region of NOTCH1, which cause aberrant splicing
events, increase NOTCH1 activity, and result in a more aggressive disease [33]. Another study
by Lee et al. investigated the oncogenic potential of mRNA processing events in 59 cases of CLL [64].
RNA sequencing revealed the widespread recurrent upregulation of truncated mRNAs and proteins
that were caused by intronic polyadenylation. Truncated mRNAs predominantly represented tumor
suppressors lacking full-length structure and functionality. Importantly, the role of these genes in
cancer was underestimated before due to a lower mutation rate on a DNA level. Therefore, mis-splicing
and aberrant polyadenylation can be a driving force of hematopoietic malignancies with few detectible
genetic mutations.

Aberrant splicing in 3′ UTR of splicing factor hnRNPA1 and reduction of its mRNA levels initiate
a chain of mis-splicing events affecting oncogenes and tumor suppressors in pediatric B-ALL [37].
This finding suggests that aberrant splicing disturbing 3′ UTRs may be a common mechanism of
leukemogenesis for both adult and pediatric patients [65].

3. Prospective Therapeutic Value of Targeting Non-Coding Pre-mRNA and mRNA Sequences

Could these genetic alterations disrupting non-coding pre-mRNA regulatory sequences and
mRNA UTRs have diagnostic or prognostic value in cancer? A functional analysis of alternative
spicing mapping cancer-associated changes to changes in proteins indicates that mis-splicing impacts
domains classically affected by somatic mutations in different genes and can be considered as
an independent oncogenic process [66]. Therefore, detection of mutations in non-coding sequences
disrupting pre-mRNA splicing, mRNA stability, and protein synthesis can have diagnostic or prognostic
value. However, data variability should be taken into consideration while exploring alternative and
aberrant splicing as a marker of disease development and progression. First, the tissue-specific
expression patterns of differentially spliced pre-mRNAs and the adaptive nature of alternative
splicing, which changes drastically with microenvironment and age, suggest that genetic analysis of
samples with identical genetic background is preferable in order to decrease data inconsistency [67].
Clinically relevant phenotypes such as resistance to therapeutics or tumor repopulating capacity
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would be the right starting point for identification of splice variants promoting clonal expansion [68].
The standardization of tissue sampling procedures is particularly important for long-term studies,
where the occurrence of clonal mutations could change significantly upon treatments [69]. The genetic
studies show that cells corresponding to relapse are present in a minor subpopulation at diagnosis [70].
Therefore, technical inability to detect mutations and the rapidity at which mutagenesis occurs may
compromise the reliability of genetic testing. For example, the mis-spliced CD19 mRNA isoforms
progressing to relapse were detected by Fisher et al. at diagnosis [30]. Another study, however, did not
detect the genetic variants found at CART-19 relapse just one month before the disease reoccurred [31].

Although most aberrantly spliced mRNAs undergo nonsense-mediated decay (NMD),
the successfully processed and translated messengers can produce atypical, tumor associated
neopeptides. As discussed above, alteration in 5′ UTRs of mRNAs can also increase the production of
cancer-specific protein isoforms from non-canonical TIS. Hematologic malignances, especially AML,
often reveal antigens not expressed by normal cells. That leukemia associated antigens are targeted by
αβ and γδ T cells, NKT and NK cells that are proven to be functional against AML in combination
with effector ligands and cytokines (perforin, TRAIL, IFN-γ, IFN type I, and IL12) [71,72]. If presented
on MHC class I or II of a cell, those neopeptides work as tumor associated antigens (TAAs) and
mediate tumor immunogenicity [73]. Seen as foreign by the adaptive immune system, neoepitopes,
identified by various approaches, typically associated with better treatment outcomes in solid
tumors [74]. Computational analysis of WES from 91 CLLs allowed for prediction of 22 mutated
HLA-binding peptides per leukemia. HLA binding was experimentally confirmed for ∼55% of such
peptides. Further analysis of WES data on 2488 samples across 13 different cancer types estimated
from dozens to thousands of putative neoantigens per tumor, suggesting that neoantigens are frequent
in most tumors [75].

The large whole exome sequencing (WES) and RNA-seq studies identified widespread
splicing alterations in around 30% of differentially expressed transcripts. Even though many
of them are not cancer drivers, those aberrations can contribute to tumor immunogenicity [76].
Jayasinghe et al. bioinformatic analysis indicates that most splicing site-creating mutations (SCMs)
were generated within the TP53 and GATA3 genes [77]. Tumors with SCMs expressed both T cell
markers (PD-1, CD8A, and CD8B) and immune checkpoint blockade PD-L1 molecule, indicating that
alternative splice forms induced by SCMs increase the overall immunogenicity of these cancers. The
proposition that PD-L1 immunotherapy could be a potential treatment for samples containing SCMs
requires further investigation with in vitro and in vivo models of leukemia [77].

4. Regulatory Non-Coding RNA Molecules

Several large-scale and single cell sequencing studies explored transcriptomes of normal and
malignant hematopoietic cells [78–82]. RNA landscape of the normal human hematopoietic hierarchy,
featuring 38,860 unique ncRNAs, 20,466 mRNAs, and 900 miRNAs, displays highly lineage-specific
expression of all types of ncRNAs (long non-coding RNA (lncRNA), long intervening ncRNAs
(lincRNAs), pseudogenes, antisense transcripts (AS), retained introns, miRNA, and small nucleolar
RNAs (snoRNAs)) [79]. The ncRNA expression in leukemia cells is also vastly lineage-specific,
often exhibiting pleotropic, context- and concentration-dependent effects on cell physiology.
Nevertheless, certain ncRNA loss- or gain-of-function is strongly associated with tumorigenesis
and genes encoding those ncRNAs are known as tumor suppressors and oncogenes similar to
protein-coding genes [24]. Trans-acting ncRNAs regulate gene expression in distal genomic regions
while cis-acting RNA molecules attenuate gene expression of the locus of their origin or nearby (not to
be confused with the internal cis-acting RNA motifs discussed above).

Research strategies elucidating the role of ncRNAs in leukemia can be summarized as follows:
(i) identification of highly up- or downregulated ncRNA common for certain histological and cytogenetic
subtypes of leukemia by analyzing either primary tumors and body fluids, or previously published
arrays such as The Cancer Genome Atlas (TCGA) database; (ii) evaluating ncRNAs as potential
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biomarkers of leukemia in a relationship with white cell blood count, overall survival (OS), event- or
disease-free survival (EFS, DFS), minimal residual disease (MRD), and risk of relapse; (iii) mechanistic
studies of ncRNA function in a cell through interaction with DNA, RNA, and protein targets. Finally,
a large body of work has been dedicated to understanding the role of ncRNA in chemoresistance and
developing anti-ncRNA targeted therapies.

4.1. Long Non-Coding RNA

Long non-coding RNAs are primary RNA transcripts over 200 nucleotides in length, which are
named and categorized based on their genomic origin. Relative to protein-coding sequences,
lncRNAs are defined as (i) sense-overlapping, antisense-overlapping, or both (ii) bi-directional,
transcribed from sense and anti-sense DNA strands of neighbor genes; (iii) intronic, when transcribed
from distal introns; and (iv) intervening/intergenic (lincRNA), not overlapping with annotated coding
genes [83,84]. The current version of LncBook lists 270,044 lncRNAs, but only 1867 lncRNA are
experimentally validated [85,86]. Long ncRNA expression and processing are similar to protein-coding
genes such as promoter conservation and lncRNA splicing. Typically lacking long ORFs, lncRNAs do
not produce fully functional proteins. However, lncRNAs with conserved regions comprise three times
more ORFs with evidence of translation than non-conserved sequences. In addition, the conserved
regions of intergenic lncRNAs, such as CYRANO, MALAT1, NEAT1 and MEG3, are significantly enriched
in protein–RNA interaction motifs [85]. The specific, nuclear retention sequences predetermine lncRNA
nuclear localization. If those motifs are excluded during splicing, lncRNA can be transported to the
cytoplasm [87].

Through binding with DNA, RNA, and proteins in the nucleus and cytoplasm,
lncRNAs influence gene expression epigenetically, co-transcriptionally, and post-transcriptionally, acting as
oncogenes [88–94] or tumor suppressors [95–100] in cancer, Figure 1, Table 1.
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Figure 1. Cis- and trans-acting RNA regulatory elements, mechanisms of function. Nucleus (a) Epigenetics,
enhancers, transcription: transcribed and processed in the nucleus, most lncRNAs have nuclear
localization and involved in chromatin remodeling and transcriptional regulation of gene expression;
long intergenic non-coding RNAs (XIST, HOTTIP, ARIEL, LUNAR1 and others) interact with Polycomb
complexes and other adapter proteins, form connections between transcriptional regulators and distal
DNA sequences through DNA looping; lncRNAs transcribed from antisense to protein-coding genes
DNA strands, e.g., AS-RBM15, PU.1-AS, regulate expression of these genes posttranscriptionally (d);
both transcriptional and posttranscriptional mechanisms of action were described for some lncRNAs,
e.g., HOTAIR, HOTAIRM1, UCA1, that regulate gene expression in their genomic locus (acting in cis),
and distal genomic regions (acting in trans). (b) pre-mRNA splicing: cis-acting pre-mRNA motifs are
recognized by trans-acting RNA and protein factors during pre-mRNA splicing. Inherited or somatic
mutations in splicing regulatory sequences of pre-mRNA cause mRNA mis-splicing; alterations in
untranslated 3′ and 5′ areas affect mRNA stability and translation; mutations in the spliceosomal U1
snRNA cause global mRNA mis-splicing and aberrant polyadenylation; lncRNA MALAT1 regulates
phosphorylation of splicing factors; circular-RNA are formed through back-splicing of introns.
(c) ncRNA maturation: germ line mutations in pri- and pre-miRNA-16-1-miR-15a abolish their maturation.
Cytoplasm (d) mRNA translation: anti-sense lncRNAs (PU.1-AS and AS-RBM15) regulate expression
of protein coding by either promoting or inhibiting translation; PU.1-AS and UCA1 lncRNAs form
complexes with translational regulators (eIF4A, hnRNP1) which decreases mRNA translation efficiency;
(e) mRNA stability: cis-acting regulatory elements in 3′ UTR determine mRNA stability; (f) miRNA
sponging, endogenous competing lncRNA: HOTAIR and HOTAIRM1 sequester specific miRNAs;
alterations in endogenous competing RNA influence miRNA levels. (g) protein levels: depletion of
miR-20a, miR-125b, and miR206b by HOTAIRM1 increases mRNA stability and translation of autophagy
regulators ULK1, E2F1, and DRAM2, and induces PML-RARA degradation.
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Table 1. Examples of nuclear and cytoplasmic function of long non-coding RNAs.

lncRNA Gene Name Type of Cancer Expression in Cancer Mechanisms Gene Expression Regulators Ref

Nuclear Function: Chromatin Folding and Transcription

HOTTIP MLLr+ NPM1C+

AML
Upregulated

Remodels chromatin accessibility and alters hematopoietic
transcription programs affecting multiple pathways (cell
cycle, apoptosis, myeloid/leukocyte cell differentiation,

JAK-STAT signaling, and regulation of cell development);
promotes HSCs self-renewal leading to AML-like disease in

mice; lower survival in AML patients

CCCTC-binding factor (CTCF) active
at a binding site located between

HOXA7 and HOXA9 genes (CBS7/9);
Psip1/p52

[91,94,101]

MAGI2-AS3 AML Downregulated

Inhibits self-renewal in leukemic stem cells by promoting
TET2-dependent DNA demethylation of the LRIG1

promoter in acute myeloid leukemia; a better survival
with overexpression

Unknown [98]

IRAIN AML Downregulated Intrachromosomal interactions,
enhancer-promoter loop within IGF1R gene Unknown [100]

MALAT1

AML, CLL,
CMML, MM,
HCC, other

cancers

Upregulated

Regulates the phosphorylation status of serin-rich splicing
factors (SRSF), their subcellular localization in HeLa cells;
interacts with PCR2, transcription factors and sequesters

miRNA in the cytoplasm. Aberrant expression in Del 13q14
CLL; MALAT1 depletion increases cytarabine sensitivity in

AML and response to ATRA-treatment in CMML

Multiple transcription factors
e.g., SP1, SP3, HIF1-alpha, c-MYC Reviewed in [93]

CASC15 RUNX1r+

B-ALL, AML Upregulated

CASC15 regulates expression of SOX4 (B cell reg.) and YY1;
overexpression opposes cellular proliferation

and promotes myeloid bias in vivo; associated with a
better prognosis

HIF1-alpha
hypoxia sensitive elements within

CASC15 promoter
[96,97]

ARIEL TAL1+

T-ALL Upregulated

Enhancer RNA: recruits mediator proteins to the ARID5B
enhancer, promotes enhancer-promoter interactions,

activates ARID5B expression, thereby positively regulating
the TAL1-induced transcriptional program and

MYC oncogene

ARIEL transcription is
activated by TAL1 complex [92]

LUNAR1 NOTCH-regulated
T-ALL Downregulated enhancer lncRNA:

activates IGF1R expression, T cell proliferation Regulated by NOTCH1 [88,90]
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Table 1. Cont.

lncRNA Gene Name Type of Cancer Expression in Cancer Mechanisms Gene Expression Regulators Ref

Cytoplasmic Function: Protein Translation, mRNA Stability

AS-RBM15 AMKL Downregulated

AS-RBM15 promotes terminal differentiation by enhancing
RBM15 translation in a 5′ cap-dependent manner. The

overlapping region between AS-RBM15 RNA and 5′ UTR of
RBM15 mRNA function as enhancer of RBM15

protein synthesis

AS-RBM15 transcription is
activated by RUNX1 and repressed by

RUNX1-ETO
[95]

PU.1-AS AML Upregulated

The simultaneous expression of both sense mRNA and
anti-sense RNA (PU.1-AS) transcripts; PU.1-AS RNAs

consist ~12–15% of PU.1 mRNA level but are more stable
than PU.1 mRNA; PU.1-AS RNA forms complex with eIF4A
and stalls PU.1 mRNA translation between initiation and

elongation steps

Upstream regulatory element (URE)
which physically interacts with both

sense and anti-sense promoters;
CBF fusions (RUNX1-ETO and

CBFβ-MYH11) in AML

[102,103]

UCA1
AML,

breast cancer,
other types

Upregulated

hnRNP1 is a splicing factor that also promotes
cap-independent translation through binding with IRES
and recruiting ribosomes to p53 and p27 (Kip1) mRNAs.

lncRNA UCA1 binding with phosphorylated cytosolic form
of hnRNP1 has anti-apoptotic effect in breast cancer. In

leukemia, UCA1 sponges for miR-126, miR-125a, miR-16,
and activates PI3K/AKT and JAK/STAT signaling

Regulated by
CCAAT/enhancer-binding

protein-alpha
[89,99,104,105]
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One of well-studied lncRNAs, X-inactive specific transcript (XIST) is a large, 17 kb, transcript involved
in X-chromosome genes’ inactivation. Several conserved repeats of XIST mediate recruitment of the
epigenetic Polycomb Repressive Complexes (PRC), initiating gene silencing on X chromosome [106].
Deletion of Xist in the murine blood compartment induced highly aggressive MDS/MPN suggesting that
Xist has a genome-wide impact and acts as a potent suppressor of myeloid blood malignancies [107].

HOX gene loci-associated cis-acting lncRNAs, HOX transcript antisense RNA (HOTAIR) and HOXA
transcript at the distal tip (HOTTIP), program active chromatin through interaction with Polycomb and
other adapter proteins and play oncogenic roles in leukemia [108,109]. Recently, Luo et al. investigated
aberrant activity of HOTTIP in AML and showed that HOTTIP coordinates HOXA-driven topologically
associated domain (TAD), including the expression of the posterior HOXA genes. HOTTIP also
binds in trans with promoters of key hematopoietic regulators like PBX3, MYC, KIT, CD33, MEIS2,
and RUNX1. In mice, Hottip displayed oncogenic properties leading to AML-like disease by altering
the homeotic-hematopoietic gene-associated chromatin signature and transcription programs [91,101].

Oncogenic lncRNA HOTAIR sustains leukemia growth and proliferation by negative epigenetic
regulation of p15 genes in the nucleus and by sponging miR-193a away from c-KIT mRNA in
the cytoplasm [110,111]. Another example of intergenic trans-acting lncRNA enhancing oncogene
expression through miRNA titration, or a competing endogenous RNA (ceRNA), is CCAT1.
Often upregulated in M4-M5 subtypes of AML, CCAT1 inhibits monocytic differentiation and promotes
proliferation by reducing miR-155 availability and consequently increases levels of c-MYC [112].

The intergenic lncRNA HOTAIRM1, located in HOXA cluster, is a tumor suppressor regulating
selective induction of HOXA1, HOXA4, and myeloid markers CD11b, CD18, and CD11c in NB-4 human
acute promyeloblastic leukemia [113–115]. HOTAIRM1 expression is associated with myeloid lineage
specification and ATRA-driven cell cycle arrest. Another anti-leukemic mechanism of HOTAIRM1
action implements degradation of PML-RARA oncoprotein and support an autophagy pathway by
withdrawing miR-20a, miR-106b, and miR-125b from ULK1, E2F1, and DRAM2 mRNAs [116].

In addition to miRNA sponging, lncRNA are capable of altering protein synthesis by interfering
with translational machinery. Daniel Tenen’s group showed that the interplay between PU.1 sense and
antisense RNAs, regulated from shared cis-regulatory DNA elements, is important for maintaining
physiological dosage of PU.1 [102]. Originating from an intronic promoter, PU.1 anti-sense transcript
(PU.1-AS) disrupts PU.1 translation between the initiation and elongation steps by selective binding
with eIF4A initiation factor [102]. Therefore, elevated expression of PU.1-AS leads to downregulation
of PU.1 and promotes myeloid leukemia [103]. Conversely, AS-RBM15, an anti-sense RNA transcribed
in the opposite direction within exon 1 of the megakaryocytic regulator RBM15, promotes terminal
differentiation of hematopoietic progenitors by enhancing RBM15 translation in a 5′ cap-dependent
manner. The overlapping region between AS-RBM15 RNA and 5′ UTR of RBM15 mRNA functions as
an enhancer of RBM15 protein synthesis in megakaryocytic leukemia [95].

To evaluate the prognostic significance of differentially expressed lncRNA in the genetically diverse
AML, the de novo RNA sequenced bone marrow samples or TCGA data were thoroughly investigated by
several groups. Garzon et al. identified a small subset of lncRNAs strongly correlated with the treatment
response and survival of elderly patients (>60-year-old) with cytogenetically normal, untreated AML
harboring FLT3-ITD, NPM1, CEBPA, IGD2, and RUNX1 mutations [117]. The follow-on study of
cytogenetically normal acute myeloid leukemia in younger adults (<60 years old) identified 24 lncRNAs
associated with event-free survival. Interestingly, among genetic aberrations with prognostic values only
tumors with NPM1, CEBPA, and FLT3-ITD mutations displayed differential lncRNA expression [118].
A novel prognostic marker, lncRNA XLOC_109948, was identified by Etienne De Clara et al. in the
large-scale bioinformatic analysis of NPM1-mutated AML [119]. Low expression levels of XLOC_109948
were associated with good treatment outcomes. Downregulation of XLOC_109948 in a NPM1-mutated
OCI-AML3 cell line treated with Ara-C or ATRA enhanced apoptosis, thus suggesting the role of this
lncRNA in drug sensitivity [119].
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lncRNAs contribute to proliferation [104,120–126], chemoresistance [105,127], and shorter
overall survival [128–132] in childhood leukemia, while functions of some highly upregulated and
downregulated lncRNAs are still unknown [133], Table 2. Urothelial carcinoma-associated 1 (UCA1)
lncRNA was upregulated in some pediatric AML after adriamycin (ADR)-based chemotherapy [105].
Knockdown of UCA1 increased the cytotoxic effect of ADR and inhibited HIF-1α-dependent glycolysis
in ADR-resistant AML. Mechanistically, UCA1 positively regulates hexokinase 2 and HIF-1α-dependent
glycolysis in HL-60 APL by sponging miRNA-125a. In the ADR resistant T-ALL, antisense CDKN2B-AS1
positively regulates TRAF5 by sponging miR-335-3p [127].

The molecular analysis of different subsets of pediatric B-ALL (t (12; 21), TEL-AML1; t (1;19)
E2A-PBX1; and t (4;11) MLL-AF4) identified most differentially regulated lncRNAs (BALR- 1, BALR-2,
BALR-6, and LINC00958) [134]. High expression levels of B-ALL associated long RNA-2 (BALR-2) and
B-ALL associated long RNA-6 (BALR-6) are linked with shorter overall survival, while their inhibition
decreases cell proliferation and induces apoptosis [134,135]. The mechanistic studies of their oncogenic
properties in human and mouse B-ALL cells indicate that BALR-2 inhibits the glucocorticoid receptor
signaling pathway, while BALR-6 negatively regulates activity of SP1(PU.1) and its downstream targets.

Subtype-specific ncRNA, including lncRNA, in the six major subgroups of pediatric AML
(i.e., inv(16), t (8;21), t (10;11), t (9;11), acute megakaryoblastic leukemia (AMKL), and Down
syndrome myeloid leukemia (ML-DS)) were described by Schwarzer et al. [79]. The researchers
identified ncRNA stem cell signature which includes HSC-related ncRNA transcripts and ncRNA
associated with differentiation. Interestingly, transformed AML blasts expressed a conserved HSC
program independent from differentiation-associated ncRNAs, similar to protein-coding genes [136,137].
The downregulation of the differentiation-associated ncRNAs, but not expression of HSCs-associated
ncRNAs, was associated with statistically significant poor prognosis [79].

A comprehensive genomic study of 5037 tumor samples and 935 cancer cell lines among 13 types of
cancer, including leukemia, revealed both commonly expressed and cancer-type specific lncRNAs [138].
Compared to corresponding normal tissues, 15% of significantly upregulated and 11% of downregulated
lncRNA were detected in several cancer types, with PCAT7, PVT1, and HOTAIR among the most
commonly expressed lncRNAs. The somatic copy number alterations (SCNA) via SNP microarray
showed that ovarian and lung cancers had the most of high-frequency (>25%) loss- or gain-of-function
lncRNA SCNAs. Whereas AML displayed very few SCNAs, high expression of Breast Cancer Associated
lncRNA8 (BCAL8) correlated with poor prognosis. Cancer-associated index SNPs were located in 11.7%
of lncRNA loci, and roughly half of them were found in close proximity to protein-coding genes.

Gao et al. analyzed the impact of somatic mutations and lncRNA expression across 17 cancer
types, and its connection with miRNA expression, methylation, and TF-lncRNA interaction [139].
The scientists found that lncRNA genes located on chromosomes 17 and 1 are more frequently involved
in cancer, about 54% of lncRNA mutations occurred only in one cancer type, and only 0.27% were
dysregulated in more than eight cancers allowing them to be classified as “common” for the given cohort.
Importantly, most of those lncRNAs function as regulators of chromatin assembly and transcription
and have a cancer biomarker potential for prediction of susceptibility to cancer, association with disease
recurrence, and poor survival rates [140].
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Table 2. Long non-coding RNA in pediatric leukemia.

lncRNA Gene Name Type of Cancer Study Design Expression in Cancer Prognostic Significance or
Function in Cancer Ref

SNHG1 AML pediatric newly diagnosed AML (n = 209), healthy
controls(n = 67), BM, qRT-PCR upregulated shorter event-free and overall

survival (p < 0.001) [128]

SOX6-1 AML pediatric
de novo AML (n = 146), nonhematologic
cancer controls(n = 73), BM, proliferation,

qRT-PCR apoptosis CCK-8 and AV/PI assay
upregulated poor-risk stratification, overall

survival (p < 0.001), [129]

LINC00909 AML pediatric

untreated AML (n = 93), healthy controls
(n = 31), BM, RT-qPCR analysis, RNA-pull

down; luciferase reporter assay; cell viability,
migration

upregulated
sponge miR-625, activate

WNT-signaling, poor prognosis,
AML progression

[124]

UCA1 AML pediatric

UCA1 expression in AML (n = 27) before
and after adriamycin (ADR)-based

chemotherapy, cell lines, qRT-PCR, luciferase
reporter assay, RIP

upregulated

chemoresistance, inhibits glycolysis
through the

microRNA-125a/hexokinase 2
pathway

[105]

UCA1 AML pediatric untreated AML (n = 27), PB healthy donor
controls, cell lines upregulated sustains AML proliferation similar

to adult AML [125]

H19 AML pediatric
gene expression profiles from 1361 childhood
leukemia patients in 14 independent studies

using available Affymetrix data
upregulated

LIN28B and LIN28B-driven H19
expression present in aggressive

subsets of pediatric leukemia [120]

ENST00000435695
ENST00000415964 AML pediatric

Arraystar Human IncRNA Array V3.0 in
three AML vs. controls followed by

qRT-PCR in AML BM (n = 22)

372 dysregulated
IncRNAs

(difference ≥ 10-fold)

ENST00000435695 (most
upregulated) ENST00000415964

(most downregulated)
[133]

lnc-THADA4-1
lnc-SUPT3H-1

JMML
pediatric

lncRNA landscapes in untreated JMML
(n = 44, n = 19) and healthy BM donors,

clinical and molecular characteristics,
lncRNA-mRNA interaction network,

LNA™ GapmeRs inhibition, cell viability

lnc-THADA4-1 (highest)
lnc-SUPT3H-1 (lowest)

lncRNA specific for
granulocytic lineage–

lnc-ACSL1-1,lnc-BASP1-3

Defined lncRNA associated with
favorable and unfavorable

prognosis, JMML lncRNA score:
difference in the event-free survival
from HSCT is significant, p < 0.0001

[131,132]

TCL6
CCDC26

B-ALL
pediatric

ETV6-RUNX1-positive (n = 24) versus
ETV6-RUNX1-negative (n = 18) B-ALL,

RNA seq, clustering analysis

TCL6(highest)
CCDC26(lowest)

TCL6 levels may be associated with
poor disease-free survival,

even within ETV6-RUNX1-positive
B-ALL (p < 0.05)

[130]
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Table 2. Cont.

lncRNA Gene Name Type of Cancer Study Design Expression in Cancer Prognostic Significance or
Function in Cancer Ref

CDKN2B-AS
(ANRIL)

B-ALL
pediatric

genotype association study 217 B-ALL
patients and 338 controls in CDKN2A/B

(9p21.3) locus containing lnc-ANRIL
SNP

Six SNP inducing most strongly
associated with B-ALL

susceptibility rs2811712 located in
the intron 1 on lnc-ANRIL

[21]

BALR-2,
(BALR-6,

LIN00958)

B-ALL
pediatric

pediatric B-ALL MLLr+, TEL-AML1,
E2A-PBX1, BCR-ABL1 (n = 160) Upregulated Poor overall survival (p = 0.005) [134]

AWPPH T-ALL
pediatric

de novo, untreated T-ALL (n = 32) healthy
controls, BM, cell proliferation, apoptosis upregulated supports proliferation and inhibits

apoptosis [126]

CDKN2B-AS1 T-ALL
pediatric

de novo untreated T-ALL (n = 21) and
ADR-based therapies treated (n = 21), total
T-ALL patients (n = 42), IP, RIP, Luc assay;

upregulated
ADR resistance, positive regulation

of TRAF5 through
miR-335-3p sponging

[127]

INSR T-ALL
pediatric

de novo, untreated T-ALL (n = 3) and
healthy BM controls, anti-CD3 sorting, MNC

RNAseq, lncRNA cellular localization
upregulated

lnc-INSR promotes tumor
progression by promoting an

immunosuppressive
microenvironment in vivo

[122]

NALT T-ALL
pediatric

T-ALL (n = 20), BM, proliferation assay
in vitro and in vivo PDX upregulated

Co-expressed and supports
NOTCH1 signaling, nuclear
localization, novel cis-acting
element regulating NOTCH1

[121]
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4.2. Circular RNA

Circular RNAs (circRNAs) are single-stranded RNA sequences covalently linked into circles that
range from 100 nt to over 4 kb in size. Similar to miRNA and lncRNA, they comprise evolutionary
conserved genomic regions. The biogenesis of circRNAs is linked to splicing and circularization,
so-called back-splicing, of exonic, intronic, and other non-coding fragments of newly transcribed RNA.
Similar to lncRNA, circRNAs can be translated to proteins and negatively regulate miRNA function by
competing with their RNA targets.

The stable structure of circRNAs suggests a long-lasting effect on cellular physiology,
making circRNAs suitable diagnostic and prognostic markers. In fact, circRNAs, most intensively
studied in AML, were identified as potential biomarkers that can be applied at diagnosis, remission,
or associated with resistance to therapy [141].

For example, circ-RNA microarray screening of 115 human samples revealed a strong association
of hsa_circ_0004277 expression with AML development: hsa_circ_0004277 levels were significantly
downregulated at diagnosis and normalized in remission [142]. circ-ANAPC7 was also proposed to
be an additional marker to identify AML [143], but further studies with a larger number of AML
samples and normal progenitor controls are required to confirm these observations. The analysis of
113 AML patients and 42 healthy donors identified that circular RNA originating from the Vimentin gene
(circ-VIM) is significantly upregulated and associated with shorter survival in patients with non-acute
promyelocytic leukemia and cytogenetically normal AML [144]. High levels of Vimentin itself, a type
III intermediate filament that maintains cell integrity, is also associated with AML aggressiveness
(e.g., higher count of white blood cells and low overall survival), especially in older patients [145].
Though not capable of carcinogenic transformation on their own, f-circular-RNA produced from
fusion genes can promote leukemia development and resistance to therapies [146]. circPAN3 was
shown to contribute to drug resistance through the circPAN3-miR-153-5p/miR-183-5p-XIAP axis [147].
Another promising circ-RNA marker is circ-PVT1. Similar to lncRNA-PVT1, one of the most common
long non-coding RNAs, circ-PVT1 is upregulated in AML and ALL and promotes cell proliferation
through supporting c-MYC expression by sponging let-7 family and miR-125 [148,149].

Analysis of 12 pediatric AML and healthy controls identified 273 upregulated and
296 downregulated circRNAs, mostly transcribed from chromosomes 1, 6, and 16. Among 20 highly
upregulated circRNAs, circ-0004136 acts as a sponge for several pediatric AML-related miRNAs.
The bioinformatic algorithm indicated that target genes involved in the circ0004136-miRNA-mRNA
network are enriched in leukemia-related signaling pathways. Circ-0004136 expression was significantly
upregulated in pediatric AML and potentially sponged AML-related miRNAs, such as miR-29a and
miR-142 [150]. Studies of pediatric B-ALL revealed upregulation of circRNAs associated with
MLL fusion partner AF4, circAF4, and other oncogenes (AF6, AF9, AF10, ENL, GAS7, PAX5, PVT1,
and HIPK3) [151,152].

Cis-acting RNA motifs determine biogenesis and functions of circRNAs [153]. Typically referred
to as the repetitive and non-repetitive long flanking introns of pre-mRNA, altered cis-acting elements
can potentially abolish or increase expression of circRNAs. The genome-wide in silico search for
genetic variants of human circRNAs and analysis of cancer datasets showed that chromosome 17
has a relatively large number of health-related genetic circRNA variants, chromosome 7 contains the
highest number of complex mutations, and chromosomes 2 and 1 exhibited the highest number of
cancer-related variants. The circRNA-related genetic SNPs, insertions and deletions (INDEL) that
might be common for multiple circRNAs have not yet been reported [154].

4.3. Short Non-Coding RNAs

The small and medium size, 18-200 nt, non-coding RNAs, e.g., small interfering RNAs (siRNAs),
micro RNAs (miRNAs), PIWI-interacting RNAs (piRNAs), small nuclear RNA(snRNA), small nucleolar
RNA (snoRNA), promoter-associated small RNAs (PASRs), transcription initiation RNAs (tiRNAs),
telomere small RNAs (tel-sRNAs), centrosome-associated RNAs (crasiRNAs), and many others,
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compose an array of endogenous molecules regulating multiple processes in a cell at the transcriptional,
co-transcriptional and posttranscriptional levels. Among all classes of short ncRNA identified to date,
miRNAs role in cancer has been investigated most thoroughly [155].

miRNA

Single or clustered genes encoding primary miRNA transcripts (pri-miRNAs) ultimately processed
into short, ~22 nucleotide sequences, are dispersed throughout the genome and mostly conserved
among species. Transcribed by RNA Polymerase II, pri-miRNAs undergo processing by Drosha complex
in the nucleus. The processed long miRNA precursors (pre-miRNAs) are exported to the cytoplasm by
exportin 5 and cleaved into double-stranded short precursors of miRNAs. After a double-stranded
miRNA is loaded into RISC complex, one of the RNA strands, the passenger, is removed, allowing the
seed sequence of miRNA to pair with mRNA targets. The main characteristic of miRNA gene
silencing pathways is that the single-stranded miRNAs facilitate translational repression and mRNA
destabilization through imperfect base-pairing typically with the 3′UTRs.

The first evidence of miRNA gene dysfunction provoking a blood malignancy was reported
in 2002 by Calin et al. [156]. The polycistronic RNA encoding for the precursor of miR-15a-1 and
miR-16b-1 was missing in 70% of B-cell chronic lymphoblastic leukemia with translocation at 13q14.
Several powerful oncogenes promoting CLL such as Cyclin D1, MCL1, and anti-apoptotic factor BCL2,
were identified as the downstream targets of miR-15a-1 and miR-16b-1 [157].

Another vivid example of tumor suppressor miRNAs are miR-145 and miR-146a, which are
dysregulated in 5-q syndrome, a subtype of MDS characterized by severe anemia, variable neutropenia,
and atypical megakaryocytes. The deletion of 1.5 Mb DNA on the long arm of chromosome 5 (del5q)
leads to miR-145 and miR-146a loss-of-function and a subsequent upregulation of Toll–interleukin-1
receptor domain–containing adaptor protein (TIRAP) and tumor necrosis factor receptor–associated
factor-6 (TRAF6), triggering phenotypical and functional features of MDS [158].

The amplification of genomic loci C13orf25 (MIR17HG gene, at 13q31-q32) encoding the miR-17-92
cluster was found in diffuse large B-cell lymphoma, the cancer of immune cells residing in the lymph
nodes. Also known as oncomiR-1, the well-studied miR-17-92 cluster consists of six miRNAs (miR-17,
miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92a-1) important for cell cycle, proliferation, apoptosis,
and other pivotal processes. The miR-17-92 cluster is often dysregulated in hematopoietic and solid
cancers. Transactivated by c-MYC, N-NYC, MXI1, and other transcription factors, miR-17-92 cluster
increases cell proliferation and survival by inhibiting several critical tumor suppressors such as PTEN
and pro-apoptotic factor p21 [159].

Another miRNA family playing an essential role in AML, CLL, and lymphomas is miR-29 (isoforms
miR-29a, miR-29b, and miR-29c). However, miR-29s role in blood and other malignancies is dual as they
can act as oncogenes or tumor-suppressors in different histological types of tumors [160]. The context-
and dose-dependent roles were reported for several miRNAs in various cancers [24,161]. For example,
miR-125b overexpression is shown to induce either myeloid or lymphoid leukemia depending on the
time course and expression levels of miR-125b [162,163]. Narayan et al. demonstrated that forced
expression of miR-155 to high levels (>50-fold above controls) displayed antitumor activity in different
types of AML (MLL-AF9, MLL-ENL, and HoxA9/Meis1). Conversely, moderate upregulation of miR-155
was associated with alternative target selection, repression of myeloid differentiation genes, and with
leukemic phenotypes in vitro and in vivo [164]. MiR-126 regulates quiescence and self-renewal in
normal and malignant human hematopoietic stem cells with distinct outcomes [165,166]. Surprisingly,
both overexpression and knockout of miR-126 promote leukemogenesis in AE9a-induced mouse
model [167].

Aberrant expression of miRNA in various subtypes of myeloid and lymphoid leukemia was
extensively investigated, and thoroughly reviewed [168–171]. In addition, miRNAs detected in
body liquids and peripheral blood mononuclear cells from adult and pediatric leukemia patients
were evaluated as biomarkers. For example, low levels of tumor suppressor miR-206 in serum of
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pediatric AML patients were associated with upregulated Cyclin D1 and unfavorable prognosis [172].
By examining miRNA expression in normal blood cells, de novo and relapsed pediatric ALL,
Rzepiel et al. found that miR-128-3p and miR-222-3p expression correlates with minimum residual
disease (MRD). However, the routine methods of MDR detection were more sensitive and technically
reliable [173]. Since miR-150 was identified as one of the most abundant miRNAs in chronic
lymphoblastic leukemia, several studies reported both high and low miR-150 levels correlating
with poor clinical outcomes in CLL patients. Interestingly, cellular and serum levels of miR-150
were associated with opposite clinical prognoses: low cellular and high serum miR-150 levels were
associated with the disease burden [174], indicating that some other cells could possibly be releasing
miR-150. The discrepancies between studies evaluating circulating miRNAs can be explained by tissue
specificity e.g., serum, plasma, or other body liquids may contain different levels of the same miRNA,
and normalization methods used in quantitative polymerase chain reaction analysis.

Similar to other classes of ncRNA, abnormal miRNA expression and processing in cancer are
caused by structural and functional changes in the human genome: chromosomal rearrangements,
deletions, amplifications, and deregulated epigenetic and transcriptional control of gene expression.
Although copy number alterations (CNAs), amplification, and deletions are powerful genetic
mechanisms of miRNA deregulation, they are not quite common for AML. By studying 113 cases
of AML, Ramsingh et al. show that only 18% of patients have CNAs involving miRNA genes,
while multiple alterations in epigenetic and transcriptional regulators are in charge of miRNA
abnormal expression [175].

Germline variants in miRNA genes may have a profound effect on miRNA transcription and
maturation [176,177]; however, there are lower numbers of SNPs in miRNA genes than in other
regions of the human genome, and the polymorphisms mostly affect the regulatory pri-miRNA and
pre-miRNA sequences rather than seed motifs [178–180]. Sequencing analysis of miRNAs that are
dysregulated in CLL identified mutations in the primary precursor of miR-16-1–miR-15a that alter the
processing of these miRNAs and can cause loss of function similar to a deletion [181]. Accordingly,
somatic mutations within miRNA seed regions are rare genetic events [182,183].

5. Therapeutic Approaches for Targeting RNA Molecules

Traditionally, therapeutic approaches for targeting a primary RNA structures were based
on introduction of complementary DNA or RNA oligonucleotides, or their chemical equivalents,
into the target cells. Oligonucleotides can function through RNase H-mediated RNA degradation,
RNA interference (RNAi), or through a non-degradative steric hindrance mechanism by replacing or
repressing RNA-binding proteins [184].

Meant to silence gene expression by inducing degradation of target mRNAs, double-stranded
siRNAs and single-stranded antisense oligonucleotides (ASOs/AONss) are designed to perfectly match
the target sequence. Synthetic miRNAs are introduced into a cell either to replace downregulated
endogenous miRNAs (RNA mimics) or block the endogenous miRNAs, which resembles an antisense
approach. Dorrance et al. demonstrated a successful miR-126 targeting by the transferrin or anti-CD45.2
antibody-conjugated nanoparticles containing antagomiR-126 both in vitro, in CD34+ blasts sorted from
primary elderly AML patients, and in vivo, using Mll PTD Flt3 ITD mouse model [185]. AntagomiR-126
treatments led to ~80% decrease in miR-126 levels in CD34+ blasts and were accompanied with a
significant reduction of long-term colony forming cells frequency and a depletion of quiescent CD34+

subfraction as examined by serial replating assays [185]. While multiple preclinical studies showed
therapeutic potential of miRNA mimics and antagomirs in leukemia cell cultures and animal models,
none of them seemed to move forward with the clinical trials [169]. The first miRNA mimic to treat
solid tumors, MRX34, entered the clinic in 2013 [186]. MRX34 was designed to restore expression of
vastly downregulated miR-34a, which directly regulates at least 24 known oncogenes. At some point,
the trial was stopped due to life-threatening immune responses in several patients, but, ultimately,
the study was competed using dexamethasone premedication and dose-escalation protocols. Overall,
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MRX34 demonstrated an acceptable safety for most of the patients and showed the evidence of
antitumor activity in a subset of patients with refractory tumors [187].

The 18 clinical trials of anti-sense therapies in chronic and acute leukemias targeted exclusively
transcriptional regulators, mostly BCR-ABL. While some studies reported a significant improvement
in survival for particular groups of patients [188], AONs stability, the targeted delivery to
tissues, immunogenicity, and off-target effect remain major obstacles for oligonucleotide-mediated
therapies [189]. The proof of concept studies using structurally stable, resistant to nucleases
double-stranded LNA GapmeRs, e.g., against lnc-THADA4-1 in Juvenile Myelomonocytic Leukemia
(JMML) [132], and antisense double-stranded DNA oligonucleotides (ADO) against BCR-ABL in
CML [190], suggest that RNase H-mediated RNA degradation is a potentially effective therapeutic
strategy, that requires further validation in vivo.

Delivery efficiency remains one of the important problems in nucleotide-based therapies.
Therapeutic molecules can be trapped in endosomes, lysosome or disposed through exocytosis
and, therefore, remain inactive [191,192]. Delivering RNA therapeutics to the specific cell types is
another challenge. Most of the delivery technologies, including advanced, non-immunogenic lipid
nanoparticles (LNPs) loaded with modified RNA, cannot distinguish between various cell types
causing off-target effect and reducing desirable outcomes. Dan Peer’s group developed a modular
platform for targeted RNAi therapeutics named ASSET (Anchored Secondary scFv Enabling Targeting),
which coats the LNPs with monoclonal antibodies [193]. Recently, Veiga et al. utilized ASSET platform
and mRNA loaded LNPs for targeted gene expression in Ly6c+ inflammatory leukocytes, and achieved
a selective protein expression in vivo [194].

Several commercially viable AON-based therapies are currently FDA approved, and are aimed
to treat cytomegalovirus (CMV) retinitis, common in people with a compromised immune system,
and hereditary conditions such as Duchenne muscular dystrophy (DMD) and spinal muscular atrophy
(SMA) [195]. In the inherited degenerative diseases, AON-based therapies demonstrate partial or full
restoration of protein functions by modulating the altered splicing and translation [196].

A combined high-throughput screening of antisense oligonucleotides and small molecules
identified compounds promoting exon 51 skipping in dystrophin pre-mRNA [197]. Similar screens
identified small molecules inducing desirable splicing phenotype for SMA and enhancement of the
survival motor neuron (SMN) protein levels, improving motor functions in mice [198]. Interestingly,
RNA-seq analysis indicated that compounds were quite selective and did not have a widespread effect
on the transcriptome. This discovery opened a new perspective in targeting of RNA primary and
secondary structures by chemical compounds as well as inhibiting RNA–protein interactions in human
disease [199]. Prior to this, the interaction of small molecules with RNA were extensively studied in
viruses. For example, small molecules were shown to interfere with the HIV transactivation response
and Rev response element [200].

Velagapudi et al. investigated oncogenic non-coding RNA targeting by known anti-cancer
drugs [201]. The team described a small molecular microarray-based approach, AbsorbArray,
which allows for unmodified compounds, including FDA approved chemotherapeutics, to be probed
for binding to RNA motif libraries in a high-throughput format. The primary screening identified
that topoisomerase inhibitors bind the Dicer site of pre-miR-21 and inhibit miR-21 biogenesis. In vitro,
these compounds, e.g., mitoxantrone, reduced mature miR-21 levels and modulated miR-21-mediated
invasive phenotype. Importantly, the chemical crosslinking and a pull-down assay (Chem-CLIP)
studies confirmed physical interaction between pre-miR-21 and the small molecule. Among different
classes of compounds, topoisomerase inhibitors, kinase inhibitors, and splicing modulators were key
classes that bound RNA [201].

The high-throughput methods for investigating chemical compounds targeting RNA molecules
and mechanisms of drugs targeting RNA–protein interactions were recently reviewed. Anita Donlic
and Amanda Hargrove placed a unique emphasis on the specifics of RNA structural elements or
RNA-mediated interactions that enable disease-related functions in mammalian systems as well as
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the phenotypic changes observed upon treatment with targeted ligands [202]. Zhu et al. provide a
comprehensive overview of the commercialized RNA-mediated therapies and those that are under
clinical investigation [203]. A recent review by Peng Wu discusses the selective strategies for
targeting RNA-binding proteins, and the high-throughput screening approaches to identify inhibitors
of RNA–protein interactions [204]. A common theme of these and similar articles highlights the
importance of understanding the principles of RNA-ligands efficient design and producing libraries of
more specific RNA-binding chemotypes. For more effective pre-clinical assessment, RNA and RBP
inhibitor testing systems should include cellular assays investigating interactions and metabolism of
full-length molecules in a cell and animal models.

6. Concluding Remarks

Once defined as architects of eukaryotic complexity and the dark matter of cancer genomes [23,205],
ncRNA molecules could represent important yet challenging therapeutic targets due to their pleotropic
and context-dependent effect. The dual role of posttranscriptional regulators acting as oncogenes
and tumor suppressors, however, is not limited to RNA molecules, but RBPs as well. Therefore,
understanding RNA metabolism in living systems and selecting ribonucleoprotein targets that are best
suited for therapies is as important as understanding their structural characteristics.

Another level of RNA network complexity lays in the abundance and variety of ncRNA interactions
with mRNA and other ncRNA molecules. The multifaceted ncRNAs acting as transcriptional, co-,
and posttranscriptional regulators indicate the importance of understanding the circuitous architecture
of the RNA network. Although the selective targeting of upregulated oncogenic RNA molecules
may seem a step towards personalized medicine, in most clinical settings only a limited number of
patients respond to targeted therapies that address a single genetic abnormality [2]. Thus, targeting key
elements of regulatory modules or common structural elements affecting multiple targets could be a
more effective strategy against genetically heterogeneous blood cancers.

Understanding the functional significance of the somatic point mutations and genomic variants
located in non-coding and untranslated regions of the genome is also a challenge since they can influence
the expression of distal genes at both transcriptional and posttranscriptional levels. Annotation of
twenty-three million regulatory SNPs that are involved in a wide range of processes, including
proximal and distal transcriptional and posttranscriptional regulation of gene expression, indicates that
roughly half of them are involved in RBP- and miRNA-mediated posttranscriptional regulation [206].
A global high-resolution search for protein RNA-binding domains led to the observation that mutations
causing monogenic diseases, ~10,000 human diseases including sickle-cell anemia, were enriched in
genomic regions encoding for unconventional RNA–protein interactions [207]. Therefore, the role
of cis- and trans-acting RNA regulatory elements and RBPs in human disease might be larger than
currently known.

The concept of RNA-targeting therapeutics using ASO, siRNA, miRNA and other synthetic
RNA has been proven to be effective in some degenerative diseases. The efficient and safe targeted
delivery of RNA therapeutics into specific tissues will be key for expanding those approaches to other
clinical indications including cancer. Recent discoveries in the chemical targeting of RNA motifs and
identification of small molecules disrupting RNA–protein and RNA–RNA interactions open a new
area in RNA therapeutics that may help in developing a next generation of anti-cancer drugs.
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