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THE BIGGER PICTURE Science has made use of machine learning, a way of teaching computers to under-
stand patterns in data, for a long time. Deep learning, based on the way that real brains process data, has
brought enormous improvements in the speed and accuracy of image and language processing over the
last few years. However, the ‘‘black box’’ nature of deep-learning models makes scientific analyses that
make use of them difficult to reproduce.
In this work, we show how we might be able to improve long-term reproducibility for data analyses that rely
on deep-learning models. We do this by giving guidance on how specific aspects of the FAIR principles for
datamanagement can be applied to training and using thesemodels.We also present dtoolAI, a software tool
and code library we have developed. We hope that in the future, adoption of our guidelines or similar princi-
ples will improve our collective trust in results that arise from deep learning.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Deep learning, a set of approaches using artificial neural networks, has generated rapid recent advance-
ments in machine learning. Deep learning does, however, have the potential to reduce the reproducibility
of scientific results. Model outputs are critically dependent on the data and processing approach used to
initially generate the model, but this provenance information is usually lost during model training. To avoid
a future reproducibility crisis, we need to improve our deep-learningmodel management. The FAIR principles
for data stewardship and software/workflow implementation give excellent high-level guidance on ensuring
effective reuse of data and software. We suggest some specific guidelines for the generation and use of
deep-learning models in science and explain how these relate to the FAIR principles. We then present
dtoolAI, a Python package that we have developed to implement these guidelines. The package imple-
ments automatic capture of provenance information during model training and simplifies model distribution.
INTRODUCTION

Machine learning (ML) is a discipline involving algorithms,

models, and analysis techniques that carry out tasks by making

use of patterns in data, with minimal explicit rules. Deep learning

(DL) approaches are a subset of ML, which is itself a subdisci-

pline of more general artificial intelligence.1 DL techniques

make use of artificial neural networks, simulated systems that

mirror aspects of the way that real neurons work. These are

responsible for many of the recent advances in ML as a whole,

particularly in domains such as image recognition2 and natural

language processing.3 These advances have resulted in great

excitement about the possibilities of DL approaches within sci-

entific workflows. Within our own discipline (biology), DL has

been applied to a wide range of problems such as cell image
This is an open access article under the CC BY-N
segmentation,4 genomic variant calling,5 and transcription factor

binding site prediction,6 among others.

Reproducibility is a key pillar of scientific integrity. Results that

support hypotheses must be replicable by others, within reason-

able parameters.7 This reproducibility has come under close

scrutiny recently, with initial attention directed toward the repro-

ducibility of studies in psychology8 before widening to science

as a whole.9

The complexity of modern data analysis pipelines complicates

reproducibility. Data analysis often involves the application of

many different computational tools. The output of these pipelines

(andhence the results that support or contradict scientifichypoth-

eses) are often critically dependent on the precise functioning of

these tools, which can make reproduction of their results difficult

without detailed description of all parts of the pipeline.
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Figure 1. The DL Model Training Process

Model training uses a model architecture, weights,

and hyperparameters in order to produce model

weights. The model architecture and model weights

are distributed together as a usable model. Training

data and hyperparameters are not, generally,

extractable from the model.
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While DL holds great potential for faster andmore powerful an-

alyses, it alsopresents a set of newchallenges that combine these

two problems of analysis pipeline complexity and reproducibility.

In this paper, we explain theproblems that DL can create.We also

discuss how the FAIR principles for software and data have pro-

vided solutions to avoid or mitigate these problems in other do-

mains. We then explain our guidelines for implementing specific

FAIR principles in the domain of DL and present the software

tool we have developed to implement these guidelines.

Reproducibility: Concepts and Terminology
Scientific research has always been dependent on our ability to

repeat experiments and reproduce their results. As the use of

computational approaches has developed, the reproducible

research movement for software and data10 has grown to

become an important part of modern research.11

Reproducibility can carry different meanings in the context of

science, particularly where computational approaches are con-

cerned. Three similar terms, reproducibility, repeatability, and

replicability, are used by different groups in different contexts,

often with different sets of meanings. This problem is discussed

in depth by the National Academies of Science, Engineering, and

Medicine11 and Barba.12 Here we will clarify our understanding

of these terms and explain what we intend by them throughout

the paper.

We will use the terms as follows, corresponding to classifica-

tion B1 in Barba’s system:

Reproducibility is the ability to regenerate results using the

original researchers’ data, software, and parameters. Replica-

bility is the ability to arrive at the same result using new data.

Repeatability is the ability to rerun a published analysis pipeline

and arrive at the same results (see, e.g., Krishnamurthi and

Vitek13).

With this classification, we aremost concerned with reproduc-

ibility and repeatability. We care about the ability to repeat the
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generation of a DL model in order to repro-

duce its results. Since exact weight values

(which define the trained model) usually

depend on random initialization, we expect

only to reproduce a model’s results within

some given tolerance.

Provenance
The provenance of a computational object,

such as a trained DL model, is the history

of the processes used to produce it,

together with their input data.14 Prove-

nance is a key pillar of reproducibility,

since providing the information necessary

to allow analysis to be rerun and artifacts
to be regenerated requires recording the processes of creating

those artifacts and analyses.

We can distinguish between prospective provenance,

whereby we capture the specification for how we will generate

data, and retrospective provenance, which captures past data

derivation.15 When we look at the problems inherent in DL model

training, we will be primarily concerned about retrospective

provenance. In particular, we will argue that the provenance of

a DL model must include the data used to train that model as

well as the training parameters and hyperparameters.

How Deep Learning Works
A DL model has two parts, a model architecture and a set of

model weights.

The model architecture describes the components of the

model and how they will take the inputs to the model and trans-

form them to produce outputs. DL models often consist of many

layers of artificial neurons. A single model might have tens of

thousands of neurons in total, and the architecture describes

how these are connected to each other.

Each of these connections can have a different strength, and

collectively a set of connection strengths is called model

weights. The model architecture and model weights together

constitute a usable model.

The process of training a model involves repeatedly supplying

themodel with data and some instructions as to how themodel’s

response to that data should be used to update the model

weights. The end result of this process is a specific set of model

weights (Figure 1).

ML and Reproducibility: Data
The first challenge that ML poses to reproducibility involves the

training data and the training process. Since model weights

depend on training data, and the operation of themodel depends

on those weights, we cannot reproduce the model without the
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training data. While the model weights arise from these data, the

training process is (in general) not reversible and we cannot

extract the data from the weights.

Introductory examples and tutorials in ML often use well-un-

derstood and "ready-packaged" datasets such as ImageNet,16

CIFAR,17 or MNIST.18 However, when more specialized models

are trained, the input data are usually highly specific, hand-

curated datasets. This problem extends beyond reproducibility.

The power of ML models lies in their ability to generalize beyond

their training data. This generalization is very dependent on the

range of those data. Without knowing the data on which a model

was trained, it can be difficult to understand what the limitations

of the model will be.

ML and Reproducibility: Training
While model weights depend on training data, they also depend

on the parameters of that training process. These parameters are

often referred to as hyperparameters to distinguish them from

the model weights themselves. Some of these hyperparameters

and other factors that we need to know in order to reproduce

models are:

d The loss function used during training. This function deter-

mines how the model’s performance against data with

known results is scored.

d The type of optimizer used during training. The optimizer

determines how the model weights are updated in

response to the loss of function.

d The learning rate applied during the training. This deter-

mines how fast model weights are updated in response

to the optimizer output.

d How input data are preprocessed. Often "data augmenta-

tion" is applied to training data in image processing net-

works, for example. This involves applying randomly

selected transforms such as rotation, cropping, or zoom-

ing to images to prevent the model from learning very spe-

cific features of input data.

Each of these hyperparameters may have its own parame-

ters—for example, some optimizers have many different param-

eters, or learning rates might change over the training life cycle.

Model Distribution
Training a model is usually a much more expensive operation (in

terms of computation cost) than using it. For this reason, models

areusually trainedonmuchmorespecialized computer hardware

than that where they are applied. This distribution process needs

to transfer both the model architecture and model weights.

Models are often updated (i.e., retrained)with newdata and these

updated model weights also need to be transferred.

Current Solutions
Because DL model training and application involves both data

and software, existing work on the reproducibility of both is an

important step toward developing better DL.

Data Management

Effective data management in science is an important subdisci-

pline in its own right, in which substantial progress has been

made. The FAIR principles (Findability, Accessibility, Interopera-
bility, Reusability) have crystallized a set of high-level guidelines

for how data can be stored in a way that best encourages repro-

ducibility and reuse.19

While thesehigh-level principlesare acritical overarchingguide,

theydonot provide specific guidanceondetaileddomain-specific

implementation,which is needed in thecaseofDL.Wewill discuss

how to apply the FAIRprinciples toDL specificallywhenwe turn to

potential improvements to DL reproducibility.

Software and Workflow

DL models are trained from data, and the model weights pro-

duced by their training are also data. However, they require soft-

ware for instantiation, and are both trained and used as part of

wider workflows.

Recent developments have looked at how to incorporate FAIR

principles in computational workflows. The challenges of doing

this are described in Lamprecht et al.,20 and specific suggestions

as to how tomakeFAIR computational workflows inGoble et al.21

Steps toward this process include ensuring that the metadata

used and generated during workflows are recorded with analysis

results and artifacts created. Ivie and Thain22 provide a compre-

hensive overview of the challenges of both the theoretical and

practical challenges of creating reproducible workflows. These

authors also describe a range of tools, components, and con-

cepts that can be used to solve these problems, at least in part.

Many computational experiments and analyses are carried out

by scripts rather than full workflow management systems.

Scripts offer a quick and flexible way to get analyses up and

running.23 However, the lack of a systematic way to manage ver-

sions and metadata within scripts can make determining the

provenance of results and artifacts more difficult, a problem

analyzed in detail by Pimentel et al.24

ML Model Management

There area numberof solutions aimedatmanaging the processof

experimenting with model training in ML. For example, com-

etML25 and similar systems provide online tools for recording

training experiments. These tools are primarily aimed at keeping

track of model evaluation scores and hyperparameters for

differentmodels. This is important for finding thebestmodel archi-

tectureandhyperparameters for agivenproblem,but is adifferent

set of concerns from reproducibility and data provenance.

ML Schema26 proposes an ontology for representing ML

models and environments. Such a schema is an important step

toward developing reproducible DLmodels if applied within suit-

able ML model training and application systems.

Model Distribution

Model distribution is often managed by providing model archi-

tecture as source code in a hosting platform such as GitHub,

and model weights via cloud storage such as Amazon S3. This

provides easy access to the weights but does not provide a

mechanism to associate them with the input data that produced

them. This is a critical missing piece of the provenance informa-

tion of that trained model.

Summary
d We cannot reproduce a DL model, or even properly under-

stand its limitations, without access to the data on which it

was trained.

d We also need the details of that training process, particu-

larly hyperparameters, to reproduce the model.
Patterns 1, 100073, August 14, 2020 3
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d At the moment, model distribution does not usually include

these key metadata.

d Currently, most DL models in use are not reproducible, at

least by their end users, nor do these models include the

provenance information we need to properly understand

their strengths and limitations.

d FAIR data and software principles offer high-level solutions

to these problems. They have been applied successfully in

many domains of computational science, and providing

specific implementations for DL would be beneficial.
RESULTS

Guidelines and Practice
The FAIR principles for data management, and recent develop-

ments in adapting and applying these principles to software,

scripts, andworkflows, provide an excellent framework for devel-

oping domain-specific solutions for better reproducibility. In this

section, we discuss first the high-level guidelines that we have

found useful for applying specific FAIR principles to solve or miti-

gate the problemswehavedescribedabove. Second,wepresent

the tool that we have developed to implement these guidelines.

Guidelines for Reproducible Deep Learning
Annotate Model Training Data with Metadata

Good data management practices necessitate that data have

appropriate metadata to allow them to be understood.27 Since

ML models are derived from their input data, we need to ensure

that these input data have suitable metadata before models

based on them are trained. These metadata should follow a

schema appropriate to the setting within which they will be

used. Standards such as Bioschemas28 provide a good general

scheme for biological datasets (with specific adaptations to

particular biological domains).

Give Those Data Persistent URIs

Reproducibility andmodel data provenance require us to be able

to consistently refer to data on which models were trained.

Achieving this consistency requires us to be able to refer

uniquely to models’ input data, which requires unique identifiers.

When models, or their downstream results, are published, the

data used to train them should be made publicly available with a

persistent identifier. Where possible, ML specific repositories,

such as OpenML,29 should be used for this to increase discover-

ability of data. These repositories will require specific schemas

which should be kept in mind during model development.

Capture Training Parameters at Model Training Time

While the data used to train a model are the primary determinant

of what that model will do, model and training hyperparameters

are also a key input into the model without which the model

cannot be reproduced. Hence, it is critical to record those hyper-

parameters at training time. This should be done using schemas

that will be consistent across training and application of multiple

models, for example that proposed in ML-Schema,26 which in-

cludes defining and annotating hyperparameters.

Store These Training Parameters and Data Inputs

Together with the Model

Model hyperparameters are usually defined in the program code

used to train themodel. While effective tools to manage program
Patterns 1, 100073, August 14, 2020
source code exist, it is very easy for the information to be either

lost or separated from themodel. For example, if several updates

to the training code are made, each of which results in a different

set of parameters and therefore a different model, associating

each model with its version of program code is difficult.

Ensuring that we store these parameters together with the

model avoids this danger. This means that we require a storage

format (or mechanism) for ML models that also incorporates

metadata about how they were trained.

Summary

Together, we can summarize these guidelines as:

1. Provide appropriate metadata (with domain-appropriate

schema) and persistent URIs for model training data.

2. Add this information, together with training hyperpara-

meters, as metadata to the generated model.
Relationship with the FAIR Principles
These guidelines implement specific aspects of the FAIR princi-

ples, giving particular focus to those elements that we consider

most critical for the specific problems of DL model training and

distribution. Here, we clarify this relationship using the definitions

of specific subprinciples in Box 2 of Wilkinson et al.19

The FAIR principles that are most important in training DL

models in a way that support provenance annotation and repro-

ducibility are:

d F1. (Meta)data are assigned a globally unique and persis-

tent identifier.

d F2. Data are described with rich metadata.

d A1. (Meta)data are retrievable by their identifier using a

standardized communications protocol.

d R1. Metadata are richly described with a plurality of accu-

rate and relevant attributes.

We require F1 to ensure that DLmodel training data are persis-

tently identifiable, together with F2 to ensure that model con-

sumers can understand the model’s provenance. A1 and R1

allow those metadata to be used by model training software.

When creating a trained model, we also rely on:

d I3. (Meta)data include qualified references to other

(meta)data.

d R1.2. (Meta)data are associated with detailed provenance.

I3 ensures that the trained model references its training data,

and R1.2, in the context of DL model training, requires encoding

training hyperparameters and the details of any data prepro-

cessing applied.

Implementation in dtoolAI
To demonstrate application of these guidelines and to improve

reproducibility of DL models in both our own work and within

our institution, we have developed dtoolAI. To do this, we

made use of the existing dtool library30 to take advantage of its

features.

dtool is a software application programming interface (API)

and set of tools to make managing heterogeneous data easier

without requiring expensive centralized infrastructure. It pro-

vides the ability to annotate data with metadata that is both



Figure 2. Relationship between dtoolAI,

dtool, and pytorch

End users of the library interact directly with the

dtoolAI code. dtoolAI provides the classes and

functions necessary to load model training data,

train DL models, and store the resulting models

together with key metadata providing the prove-

nance of those models.
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human readable and programmatically accessible. It also allows

attaching unique URIs (Universal Resource Identifiers) to data-

sets. These URIs can refer to cloud-hosted data (for example,

Amazon S3 or Azure storage) allowing datasets to be both

uniquely identifiable and widely accessible.

We developed dtoolAI on top of dtool to take advantage of

dtool’s capabilities for managing metadata programmatically,

as well as providing URIs. The key feature of dtoolAI is that it

makes it easier to automatically capture data inputs and model

hyperparameters at model training time and to distribute those

metadata with the model.

Code Architecture
In this section, we explain how dtoolAI is arranged and pack-

aged. dtoolAI is a package for the popular Python programming

language. Python is widely used in the scientific community. It is

an interpreted language and generally slower than compiled lan-

guages for direct execution of numerical code. However, most

DL model work is carried out with frameworks such as Tensor-

flow or Pytorch in which actual computation is carried out in

highly optimized code written in a compiled language but ac-

cessed via a binding language such as Python. dtoolAI uses

the Pytorch framework.31 This provides the advantages of work-

ing with a user-friendly language suitable for rapid development

without compromising on execution speed. Another advantage

of Python is its simple package management system, pip. We

can use this to install dtoolAI with the command line instruction:

pip install dtoolai

dtoolAI then provides a set of useful tools and functions that

can be employed by inclusion in Python scripts and programs.

The most important are:

1. A base class that allows encapsulation of data in a form

that both dtool and Pytorch understand, together with

developed subclasses showing how to use this for image

and tensor data.

2. Functions to train a DL model while capturing metadata

about the model inputs and training parameters.
3. Classes/functions to use the models

trained in this way by applying them

either to fully constructed datasets or

to individual data, such as images.

dtoolAI, dtool, and Pytorch
Functionally, dtoolAI acts as a bridge be-

tween dtool and Pytorch. Here we explain

the relationship between the three li-

braries, with Figure 2 for illustration.
dtoolAI provides the direct interface for user code. It has re-

sponsibility for managing the process of transforming training

data and parameters into a trained DL model while capturing

training metadata and ensuring that references to input data

are maintained.

dtool provides two key functions:

1. Storage abstraction, in particular the ability for users of

dtoolAI to interact with both DL model training data and

trained model weights in persistent, world-accessible

storage (object storage, or data served via HTTP(S) re-

quests).

2. A programmatic interface for storage and retrieval of both

data and metadata associated with a DL model, allowing

dtoolAI to programmatically use annotations of input

data to guide model training, as well as encode that

training process in the trained model objects. This pro-

grammatic access allows setting and validation of partic-

ular schemas for both for model training data and model

metadata.

Pytorch provides the core neural network calculation functions

for training and application of DLmodels. dtoolAI provides it with

either suitably formatted input data and parameters to train

models, or trained model weights and unlabeled data for classi-

fication. It can run on either CPU or GPU, allowing for acceler-

ated model training and application.

ML Model Workflows
The workflow of using dtoolAI to train, distribute, and use ML

models is:

1. Use dtoolAI’s helper functions, or the dtool library itself to

create a suitable training dataset annotated with relevant

metadata. Through its templating system, dtool allows

specification of metadata schemas, to be entered either

manually or through its API.

2. Use the provided dtoolAI library functions to train the

model, during which process the training data identifiers

and chosen training hyperparameters are automatically
Patterns 1, 100073, August 14, 2020 5



Figure 3. Creating Reproducible Models with

dtoolAI

(1) We first create a dataset that combines both

training data and metadata. (2) We then train a

model architecture with our training dataset and

hyperparameters. The resulting model dataset

captures these parameters as well as references to

the training data. (3) We can then use the resulting

model for predictions or distribute it.
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captured and recorded. The resulting model is another

dtool dataset.

3. Use the model, by employing the dtoolAI API functions.

The model can be distributed as a self-contained dataset

with model weights, training hyperparameters, and refer-

ences to the original training data.

This workflow is illustrated in Figure 3.

When training, it is possible to use more than one dataset to

train the model as long as those datasets share the same set

of metadata. For example, multiple datasets containing images

of flowers could be used to train an image categorization

network if each of those datasets provided the same metadata

labeling the images.
DISCUSSION

ML approaches have been an integral part of many scientific

workflows and analysis pipelines since they were first devel-

oped.32 DL’s impressive achievements in image recognition,

natural language processing, and reinforcement learning have

already started to translate to scientific advances.33 DL models

are, however, difficult to interpret. Models operate on input

data and produce results, but determining how they produce

these results can be very difficult. Understandable ML has

become a research field in its own right.34

A further problem is possible bias. ML models attempt to

generalize the input data they are given. Therefore, if there are

biases in the training data for a model, those biases will be re-

flected in the model’s performance on real data. Similarly, if

the real data to which the model is applied are too different

from its training data, the model may not be able to generalize

enough to give good results. These challenges are particularly

problematic for scientific applications of ML.We need the results

of scientific experiments to be reproducible. We also often apply

existing techniques to new sets of data or problem domains and

so need to understand the limitations of those techniques.

For all of these reasons, we need ourMLmodels to carry retro-

spective provenance information with them, particularly unique
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identifiers for their training data, together

with the parameters for preprocessing

those data and training the model.

The FAIR principles—Findability, Acces-

sibility, Interoperability, and Reusability—

are designed to enhance the reuse of

data. While originally developed for data

management, recent work has shown

how these principles can be adapted to
software and workflows.20,21 We have provided DL-specific

guidance as to how the FAIR principles should be applied to

improve reproducibility without compromising the speed of

experimentation.

Ensuring that model training data are annotated with appro-

priate metadata and available at a persistent URI ensures that

models trained from those data can reference that URI as part

of their provenance information. During that training process,

we also need to capture training hyperparameters and any pre-

processing applied to the data during training. Together, these

aspects of provenance provide sufficient information to repro-

duce the model within tolerances.

The final step to reproducibility is establishing a self-contained

distribution format for ML models that combines both model

weights and provenance metadata. Ideally we want both to be

able to read these data directly as humans (and cross-reference

the training data, so we can better understand the model) and

also programmatically, such that model retraining or more

detailed analysis of a model’s inputs can be performed

automatically.

We showed that dtool datasets workwell for this purpose: they

are a lightweight wrapper around the raw data (in this casemodel

weights) that provide both human- and machine-readable meta-

data. dtoolAI ties dtool enhanced input data together with dtool

output datasets by providing library code and routines for pro-

cessing these datasets, capturing training parameters and en-

coding them in the output.

Current Limitations and Further Work
It is important to recognize the limitations of our current solution.

We have made use of the FAIR principles to improve the repro-

ducibility of workflows based on DL models through automated

model provenance annotation. However, we are far from a full

FAIR implementation, our focus being immediate reproducibility

improvements to DL model training and distribution workflows

within research.

Our specific implementation provides only limited interopera-

bility. The trained models produced by dtoolAI can be used only

as part of software systems or workflows that either include the
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dtoolAI library or access the model weights directly through Py-

torch. Interoperability of trained DLmodels is generally limited by

the implementation frameworks for those models (i.e., Pytorch

models work in Pytorch, Tensorflowmodels work in Tensorflow).

Improving this by better standards for specifyingmodel architec-

tures and training parameters, rather than trained models, would

be a possible direction for improvement (essentially focusing on

prospective rather than retrospective provenance).

dtoolAI also provides no direct findability. Trained model arti-

facts produced by the library can be either written directly to

widely accessible storage systems or uploaded by dtool,

providing a persistent URI for the model. However, this provides

no direct discoverability mechanism; the URI must be shared or

linked as part of a workflow description. This supports reproduc-

ibility by provenance recording, our immediate goal, but not gen-

eral model sharing. A natural step to improve this would be

enforcement of schemas specific to a particular model reposi-

tory together with code for uploading models to that repository.

Wider Community Use

Adoption of common practices and standards for metadata and

workflows is a community process. Our tool grew out of our

development of internal guidelines within our own group and

wider institute for managing DL models. Our colleagues who

have tested dtoolAI have found considerable benefits for their

workflows, particularly in distributing models to others while

keeping provenance information for those models.

As a next step, we would like to expand use throughout the

wider research software engineering community. As the group

within which models must be interoperable grows, the impor-

tance of adherence to shared schemas within that group also

grows. As community schemas such as Bioschemas or ML-

Schema become more widely adopted, the flexible nature of

dtoolAI allows end users to decide how rigorously to enforce

these schemas, supporting this growth.

Model Fine-Tuning

A common approach to applying DL networks to problems that

are close to the original domain on which the network trained

is "fine-tuning." This takes a pretrained model (i.e., an existing

set of weights) and modifies them by the application of new

training data. Sometimes parts of the model are "frozen," i.e., a

subset of weights is not allowed to change.

This works because the structure of DL models results in the

early processing of parts of the model learning general features,

while the later parts in turn associate these features with cate-

gories. We can reuse the general feature parts of themodel while

learning new categories.

Providing support for tracking both the original training data

and later application of subsequent retraining data would allow

better understanding of the training history of these models.

Recording Training Environment

Although we propose recording of training data and parameters,

these are, in general, not enough to precisely reproduce model

weights, i.e., to produce identical weight values from identical

input. This is because model training usually relies on random el-

ements. Initial model weights are usually chosen randomly: the

order in which training data are presented to the model is often

randomized, and so forth. Model training is also dependent on

the specifics of the computing hardware on which training hap-

pens. Usually we are more concerned with repeatability than
strict reproducibility (see Krishnamurthi and Vitek13 for discus-

sion of the distinction); however, there are some circumstances

whereby we may wish to be able to specify more rigorously for

reproduction.

It is usually impractical to replicate the whole hardware envi-

ronment in which a model was trained. However, we could at

least record the details of this environment for future reference.

The challenges of doing so are discussed in detail by Ivie and

Thain.22
Conclusion
Progress in science relies on reproducibility. Without the ability

to verify and repeat results, we cannot establish scientific

consensus. ML, particularly recent advances in the DL family

of techniques, has brought enormous advances in speed and

accuracy to a range of data-processing problems. These tech-

niques show great promise for application to scientific analyses.

However, without careful attention to how retrospective prove-

nance information is captured during model training and distrib-

uted together with models, they also pose a substantial risk of

reducing the reproducibility of those analyses and intro-

ducing bias.

Managing DL data and models is both a software and data

problem. The FAIR data principles provide core guidance on

management of computational data. Recent developments

in adaptation of those principles to workflows and individual

software components are pointing the way toward computa-

tionally based science that embraces reproducibility and

repeatability.

To apply these advances to the domain of DL requires speci-

fying how these principles should be implemented for DL model

training and distribution workflows. We have suggested specific

guidelines, linked to the FAIR principles, for how to do this. These

guidelines involve annotation of model training data with appro-

priate metadata, ensuring that those training data have persis-

tent identifiers recording training hyperparameters and storing

and distributing models in a form that retains all of this

information.

We have also developed a set of tools that allow practical

application of these guidelines. dtoolAI, a Python library, makes

use of dtool for the formation of training data into datasets with

metadata (including the specification of suitable schemas) and

persistent identifiers. It then enables easy recording of training

hyperparameters and input dataset identifiers in a form that

automatically stores those data together with model weights,

giving a packaged artifact that includes key provenance informa-

tion. The artifact can then be easily distributed and its metadata

can be programmatically accessed.

dtoolAI has improved the reproducibility of the ML workflows

we have built on top of it, and we hope it will do the same for

others.
EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Matthew Hartley, Matthew.Hartley@jic.ac.uk is the lead contact for this work.

Materials Availability

This work generated no non-code materials.
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Data and Code Availability

All code associated with the work is available at https://github.com/jic-csb/

dtoolai.

dtoolAI Workflows

In the Results section, we explained the internal architecture and design of

dtoolAI. Here we will look at some examples of how we can use it to generate

reproducible ML models. Examples in this paper consist of short snippets to

highlight features; full code examples are provided in the dtoolAI repository

on GitHub (https://github.com/jic-csb/dtoolai) in the form of scripts and Ju-

pyter notebooks, as well as library code documentation and examples of

use at https://dtoolai.readthedocs.io.

Training a Simple Model

In this example, we will look at a common neural network tutorial example,

recognition of handwritten digits from the MNIST dataset. In this case, we

have already marked up the MNIST dataset with the metadata we need to

be able to train from it directly.

Firstly, we will look at how we load the data from a persistent identifier.

train_dataset_uri = "http://bit.ly/2NVFGQd"

train_ds = TensorDataSet(train_dataset_uri)

This code uses the data URI ("http://bit.ly/2NVFGQd") to load the data. After

defining a model, loss function, and optimizer, we can then train a network

from this dataset:

model = GenNet(**params.init_params)

loss_fn = torch.nn.NLLLoss()

optimiser = torch.optim.SGD(model.parameters(), lr=

params.learning_rate)

with DerivedDataSet(base_uri, "mnist_model", train_ds)

as output_ds:

train_model_with_metadata_capture(

model,

tds_train,

optimiser,

loss_fn,

params,

output_ds

)

This constructs the output network as a dataset. When we run this code, the

output will be a trainedmodel dataset, with name mnist_model and stored at

the base URI base_uri. Metadata about the training data and the parameters

used for training (contained in the params object) are recorded in this dataset

and can be viewed either through the dtool API or using a helper script, dtoo-

lai-provenance, provided:

$ dtoolai-provenance example/mnistcnn/

Network architecture name: dtoolai.simpleScalingCNN

Model training parameters: {’batch_size’: 128,

’init_params’: {’input_channels’: 1, ’input_dim’: 28},

’input_channels’: 1,

’input_dim’: 28,

’learning_rate’: 0.01,

’loss_func’: ’NLLLoss’,

’n_epochs’: 1,

’optimiser_name’: ’SGD’}

Source dataset URI: http://bit.ly/2uqXxrk

Source dataset name: mnist.train

Source dataset readme:

—

dataset_name: MNIST handwritten digits

project: dtoolAI demonstration datasets

authors:

- Yann LeCun

- Corinna Cortes

- Christopher J.C. Burges

origin: http://yann.lecun.com/exdb/mnist/
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usetype: train

We can see how the name, unique identifier (UUID), and persistent resource

identifier (URI) are part of the model metadata, as well as the training param-

eters.We also see howwe can train amodel from the input data without having

to explicitly download it. This helps the practical process of reproducibility.

Using the Model

Our model can now be used as part of an analysis script. We can use dtoolAI’s

model helper class, TrainedTorchModel to load the model from a URI and

apply it:

model = TrainedTorchModel("http://bit.ly/2tbPzSB")

This will automatically download the model weights and load the model into

memory. We can then apply the model with:

my_image = Image.open("handwritten_8.png")

result = model.convert_and_predict(my_image)

print(f"Classified image as {result}")

We can also access the model’s history:

print(model.get_readme_content())

in which we would see the same data that were accessible to us after we

trained the model.

Filesystem URIs and File Paths

In general, when we create model training datasets and trained models, we

want to store these in permanent HTTP accessible object storage with persis-

tent URIs. However, since this requires setting up Amazon S3 or Microsoft

Azure storage credentials, for simplicity we can work with filesystem URIs in

some of these examples.

For convenience’s sake, we allow file URIs to be expressed as filesystem

paths, such that file:///path/to/data can be addressed simply as /path/to/

data/ and dtool will internally convert this into a full URI. When working with

real data and models, we can either write directly to HTTP addressable object

storage or upload our local filesystem data after creation using dtool, both of

which result in persistent URIs.

Training a New Model with New Data

Now we will look at how we can train a model on novel data. To do this, we will

firstly see how tomark up that data as a dataset. The dtoolAI package provides

a helper script create-image-dataset-from-dirtree to create an input

dataset from a directory of images. For example, if we have the following

images:

$ tree image_dirtree/

image_dirtree/

|– car

| |– image0001.jpg

| ‘– image0002.jpg

|– chair

| |– image0001.jpg

| ‘– image0002.jpg

‘– mug

|– image0001.jpg

‘– image0002.jpg

We can then run:

$ create-image-dataset-from-dirtree image_dirtree base_

uri objects

Created image dataset at base_uri/objects

This will create a training dataset at the base URI "base_uri" with the name

"objects." For testing and development purposes, we can use file URIs, for

creating distributable persistent models, we would use HTTP accessible ob-

ject storage. Now we use a very similar training script to the one we saw for

training on the MNIST data:

train_ds = ImageDataSet("base_uri/objects")

model = GenNet(**params.init_params)

https://github.com/jic-csb/dtoolai
https://github.com/jic-csb/dtoolai
https://github.com/jic-csb/dtoolai
https://dtoolai.readthedocs.io
http://bit.ly/2NVFGQd
http://bit.ly/2NVFGQd
http://bit.ly/2uqXxrk
http://yann.lecun.com/exdb/mnist/
http://bit.ly/2tbPzSB
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loss_fn = torch.nn.NLLLoss()

optimiser = torch.optim.SGD(model.parameters(), lr=

params.learning_rate)

with DerivedDataSet(base_uri, "objects_model", train_

ds) as output_ds:

train_model_with_metadata_capture(

model,

tds_train,

optimiser,

loss_fn,

params,

output_ds

)

This will train a classifier and save the trained model, references to our input

data, and training metadata.
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