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ABSTRACT

Researchers are increasingly seeking to interpret
molecular data within a multi-omics context to gain
a more comprehensive picture of their study sys-
tem. OmicsNet (www.omicsnet.ca) is a web-based
tool developed to allow users to easily build, visual-
ize, and analyze multi-omics networks to study rich
relationships among lists of ‘omics features of inter-
est. Three major improvements have been introduced
in OmicsNet 2.0, which include: (i) enhanced network
visual analytics with eleven 2D graph layout options
and a novel 3D module layout; (ii) support for three
new ‘omics types: single nucleotide polymorphism
(SNP) list from genetic variation studies; taxon list
from microbiome profiling studies, as well as liquid
chromatography—mass spectrometry (LC—MS) peaks
from untargeted metabolomics; and (iii) measures
to improve research reproducibility by coupling R
command history with the release of the compan-
ion OmicsNetR package, and generation of persis-
tent links to share interactive network views. We per-
formed a case study using the multi-omics data ob-
tained from a recent large-scale investigation on in-
flammatory bowel disease (IBD) and demonstrated
that OmicsNet was able to quickly create meaningful
multi-omics context to facilitate hypothesis genera-
tion and mechanistic insights.
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INTRODUCTION

There is a growing realization that genetic variation
only partially explains complex diseases such as com-
mon cancers, type 2 diabetes, heart diseases, etc. (1,2).
Recent years have seen increasing applications of multi-
omics approaches to augment genomics with various other
omics such as epigenomics, transcriptomics, proteomics,
metabolomics, and microbiomics (3-7). The resulting het-
erogenous datasets generated from these studies have posed
significant bioinformatics challenges for proper analysis, in-
tegration and interpretation. To address these needs, many
different methods and tools have been developed in recent
years (8-17). Biological networks such as protein—protein
interaction (PPI) networks, gene regulatory networks, or
biochemical reaction networks provide a conceptual and in-
tuitive framework for integrating results from multi-omics
studies. This approach involves two key procedures - net-
work creation and network analysis. Building high-quality
networks with intuitive visual presentation play a significant
role in interpreting multi-omics data.

Version 1.0 of OmicsNet was developed in 2018 to pro-
vide an easy-to-use, web-based platform that allows re-
searchers to easily create and visualize biological networks
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in 3D space (18). It accepts one or more lists of biolog-
ical features (genes, proteins, metabolites, efc.) and then
searches for their direct interacting partners from various
molecular interaction databases. A key innovation of Omic-
sNet is its native web-based 3D network visualization to
enable different perspectives and novel insights. Over the
past few years, we have received many comments and sug-
gestions from OmicsNet users. For instance, despite the vi-
sual appeal of 3D network presentation, many users are
more accustomed to the traditional 2D perspectives, espe-
cially the comprehensive graph layouts available for pattern
discovery and network manipulations. In addition, many
users have requested to add support for other data types
such as those generated from genetic variation studies, un-
targeted metabolomics, microbiome surveys, etc., which are
now routinely collected in recent multi-omics studies.

Here, we introduce OmicsNet 2.0 to address evolving user
needs based on recent progress in the field of multi-omics
research. Compared to version 1.0, OmicsNet 2.0 features
three key improvements:

e Significantly enhanced overall network visual analytics
by implementing 2D network visualization with 11 dif-
ferent graph layouts, together with a novel 3D network
module layout.

e Support for three new omics data types - single nucleic
polymorphism (SNP) data from genetic variation stud-
ies, liquid chromatography—mass spectrometry (LC-MS)
peaks from untargeted metabolomics studies, and micro-
bial taxonomic signatures.

e Improved support for reproducible research by coupling
the R command history with the release of the underlying
OmicsNetR package, as well as creating persistent links
to allow researchers to share network visual analytics re-
sults.

All the underlying databases have been updated and the
web interface has been completely redesigned to make the
workflow more transparent and intuitive.

PROGRAM DESCRIPTION AND METHODS

The workflow of OmicsNet 2.0 can be summarized into
four steps - data upload, database selection, network cre-
ation and network visual analytics. It accepts list inputs
from eight common omics types - genes, proteins, transcrip-
tion factors (TF), miRNAs, metabolites, microbial taxa,
LC-MS peaks, and SNPs. These inputs are used as ‘seeds’
to search for interacting partners in compatible databases.
Database compatibility depends on both the omics types
and the organisms. The resulting networks will be merged
and refined prior to visual exploration. Additionally, users
can upload common graph files generated from either our
OmicsNetR package or other network tools such as Cy-
toscape (19) for online visual exploration using our 2D /3D
visualization system. The main workflow of OmicsNet is
summarized in Figure 1. The rest of the article will focus
primarily on the improvements and new features introduced
in version 2.0. For other features and functions, please refer
to our prior publications (18,20).

Improved network building and network visual analytics

OmicsNet 2.0 includes updated molecular interaction
databases including PPI databases (STRING (21), Innat-
eDB(22) and IntAct (23)), TF-target databases (TRRUST
(24) and JASPAR (25)), miRNA-target databases (TarBase
(26) and miRTarBase (27)), as well metabolic databases
(KEGG (28), Recon3 (29), and AGORA (30)). To improve
usability and transparency in multi-omics network creation,
we have completely redesigned the web interface to better
reveal the underlying concepts and procedures during the
process of network building. The home page now features
a carefully annotated table panel to allow users to easily
choose a proper omics type for data input. Network cre-
ation is divided into two pages corresponding to two steps
- selection of compatible databases to create individual net-
works for each input lists, followed by multi-omics network
creation & refinement. The database selection page is di-
vided into different tabs corresponding to different types of
molecular interactions. Each input list is used as indepen-
dent seeds to query relevant databases to create a tempo-
rary network. These temporary networks are merged based
on their shared nodes upon navigation to the multi-omics
network building page. Merging many networks often cre-
ates giant graphs which can be difficult to visualize and in-
terpret. We have implemented multiple network tools and
filters to allow users to reduce the network size based on
either biological knowledge or graph algorithms. For data
from human and mouse, OmicsNet version 2.0 offers a
tissue filter based on gene expression data from the EN-
CODE (31), the Genotype-Tissue Expression (GTEXx) (32),
or the Human Protein Atlas (HPA) (33). These filters help
researchers focus on biologically relevant interactions and
reduce false positives. Graph-based filters aim to trim net-
works while keeping important nodes such as seeds, hubs
or bottlenecks. A new graph-based filter in version 2.0 is
the Prize-collecting Steiner Forest (PCSF) algorithm (34),
which has been shown to give balanced performance in
a recent benchmark study (35). To further assist users in
network refinement, we have added a topology dialog to
show graphical summaries of node degree and betweenness
distributions for each subnetwork. Other displayed graph
properties including network diameter, radius, average path
length and clustering coefficient. This page also provides in-
structions, tips, and underlying R commands to help users
better understand the OmicsNet workflow.

Both 2D and 3D network visualizations are now fully
supported in OmicsNet 2.0. The 2D network viewer of-
fers 11 different graph layouts and shares similar visual
customization options as our 3D viewer. The graph lay-
out algorithms are based on the igraph package (36) and
the graphlayouts package (https://github.com/schochastics/
graphlayouts) to give users a wide array of visual perspec-
tives to facilitate pattern discovery. Different graph layouts
emphasize different information. For instance, the back-
bone layout can effectively untangle hairball effects asso-
ciated with small-world networks by distinctly separating
graph communities (37). The concentric circle layout ar-
ranges layers of nodes in circles around the node of interest
based on the distance between each layer and the central
node (38). We have also implemented a 3D network mod-
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Figure 1. The overall workflow of OmicsNet 2.0. Users can upload lists of genes, proteins, transcription factors, miRNAs, metabolites, LC-MS peaks,
microbial taxa, or SNPs to search different molecular interaction databases or perform annotation. The results will be merged to create multi-omics
networks which can be optionally customization using various methods. The subnetworks can be explored in 2D or 3D space with comprehensive built-in
support for layouts, network analysis and functional analysis. The numbers in the round brackets indicate the number of options available for each category.

ule layout, which allows users to easily view and directly
highlight a module by double clicking the corresponding
‘bubble’ and perform functional analysis on its members
(e.g. nodes within the bubble). Network-based guilt-by-
association strategies have been widely used to identify po-
tential disease-associated genes or proteins (39). We have
implemented a random walk with restart algorithm (40)
specially designed to work with the multiplex and hetero-
geneous biological networks to help identify potential can-
didate disease nodes based on the input seed lists.

Expanding support for multi-omics data

In OmicsNet 2.0, we have added support for three new
omics data types including SNPs from genetic variation
studies, LC-MS peaks from untargeted metabolomics, and
taxonomic signatures from microbiome studies. Connect-
ing these data types with conventional molecular interac-
tion networks require extra annotation steps to link SNPs to
genes, peaks to metabolites, or microbial activities to their
capacities of metabolite production. Special attentions must
be paid to the annotation steps and the unique characteris-
tics of the resulting networks. Our implementations are de-
scribed below.

SNPs are single nucleotides in specific genomic locations
that vary across individuals in a population. Over the past
two decades, advances in genome sequencing have led to
extensive collections of SNPs, and the current bottleneck
lies in functional interpretation of these variations. To al-
low users to access the most up-to-date information from
genetic annotation and association studies, OmicsNet 2.0
performs SNP to gene mapping using the Ensembl Vari-
ant Effect Predictor (VEP) toolset (41) and PhenoScanner
(42) through their public application programming inter-
faces (API). Users can upload a list of reference SNP IDs
(rsID) or genomic coordinates and adjust key parameters
to perform SNP-gene mapping based on either positions or
expression quantitative trait loci (eQTL) analysis. For users
who are interested in variations affecting gene regulations,
they can map SNPs to miRNAs or TF binding sites based
on ADmIRE (43) and SNP2TFBS (44), respectively. The re-
sulting networks can be further extended via proteins, miR-
NAs, or TFs to understand potential downstream effects.

LC-MS peaks (characterized by m/z, retention time, in-
tensity and p-value) are annotated to metabolites using

the recently published NetID algorithm (45). Users can
choose among three different databases for compound an-
notation - KEGG (28), PubChemLite_BioPathway (46)
and HMDB (47). However, the original R based im-
plementation is very slow for web-based computing. We
re-wrote the core algorithm using Rcpp/C++ engine to
make it >10 times faster. The integer linear program-
ming optimization was further improved by using the Ip-
symphony package (http://R-Forge.R-project.org/projects/
rsymphony). The annotated MS features include metabo-
lites, putative compounds, and chemical/abiotic artifacts.
The first two categories are mapped to the KEGG metabolic
reaction network and then simplified using the PCSF algo-
rithm with annotated metabolites as seeds. This step can sig-
nificantly improve network connectivity and interpretabil-
ity by introducing only a minimal number of nodes. In
some cases, the resulting networks are very large after the
above steps. We have implemented a p-value filter to allow
users to visualize networks containing mainly significant
peaks/metabolites.

Gut microbiota-derived metabolites are key mediators in
host-microbiome interactions. Predicting potential metabo-
lites from a list of microbial taxa can provide important
insights into their collective functions as well as possible
interactions with the host. In OmicsNet 2.0, users can up-
load a list of microbial taxa with optional abundance infor-
mation. OmicsNet will predict potential metabolites using
Bayesian logit regression models (48) trained with >6000
high-quality genome-scale metabolic models (49). The re-
sult is a microbial taxon-metabolite interaction network,
in which bigger nodes indicate higher probabilities of the
underlying microbes to produce or metabolites to be pro-
duced. Users can click any metabolite nodes of interest to
find the underlying microbial producers. We have also im-
plemented an interactive heatmap to provide an overview of
taxon-metabolite relationships to complement the network
visualization.

Improving reproducibility in network creation and visualiza-
tion

Reproducible research depends on transparent methods to
make research results and scientific claims more credible. In
bioinformatics, open-source codes and detailed documen-
tations are critical steps towards more reproducible analy-
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Figure 2. An example multi-omics network in 2D (A) and 3D (B) layouts. The network was generated from three lists (microbial taxa, SNPs and LC-MS
peaks), with inter-omics connections based on their associated metabolites, genes or proteins according to annotations by OmicsNet 2.0.

sis (50,51). In OmicsNet 2.0, we have consolidated and re-
leased the underlying R functions as the OmicsNetR pack-
age (https://github.com/xia-lab/OmicsNetR). We have also
added an R command history panel displaying the R func-
tions executed during analysis. The OmicsNetR package
can be used to locally recreate or further customize net-
works prior to uploading the network files to OmicsNet
for interactive visual exploration. To facilitate collaborative
analysis, we have also added a bookmark feature to allow
users to share their network visualization results with other
researchers or collaborators by creating persistent links. The
links will be valid for one month.

Case studies

To showcase the new features in OmicsNet 2.0, we lever-
aged a recent multi-omics study on inflammatory diseases
(IBD) (5). IBD are heterogenous diseases resulting from a
complex interplay among host, microbial and environmen-
tal factors. We specifically focus on understanding the three
multi-omics signatures (SNPs, taxonomic features and LC—
MS peaks) obtained from the Crohn’s disease (CD) cohort
consisting of non-dysbiosis and dysbiosis groups.

The SNPs and taxonomic features are provided by au-
thors as Supplementary Tables in their original publication.
We selected the significantly different microbial species be-
tween dysbiotic and non-dysbiotic states and five SNPs that
were reported as weakly associated with the abundance of
several microbial taxa. To obtain LC-MS peaks, raw spec-
tral files of the corresponding samples were downloaded
from the project database (https://www.ibdmdb.org). They
were converted and centroided into mzML format us-
ing ProteoWizard (52) and processed with MetaboAna-
lyst (53) to generate the peak list. The three lists (micro-
bial species, SNPs and LC-MS peaks) were uploaded to
OmicsNet 2.0. The AGORA database (30) was used to pre-
dict potential microbial metabolites (potential score: 0.9).
The PhenoScanner (42) was used to perform SNP to gene
mapping based on eQTLs. LC-MS peaks were annotated
using the KEGG database. Individual networks generated

from SNPs and LC-MS peaks were further expanded the
by adding metabolite-protein interactions, so that the three
networks can be merged at the metabolomics layer. To get
more readable and interpretable network, we applied a p-
value filter (cut-off: 0.2) to exclude nodes contributed by
LC-MS peaks with larger p-values.

As shown in the Figure 2, the resulting subnetworkl
contains six types of nodes including the input seed mi-
crobial species and SNPs, while the input peaks become
seed metabolites and putative metabolites based on NetID
annotation. Other two types are genes/proteins associated
with SNPs or metabolites. The 2D network in backbone
layout (Figure 2A) suggests that glutathione is an impor-
tant crosslink in the host-microbiome interactions. Several
microbes including E. coli were predicted to produce glu-
tathione, and two SNPs (rs3197999 and rs1428554) were
correlated with the metabolite through genes (GPX1 and
GPX3) coding Glutathione Peroxidase (GPx). Previous
study has shown that over representation of Escherichia
coli and related species in IBD might be explained by their
better ability to produce glutathione for oxidative stresses
resistance (54). Other important microbial species such
as Faecalibacterium prausnitzii also stand out. While the
untargeted metabolomics indicated multiple amino acids,
fatty acids and bile acids are perturbed, with several com-
pounds such as Glycocholic acid and N-Acetylglutamic
acid at the key positions connecting different omics layers.
The 3D layered network (Figure 2B) provides an intuitive
perspective about multi-omics integration, with high-
lighted paths showing the flow of Glutathione connecting
microbiome with host genetics. Thus, OmicsNet 2.0 allows
users to easily explore potential host-microbiome crosstalk
in a meaningful context through powerful network
visualization.

Comparison with other tools

Table 1 compares OmicsNet 2.0 with several bioinformatics
tools including PaintOmics (9), MergeOmics (10), Omics-
Analyst (8), Arena3Dweb (11), NeDRex (16) and MetScape
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Table 1. Comparison of key features of OmicsNet 2.0 with other web-based tools for multi-omics integration. Symbols used for feature evaluations with
¢/ for present, -’ for absent and ‘+’ for a more quantitative assessment (more ‘+” indicate better support). The URL for each tool is given below the table

Tools OmicsNet PaintOmics MergeOmics OmicsAnalyst Arena3D NeDRex MetScape
Type Web Web Web Web Web Cytoscape Cytoscape
plugin plugin

Input Lists from 8 Abundance Association Omics feature Graph files Gene list, gene  Gene
omics types, tables from 5 data, gene abundance expression expression
graph files omics types sets, networks tables table and

metabolomics
tables

Network creation

SNP annotation V - Vv - - - -

Peak annotation V - - - - - -

Taxon annotation Vv - - - - - -

Network integration ~ / v V Correlation Multi-layer v V

Network visualization

3D view +++ - - Vv Vv -

2D view J J J J : J J

Layered layout +++ - - Vv v Cytoscape Cytoscape

Spherical layout v - - - - - -

Backbone layout Vv - - J - - -

Concentric layout v - - Vv - Cytoscape Cytoscape

Edge bundling v - - J - Cytoscape Cytoscape

Network analysis

Enrichment +++ + +++ +++ - +++ +++

Analysis

Joint enrichment v v v v - - -

analysis

Module detection +++ - J v - +++ -

Biomarker ++ - N - - +++ -

prioritization

e OmicsNet: https://www.omicsnet.ca

e PaintOmics: http://www.paintomics.org

e MergeOmics: http://mergeomics.research.idre.ucla.edu

e OmicsAnalyst: https://www.omicsanalyst.ca

e Arena3Dweb: https://www.arena3d.org

e NedRex: https://nedrex.net

e MetScape: http://metscape.ncibi.org

(17). PaintOmics focuses on visual exploration of multi- CONCLUSION

omics datasets including transcriptomics, metabolomics,
region-based data from epigenomics, miRNA and tran-
scription factor, by mapping them to KEGG pathways.
MergeOmics incorporates the summary statistics of asso-
ciation studies from individual omics layers along with di-
verse functional genomics data for mechanistic insights,
with recent addition of multi-omics informed drug reposi-
tioning. OmicsAnalyst leverages multivariate statistics, cor-
relation analysis and clustering methods, coupled with net-
work, heatmap and scatter plot for data-driven multi-omics
integration. Arena3D specializes in the interactive visual-
ization of multi-layered networks using 3D-based layered
layout, suitable for multi-omics network data. NeDRex is
a Cytoscape plug-in that focuses on disease module identi-
fication and drug repurposing using various module iden-
tification and prioritization algorithms. MetScape is also a
Cytoscape plug-in that specializes in the integration and vi-
sualization of gene expression and metabolomics data by
building and analyzing networks of different types contain-
ing enzymes, metabolites and/or reactions. OmicsNet 2.0
complements these tools by coupling comprehensive molec-
ular interaction databases with powerful 2D/3D network
visual analytics to enable knowledge-based multi-omics in-
tegration and interpretation.

OmicsNet 2.0 is a network-based multi-omics analysis plat-
form supporting both 2D and 3D network visual explo-
ration. Its version 1.0 emphasized web-based 3D network
visualization. In version 2.0, we have further improved its
visual analytics system, adding a fully featured 2D net-
work visualization system, and enabling support for three
new omics data inputs (SNPs, microbial taxa, and LC-
MS peaks) that are not well supported by current bioin-
formatics tools. Users can also perform candidate disease
marker search using random walk with restart algorithm,
in addition to enrichment analysis, module detection and
shortest path analysis. Finally, version 2.0 has improved
the tool’s reproducibility and transparency by releasing the
underlying R code and supporting sharable links for re-
sumable and collaborative analysis. Our case study using
the IBD multi-omics data has shown that OmicsNet 2.0
can reveal meaningful patterns, connections and functions
that are consistent with the original and follow-up publi-
cations as well as the IBD literature. In conclusion, Omic-
sNet 2.0 addresses the need for easy-to-use web-based tools
to support analysis of experimentally derived multi-omics
data in their wider molecular context defined by our prior
knowledge.
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