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Role of von Willebrand Factor in COVID-19 Associated 
Coagulopathy 

 
 
Abstract  
 
Background: COVID-19, the disease caused by SARS-CoV-2 (severe acute respiratory 
syndrome coronavirus 2) can present with symptoms ranging from none to severe. Thrombotic 
events occur in a significant number of patients with COVID-19, especially in critically ill 
patients. This apparent novel form of coagulopathy is termed COVID-19 associated 
coagulopathy  and endothelial derived von Willebrand factor (vWF) may play an important role 
in its pathogenesis.  
 
Content: vWF is a multimeric glycoprotein molecule that is involved in inflammation, primary 
and secondary hemostasis. Studies have shown that patients with COVID-19 have significantly 
elevated levels of vWF antigen and activity, likely contributing to an increased risk of 
thrombosis seen in CAC. The high levels of both vWF antigen and activity have been clinically 
correlated with worse outcomes.  Furthermore, the severity of a COVID-19 infection appears to 
reduce molecules that regulate vWF level and activity such as ADAMT-13 and high density 
lipoproteins (HDL). Finally, studies have suggested that patients with blood group O (a blood 
group with lower than baseline levels of vWF) have a lower risk of infection and disease severity 
compared to other blood groups; however, more studies are needed to elucidate the role of 
vWF  
 
Summary: CAC is a significant contributor to morbidity and mortality.  Endothelial dysfunction 
with the release of pro-thrombotic factors, such as vWF, needs further examination as a 
possible important component in the pathogenesis CAC.  
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Impact Statement 
 
COVID-19 is a global pandemic with no current effective treatment. COVID-19 associated 
coagulopathy contributes to the patient morbidity and mortality. Von Willebrand factor (vWF) 
may play an important role in the pathogenesis of this coagulopathy.  Currently, available 
studies have demonstrated that patients with COVID-19 have significantly elevated levels of 
vWF antigen and activity as well as reduced regulatory molecules, which could contribute to an 
increased risk of thrombosis seen in patients that develop coagulopathy. Elucidation of vWF 
role in patients with COVID-19 may offer additional insights into developing novel therapies for 
this disease.  
 
 
 
 
 
 
 
 
 
 
 
  



Introduction and Background 
 
COVID-19 Pandemic 
 
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was initially identified in 
Wuhan, China of 2019. COVID-19, the disease caused by SARS-CoV-2, quickly evolved into a 
global pandemic. According to the Johns Hopkins COVID-19 Dashboard, there have been more 
than 20 million confirmed cases and almost 350,000 deaths in the United States, by the end of 
2020. Although COVID-19 may present with a variety of symptoms, a large majority of infected 
individuals only have none to mild symptoms (1). However, the mortality rate is dominated by a 
subset of patients with severe respiratory failure that meet the criteria for acute respiratory 
distress syndrome (ARDS) and required respiratory support (1, 2). The development of severe 
disease is related to interstitial viral pneumonia, systemic inflammation, respiratory failure and 
multiorgan dysfunction (3).  
 
Viral Pathophysiology  
 
SARS-CoV-2 preferentially binds to host cells that express the angiotensin-converting enzyme-2 
receptor (ACE2) through the viral spike protein structure. The initiation and progression of the 
SARS-CoV-2 infection is likely dependent on a combination of factors, including, but not limited 
to, host cell expression of ACE2, anatomic contiguity with the environment, inoculation dose at 
the time of exposure, and the host immune response to the infection. In general, the initial 
infection by the SARS-CoV-2 virus targets the cells of the respiratory system such as nasal or 
bronchial epithelial cells and pneumocytes. However, if the severity of the infection progresses 
to a systemic inflammatory phase, the mechanism is likely a complex combination of the virus 
entering the blood stream, infection of other cells expressing ACE2 receptors, tissue/organ 
specificity and the inflammatory milieu. However, the extent to which each of these factors 
contribute to the systemic severity remains unclear. Additionally, in severe COVID-19 cases, 
endothelial cells (ECs), which also express ACE2 receptors, are activated, leading to endothelial 
dysfunction and possible injury that parallels clinical manifestations, such as coagulopathy and 
prothrombotic tendency (4).  
 
COVID-19 Associated Coagulopathy  
 
It is clear that a significant component of the observed morbidity and mortality is directly 
related to lung injury as supported by COVID-19 related autopsies (5, 6). The predominant 
pattern of injury was found to be diffuse alveolar damage, which includes hyaline membrane 
formation, capillary congestion, inflammation, and pneumocyte necrosis. In addition, the study 
also identified platelet-fibrin thrombi in small arterial vessels in 87% of their cases (6). A more 
recent, albeit small, series showed that all COVID-19 related autopsies demonstrated platelet-
fibrin thrombi in multiple organs, including the liver, kidney, heart and lungs (5). Another 
autopsy case series compared lung tissue from equally severe, age-matched ARDS patients with 
either COVID-19 or influenza A (H1N1) and found that alveolar capillary microthrombi were 
more prevalent in COVID-19 than influenza (7). The study also observed that COVID-19 lung 



tissue showed significant EC injury associated with intracellular SARS-CoV-2 infection (7). 
Further, there is some evidence to suggest that COVID-19 associated coagulopathy    might be 
different from other coagulopathic conditions, such as disseminated intravascular coagulation 
(DIC) and thrombotic microangiopathy (TMA), which are associated with other underlying 
causes such as infections, malignancy, autoimmune and hereditary diseases (Table 1) (8). Taken 
together, the data suggests that a distinct coagulopathy may be occurring in COVID-19 patients, 
particularly those with severe symptoms.  
 
Indications of CAC, especially in severe cases, was apparent from early reports in Wuhan (9). A 
number of studies have shown that the development of CAC is an important prognostic 
indicator of poor outcomes (10-12). One study evaluated the rate of arterial and venous 
thrombotic events in COVID-19 patients with pneumonia admitted into the intensive care unit 
(ICU) and found that the incidence of thrombotic events in 184 patients was 49% (after 
adjustment for competing risk of death) despite receiving routine pharmacologic 
thromboprophylaxis; not surprisingly, these thrombotic complications led to a higher risk of 
death (13). Additional studies have shown similar rates of incidence of thrombotic events in 
COVID-19 ICU patients (14, 15). Collectively, clinical studies suggest that CAC leads to a 
prothrombotic state even with standard pharmacologic thromboprophylaxis treatment.  
 
Laboratory Patterns 
 
In general, CAC is characterized by mild thrombocytopenia, slight prolongation of the 
prothrombin time (PT), high levels of D-dimer, and elevated fibrinogen (8, 12, 16), see table 1. 
Recent International Society for Thrombosis and Hemostasis (ISTH) interim guidance 
recommends monitoring these four parameters in the management of patients with CAC . D-
dimer was designated the highest level of priority as many studies have shown that elevated 
levels are associated with increasing severity of disease and mortality risk (3, 10, 11, 17-20). 
These studies reported a range of associations of higher D-dimer levels in COVID patients, 
including greater risk of mortality (3, 11, 18), increased disease severity (10, 11), increased 
incidence of pulmonary emboli (17), and need for intensive care (20). Based on this data, 
clinical services can order a baseline D-dimer level to determine the current morbidity and 
mortality risk that a COVID patient carried and could follow a D-dimer level to predict 
progression to more severe disease.  
 
D-dimer is a breakdown product of mature clots (cross-linked fibrin mesh) that underwent 
fibrinolysis. However, other studies have shown data where the association with D-dimer and 
death may not be as compelling (21, 22). Nonetheless, D-dimer levels do play a role during the 
follow-up and treatment of patients with CAC. There is, however, another biomarker, von 
Willebrand factor (vWF), which may also play an important role in the evaluation of CAC 
patients due to its direct relationship to hemostasis, inflammation and EC activation/injury, 
which are all important aspects of COVID-19 pathogenesis. The biological role of vWF and its 
association with CAC will be the focus of the remainder of this review. 
 
vWF Physiology and Laboratory Testing  



 
vWF Biology 
vWF is a multimeric glycoprotein ranging from 2 to >60 prepropolypeptide units that are each 
2138-amino acids in length. The vWF propeptide sequence serves to align two units together to 
allow proper cross-linking during the multimerization process. Further post-translational 
modification leads to removal of the propeptide sequence as well as glycosylation, including the 
addition of blood group determinants. This addition of an A or B blood group determinant only 
occurs during EC glycosylation. Following these processes, a heterogenous mix of ultra large 
vWF (UL-vWF) molecules are synthesized and stored in megakaryocytes and ECs, respectively, 
in alpha-granules and Weibel-Palade bodies (WPB). Additionally, other processing components 
such as vWF propeptides are found in the WPB of ECs. Though platelets do play important role 
in both storage and secretion of vWF, this review will focus on ECs.  
 
When ECs are activated, UL-vWF molecules are released and can either remain free-floating in 
the plasma or localized on endothelial surfaces. UL-vWF have greater prothrombotic activity 
than smaller vWF multimers. Therefore, as UL-vWF molecules are secreted, ADAMTS-13 
(metalloproteinase thrombospondin type 1 motif, member 13), cleaves vWF into smaller 
multimers to mitigate unwanted thrombus formation and leads to a variation in the sizes of 
vWF found both in the plasma and on endothelial surfaces. Elevated vWF activity levels depend 
on the presence of the largest vWF multimers and activation by shear stress in the circulatory 
system. vWF responds to shear stress by unfolding and exposing sites for activity such as self-
association, platelet binding and ADAMTS-13 cleavage. This self-association and platelet 
binding combined with eventual consumption leading to lower levels of ADAMTS-13 lead to a 
prothrombotic state.  
 
Role in Primary Hemostasis 
 
Primary hemostasis is the process of the platelet clot formation at the site of blood vessel 
injury. For proper primary hemostasis to occur, platelet adhesion and aggregation must occur. 
During platelet adhesion at the site of blood vessel injury, platelets can bind directly to the 
exposed subendothelial collagen (via GPIa-IIa or GPVI) or indirectly via vWF. In the latter case, 
platelets bind to the vWF molecule via the platelet glycoprotein Ib-V-IX receptor (GPIb) while 
vWF is bound to subendothelial collagen. Additionally, vWF also promotes platelet aggregation 
(platelet-platelet interaction) by binding to platelet surface receptor GPIIb/IIIa. Though 
GPIIb/IIIa is better known as a fibrinogen receptor, it can bind to both fibrinogen and vWF. In 
summary, vWF plays a vital role in platelet adhesion and aggregation in clot formation.  
 
Role in Secondary Hemostasis 
 
vWF also performs an important role in secondary hemostasis. Secondary hemostasis involves 
coagulation factors and the coagulation cascade to produce a fibrin meshwork at the site of 
vessel injury. vWF facilitates the secondary hemostasis process in two ways. First, vWF serves 
as a carrier protein for factor VIII, extending factor VIII’s half-life in the plasma. Though this may 
initially seem trivial, this carrier activity stabilizes factor VIII and significantly extends its half-life 



four to six-fold. Second, it releases and concentrates factor VIII at the site of injury. Factor VIII is 
a clotting factor that, when activated, complexes with other factors to ultimately produce 
fibrin. To highlight the significance of vWF in this process, mutations affecting the vWF binding 
site for factor VIII leads to decreased levels of factor VIII, known as Type 2N von Willebrand 
disease (vWD), resulting in a clinical presentation similar to hemophilia A, which is a bleeding 
disorder that occurs when an individual lacks the ability to produce adequate amounts of factor 
VIII for proper clotting.  
 
vWF, Inflammation and Endothelial Activation/Injury 
 
During the inflammatory process, various chemical mediators are released. These inflammatory 
molecules activate ECs to release their WPB contents, including vWF and other molecules such 
as P-selectin, which has been directly linked to leukocyte recruitment (23, 24). In addition, ULv-
WF molecules that remain bound to EC surface, will subsequently bind platelets and may have 
the ability to act as a molecular surface for leukocyte interaction (25). With increased release of 
vWF, the inflammatory process is expected to induce a prothrombotic state. Studies show that 
inflammation enhances vWF self-association which may lead to increased adhesiveness of 
platelets while decreasing ADAMTS-13 cleavage (24). Additionally, high-density lipoprotein 
(HDL) decreases during inflammation, in both chronic and acute phases. HDL may play a vital 
role in preventing shear stress-induced vWF self-association, thus decreasing prothrombotic 
risk under normal circumstances (24). This concept will become a point of discussion later in the 
review. In summary, the data suggests during the inflammatory process, there is an increased 
thrombotic risk by the imbalance of which vWF level and activity is increased via EC activation 
and reduced ADAMTS-13 activity. 
 
Laboratory Testing of vWF 
 
In order to understand the studies that will be mentioned in connection with CAC, it is 
important to briefly discuss basic vWF laboratory testing. There are three basic tests performed 
to assess vWF; the exact methods may vary between manufacturers for those that are highly 
automated but the fundamental parameters rest upon testing vWF quantity, activity and 
multimer size.  
 
The quantity of the vWF level in a specimen is commonly referred to as antigenic testing 
(vWF:Ag). An immunoturbidimetric method is commonly used for vWF:Ag measurement. 
However, the details of the assays vary by manufacturer. This allows for quantitative 
determination of the physical presence of the molecule without assessment of function. ABO 
blood typing and Factor VIII levels are also performed concurrently; it is well documented that 
individuals of blood group O have a physiologically lower level of vWF, and therefore Factor VIII 
(since vWF binds and stabilizes it) than individuals of non-O blood groups (see “vWF Association 
with Blood Type” section below).  
 
The quality of present vWF is known as functional or activity testing; this involves testing the 
ability of vWF to bind to platelet receptor GP1b, collagen and Factor VIII (vWF: RCo). There are 



a number of assays and methods that revolve around testing the ability of vWF to bind its 
natural physiologic substrates (with or without ristocetin). Depending on the substrate used to 
assess its binding function, these tests will often carry an acronym, such as vWF:Ac, vWF:RCo, 
vWF:Co, or vWF:VIII. It is important to note that there are important and distinct differences 
among these tests; however, this is beyond the scope of the review.  
 
Additionally, the qualitative variation of vWF multimers is performed to visualize the presence 
and size distribution of vWF located in the plasma using gel electrophoresis and vWF labeling. 
This assessment is important since multimer presence and size is directly correlated to the 
function and activity level of the vWF molecule.  
 
Finally, though not a laboratory test, the results of the activity and antigenic assays may be 
juxtaposed to obtain the ratio of vWF activity to antigen (RCo:Ag ratio). A ratio that is less than 
0.5-0.7 would indicate that a qualitative defect in the vWF molecules is likely present. This helps 
categorize the pattern and subtypes of vWD, if present.  
 
Examination of vWF in COVID-19 Associated Coagulopathy 
 
Endothelial Activation and vWF 
 
As a molecule present in ECs that plays a fundamental role in hemostasis and thrombosis, vWF 
is a reasonable candidate marker to consider when monitoring clinical issues related to 
endothelial injury and coagulopathy in COVID-19. Early studies duly noted that D-dimer levels 
were an important prognostic marker in COVID-19. However, studies also began to recognize 
and demonstrate that significantly elevated levels of vWF antigen were also present (14, 16, 19, 
26). Further studies then recognized that vWF activity is also increased and that ADAMTS-13 
activity levels are relatively mild to moderately reduced, leading to an imbalance favoring 
thrombosis (27, 28). Similarly, in a well-recognized pathological entity, thrombotic 
thrombocytopenic purpura (TTP) is associated with reduced activity levels of ADAMTS-13. TTP is 
generally due to extremely hindered or absent ADAMTS-13 activity by either an acquired 
inhibitor or congenital absence, respectively. The decreased activity levels of ADAMTS-13 
results in an excess of overactive UL-vWF multimers that promote microthrombi formation. 
 
However, in contrast, the mild to moderately decreased ADAMTS-13 activity levels observed in 
CAC may not lead to excessive UL-vWF. Thus, it is important to distinguish that activity levels of 
ADAMTS-13 may not be low enough in CAC cases to detect an excessive increase in UL-vWF as 
seen in severe deficiency such as in TTP. In line with this, a recent study showed decreased 
activity levels of ADAMTS-13 in severe COVID-19 patients but found no evidence of UL-vWF 
multimers in the plasma (29). Further, the authors of this study emphasized the significance of 
the elevated vWF:Ag to ADAMTS-13 activity ratio in association with increased severity of 
disease. This is suggestive that increased risk of thrombosis seen in COVID-19 patients may, in 
part be due to a relative decrease of ADAMTS-13 activity rath than absolute decrease as seen in 
TTP.  
 



The high levels of both vWF antigen and activity have been correlated clinically with increased 
thrombotic events (14), increased likelihood for treatment in intensive care units (ICU) (19), and 
increased need for oxygen support (26), as well as correlated with other laboratory testing such 
as decreased clotting times and increased clot formation velocities as demonstrated by whole 
blood viscoelastic testing (16) and increased levels of other markers of platelet and endothelial 
activation, such as Factor VIII and thrombomodulin (16, 19, 26-28, 30). As new biomarkers to 
assess CAC severity emerge, re-examining the synthetic pathway of vWF may assist. One 
promising avenue is to examine levels of vWF propeptide; its physiologic role in the 
multimerization process would suggest that elevated levels of vWF propeptide indicate 
elevated vWF release. In addition, a greater level of increase in vWF and propeptide in 
comparison to increase in Factor VIII suggest that this is due to release of vWF from pulmonary 
ECs involved in the COVID-19 pathophysiologic process (31). The ratio of propeptide levels to 
vWF levels can also examined; this ratio seems to decrease with disease progression, suggesting 
that while the propeptide is cleared normally, levels of vWF may stay elevated due to 
decreased clearance (29). Further examination of propeptide levels in COVID-19 patients are 
indicated to elucidate these possible relationships.  
 
High Density Lipoprotein and vWF 
 
Aside from endothelial activation and injury, a more Indirect mechanism may contribute to 
increased vWF activity levels. In general, infection leads to an inflammatory state and, as 
mentioned above, this decreases HDL levels. Although most commonly known for its important 
role in preventing atherosclerotic disease, additional physiologic functions include activity as an 
anti-inflammatory, anti-apoptotic, or antioxidant. However, a lesser known role includes 
preventing thrombosis through binding to endothelial cells and ramping up nitric oxide (a 
vasodilatory molecule) production and through prevention of shear stress induced vWF self-
association, thus decreasing prothrombotic risk (24, 32). Interestingly, a retrospective analysis 
of total cholesterol, LDL, and HDL levels of patients in Changsha, China showed that HDL levels 
were lower in COVID-19 patients than normal and patients with severe disease had lower HDL 
levels than patients with mild disease (33). A specific mechanism by which the SARS-CoV-2 virus 
decreases HDL levels, beyond the general infectious inflammatory state, has yet to be well 
characterized; one possible insight from a study showed that patients with COVID-19 had 
reduced apolipoprotein A1 (ApoA1) levels, which is a major protein component of HDL 
molecules (34). The study also showed that as patients went from non-severe to severe, 
apolipoprotein decreased respectively. Indeed, it has been shown, both in vivo and vitro 
models, that ApoA1 prevents vWF self-association and binding to vessel walls (32).  Additional 
studies in the future could shed light on the role of HDL in CAC patients and possibly lead to 
novel treatment options.  
 
vWF Association with Blood Type and COVID-19 Susceptibility 
 
If increased levels of vWF can be monitored as a marker of endothelial damage and used to 
predict prognosis in COVID-19 patients, then decreased levels of vWF may be protective. One 
natural-existing population of patients that have baseline lower levels of vWF do exist: patients 



of blood group O. Group O individuals naturally have a baseline level of vWF ~25% less than the 
non-group O cohort (blood groups A and B). Further, vWF undergoes a fairly extensive post-
translation glycosylation within endothelial cells. Although the exact molecular mechanism by 
which this phenomenon occurs is not fully elucidated, it has been hypothesized that perhaps 
the additional glycosylation by non-group O individuals prevents the activity of ADAMTS-13 to 
cleave vWF, thus, leading to reduced clearance and an increased half-life that is demonstrated 
by baseline higher levels of vWF when compared to group O individuals (31).  
 
Initial data from China found a greater than expected proportion of group A and a smaller than 
expected proportion of group O individuals among COVID-19 patients. However, this involved a 
small cohort of patients with limited analysis due to lack of available clinical information (35). 
Following this, a genome-wide association study on patients in Italy and Spain also found group 
O individuals to have a lower relative risk than non-group O individuals (36). Another study 
showed a similar pattern of this phenomenon in a cohort of patients treated at the New York 
Presbyterian Hospital System (37). However, conflicting information is reported among these 
and other studies with some reporting no significant difference in severity and some reporting 
contradicting patterns in terms of need for mechanical ventilation. Preliminary data from these 
studies do potentially suggest that the lower vWF levels may be associated with decreased 
severity of disease in group O patients but more data is needed to clarify this relationship.   
 
Conclusion 
 
CAC is a significant contributor to patient morbidity and mortality. We highlight the role of vWF 
in CAC and compare and contrast it to the normal physiological response, mild and severe 
COVID-19 disease and TTP (Figure 1). Direct infection of ECs with SARS-CoV-2 and/or activation 
of ECs due to high levels of inflammatory mediators results in release of pro-thrombotic factors 
such as vWF. vWF, bound to the ECs or in plasma, promotes platelet aggregation and thrombus 
formation. It is likely that multiple mechanisms contribute to an imbalance of the vWF-
ADAMTS13 axis, pushing patients with CAC toward a more pro-thrombotic tendency. For 
example, in this review we discussed HDL and role it plays in reducing vWF activity, in which 
little discussion has been seen in other review articles of CAC and vWF. Nevertheless, the range 
of clinical presentation may be a reflection of the severity of this imbalance since reports show 
vWF is elevated in both critically-ill and non-critically ill patients (19), but there is a significant 
difference in vWF and ADAMTS-13 levels in patients who suffer thrombotic events versus those 
that do not (38). Multiple biomarkers, including vWF-associated proteins, such as vWF 
propeptide and P-selectin may help demonstrate the level of imbalance, as well as the 
mechanisms causing the imbalance. This would clarify the roles of therapies that would counter 
the actions of these prothrombotic molecules, whether by mitigating their release by reducing 
inflammation, such as N-acetylcysteine (39), or by inhibiting their activity once released or 
activated, such as caplacizumab (anti-vWF) or crizanlizumab (anti-P selectin). Regardless, vWF 
has clearly demonstrated that it plays a role in the progression of CAC in COVID-19 patients, 
however, to what extent remains unclear. Further studies are needed to elucidate the many 
roles of vWF and the mechanism by which it becomes imbalanced.  
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Table 1. Laboratory data in COVID-19 and Other Coagulopathies. 

 
Table 1. Normal values will vary among laboratories due to varying methodologies and reagents. 
Given that there are multiple markers for complement activation, inflammation, and acute phase 
reactants, reference ranges for these (patho)-physiological events are not provided.  Of note, 
ADAMTS13 measurement is generally the reliable biomarker distinguishing TTP from 
HUS/atypical HUS.  HUS can be distinguish from aHUS if the patient has history of Shiga-toxin 
or Streptococcus exposure. Other biomarkers may be overlapping in the spectrum from DIC/SIC 
to TTP/HUS/aHUS. DIC: disseminated intravascular coagulation, SIC: sepsis-induced 
coagulopathy, TMA: thrombotic microangiopathy, TTP: thrombotic thrombocytopenia purpura, 
aHUS: atypical uremic syndrome, PT: prothrombin time, aPTT: activated partial thromboplastin 
time, vWF: von Willebrand factor. Adapted from Iba et al. (8).  
 
 
 
 
 
 
 
 

 Platelet 
Count 

D-
dimer 

PT/INR; 
aPTT 

Fibrinogen Anti-
thrombin 
activity 

Complement 
activation 

Inflammatory 
cytokines 

ADAMTS-
13 

vWF 
antigen  

Normal within 
reference 
range 

within 
reference 
range 

within 
reference 
range 

within reference 
range 

within 
reference 
range 

within reference 
range 

within reference 
range 

within 
reference 
range 

within 
reference 
range 

COVID-
19 

generally, 
mildly 
elevated 
early and 
decreases 
as severity 
increases 

elevated no change 
to mildly 
elevated 

elevated no change increased 
activation, may 
result in lower 
antigen levels due 
to consumption  

elevated mildly 
decreased 

elevated 

DIC/SIC decreased elevated elevated no change to 
decreased 

decreased no increase elevated normal decreased 

TTP Severely 
decreased 

no change 
to 
elevated 

no change 
to elevated 

no change no change normal to mildly 
increased 

decreased severely 
decreased 

normal to 
mildly 
elevated 

HUS decreased  no change 
to 
elevated 

no change 
to elevated 

no change no change usually mildly 
increased but  may 
be normal 

decreased normal normal to 
mildly 
elevated 

Atypical 
HUS 

decreased  no change 
to 
elevated 

no change 
to elevated 

no change no change moderate to 
severely increased 

decreased normal to 
moderately 
decreased 

normal to 
mildly 
elevated 



Figure Legend 
Figure 1. Proposed mechanism and distinguishing characteristics in mild and severe cases 

of COVID-19 associated coagulopathy and a comparison to a normal physiological 

response and thrombotic thrombocytopenic purpura. A. Normal physiological response to 

stress and or injury. After endothelial activation, vWF multimers are bound to the endothelial 

surface, ADAMTS-13 actively cleaves large multimers and HDL assists in the regulation of 

vWF self-association resulting in well-controlled thrombus formation during a physiologic 

response. B. COVID-19 associated coagulopathy in mild disease. Localized infection and 

minimal systemic inflammation lead to a higher level of endothelial cell activation. Regardless, 

in this scenario, infection and inflammation remains fairly well regulated. Furthermore, the HDL 

and ADAMTS-13 mechanisms are mostly intact, leading to only a slight increase of pathologic 

thrombotic events. C. COVID-19 associated coagulopathy in severe disease. Infection and or 

inflammation becomes overwhelming and unregulated, leading to an extremely elevated level of 

endothelial activation. Additionally, both HDL and ADAMTS-13 levels are decreased, leading to 

a much higher increase risk of pathologic thrombotic events. D. Thrombotic thrombocytopenia 

purpura (TTP).  In TTP, ADAMTS-13 activity levels are significantly lower than observed in 

COVID-19 coagulopathy. TTP leads to increased levels of ultra-large and large multimers of 

vWF. Subsequently, there are increased levels of platelet binding which leads to highly increased 

thrombotic risk.  

 

 

 

 



 

 

 

 


