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Abstract: Green synthesis of silver nanoparticles (AgNPs) using biological resources is the most
facile, economical, rapid, and environmentally friendly method that mitigates the drawbacks of
chemical and physical methods. Various biological resources such as plants and their different parts,
bacteria, fungi, algae, etc. could be utilized for the green synthesis of bioactive AgNPs. In recent
years, several green approaches for non-toxic, rapid, and facile synthesis of AgNPs using biological
resources have been reported. Plant extract contains various biomolecules, including flavonoids,
terpenoids, alkaloids, phenolic compounds, and vitamins that act as reducing and capping agents
during the biosynthesis process. Similarly, microorganisms produce different primary and secondary
metabolites that play a crucial role as reducing and capping agents during synthesis. Biosynthesized
AgNPs have gained significant attention from the researchers because of their potential applications
in different fields of biomedical science. The widest application of AgNPs is their bactericidal
activity. Due to the emergence of multidrug-resistant microorganisms, researchers are exploring
the therapeutic abilities of AgNPs as potential antibacterial agents. Already, various reports have
suggested that biosynthesized AgNPs have exhibited significant antibacterial action against numerous
human pathogens. Because of their small size and large surface area, AgNPs have the ability to
easily penetrate bacterial cell walls, damage cell membranes, produce reactive oxygen species, and
interfere with DNA replication as well as protein synthesis, and result in cell death. This paper
provides an overview of the green, facile, and rapid synthesis of AgNPs using biological resources
and antibacterial use of biosynthesized AgNPs, highlighting their antibacterial mechanisms.

Keywords: green synthesis; silver nanoparticles; antibacterial application; antibacterial mechanisms

1. Introduction

Nanotechnology is an emerging field of research, with numerous applications in
science and technology, especially in the development of different nanomaterials and
nanoparticles. Nanoparticles (NPs) are small particles of size from 1 nm to 100 nm and
have gained significant interest from scientists due to their multiple applications in diverse
fields of science such as biomedicine, agriculture, pharmaceutics, textile, food technology,
catalysis, sensors, mechanics, electronics, and optics [1,2]. There are different varieties of
nanoparticles, including silver, gold, zinc, cadmium sulfide, copper, iron, titanium dioxide,
etc., with unique characteristics [2–5]. Among different nanoparticles, silver nanoparticles
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(AgNPs) have been one of the most popular subjects of study in recent decades due to
their wide scope of application in different branches of biomedical science as antibacterial,
antifungal, antioxidant, anti-cancer, anti-inflammatory, drug delivery, wound dressings,
biosensors, and biocatalysis, etc. [6–12]. Some recent studies have shown the strong an-
timicrobial, antioxidant, and anti-cancer activities of green synthesized AgNPs [6–8]. The
biosynthesized AgNPs were also effectively used to degrade various toxic chemicals [9].
Moreover, green synthesized AgNPs have many other applications in different branches of
biotechnology such as water filtration, sanitization, food preservation, production of cosmet-
ics, nano-insecticides, and nanopesticides, etc. [10,11,13]. Green synthesized AgNPs have
been reported as potential antibacterial agents against various Gram-positive and Gram-
negative pathogenic bacteria, including Salmonella epidermidis, Salmonella Typhimurium,
Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus pyogens, Escherichia coli, Bacillus
subtilis, Vibrio parahaemolyticus, Streptococcus pneumoniae, Enterobacter hormaechei, Salmonella
paratyphi, Klebsiella pneumoniae, Aeromonas hydrophila, Pseudomonas fluorescens, Flavobacterium
branchiophilum, Enterobacter aerogenes, Shigella flexneri, Xanthomonas axonopodis, Salmonella
enterica, etc. [2,3,6,11–13].

Various physical and chemical methods such as physiochemical [14], electrochemi-
cal [15], photochemical [16], chemical reduction [17], and microwave irradiation [18] are
commonly used for the synthesis of these nanoparticles. The main drawbacks of these
methods are that they are expensive and hazardous because of the usage of toxic ingredi-
ents, costly, demand labor-intensive equipment and the generation of hazardous byprod-
ucts [2,5,19]. Due to the various drawbacks of physicochemical methods, researchers are
currently focusing more on biological approaches for eco-friendly, non-toxic, inexpensive,
and facile synthesis of nanoparticles (Figure 1). Green synthesis is an efficient process that
uses natural compounds as reducing, capping, and stabilizing agents instead of expensive
toxic chemicals. Various biological resources such as plants and their different parts (roots,
leaves and fruit, etc.), bacteria, fungi, algae, etc. could be utilized for the green synthesis of
bioactive nanoparticles [20–23]. Recently, green synthesis of AgNPs using plant extracts or
microbes and their antimicrobial activity were widely investigated.
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Multidrug-resistant microorganisms are a serious threat to public health worldwide
as different life-threatening infectious diseases are caused by these pathogens. There is a
continuous increase in the number of multidrug-resistant bacterial strains due to mutation,
pollution, changing environmental conditions and excessive use of drugs. To overcome
this problem, scientists are trying to develop new drugs for the treatment of such microbial
infections. Green synthesized AgNPs have been found to be effective for controlling
these multidrug-resistant bacterial strains. This review provides an overview of green
synthesis of AgNPs using different biological resources, various parameters essential for
stable, easy and high yields, antibacterial applications and mechanisms of biosynthesized
AgNPs as well as describing the prospect for their future development and potential
antibacterial applications.
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2. Green Synthesis of AgNPs

Green synthesis of AgNPs using different biological agents such as plants, bacteria,
fungi, algae and yeast is an economical, facile, and eco-friendly approach without gener-
ating any toxic byproducts. In recent years, both microbes and plants were extensively
investigated for the green synthesis of AgNPs. Figure 2 illustrates the various steps of
green synthesis of AgNPs using plants and microbes.
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3. Plant Mediated Synthesis of AgNPs

Plant-mediated synthesis of AgNPs is a widely adopted technique due to the avail-
ability of various plants and their easy and safe utilization. Different parts of the plant
including fruits, roots, flowers, leaves, peels, etc., have been successfully utilized for the
green synthesis of bioactive AgNPs (Table 1). Plant extracts contain numerous bioactive
compounds such as alkaloids, flavonoids, terpenoids, tannins, saccharides, phenols, vita-
mins, as well as various enzymes, amino acids, and proteins [21,24,25]. Due to the presence
of these active biomolecules in plant extracts, synthesis of bioactive AgNPs using plants is
more stable and easier. In the last few years, many studies have been conducted for the
green synthesis of bioactive AgNPs using different parts of plants such as fruits, seeds, roots,
flowers, stems, leaves, peels, etc. For instance, the leaf extract of Clerodendrum viscosum
was used for facile, rapid, and eco-friendly synthesis of bioactive AgNPs [26]. They also
investigated the antimicrobial efficacy of biosynthesized AgNPs against various pathogenic
bacteria. Pawar and Patil [27] synthesized AgNPs using tuber extract of Eulophia herbacea.
Fruit extract of Amomum villosum was used by Soshnikova et al. [28] for the facile synthesis
of AgNPs. The seeds and roots of Durio zibethinus and Rheum palmatum, respectively, were
used for green synthesis of AgNPs [29,30]. Peel extracts of different vegetables such as
Lagenaria siceraria, Luffa cylindrica, Solanum lycopersicum, Solanum melongena and Cucumis
sativus were investigated for synthesis of bioactive AgNPs [31]. Synthesis time, size and
shape of synthesized AgNPs and their bioactivity varies greatly depending on the plant
or part of the plant which was used for synthesis. For example, AgNPs of 10 to 30 nm in
size were synthesized using root extract of Panax ginseng by two hours’ reaction [32]. On
the other hand, AgNPs of 5 to 15 nm were synthesized using leaf extract of Panax ginseng
within 45 mins of reaction [33]. According to Adeyemi et al. [34], the leaf extract of Spondias
mombin produced rod- or triangular-shaped AgNPs. However, the plant extract of Prunus
africana, and Camellia sinensis produced spherical-shaped AgNPs [35]. Various parameters
such as the extract salt ratio, incubation time, incubation temperature, pH, etc. also greatly
affected the easy, rapid, high, and stable synthesis of AgNPs using plant extracts [3,6].
The probable mechanism of plant-mediated synthesis of AgNPs is the chemistry of reduc-
tion and oxidation. It has been proposed that the plant extract contains vitamins, amino
acids, proteins, enzymes, organic acid, flavonoids, terpenoids, alkaloids, polyphenols, and
polysaccharides, which have significant roles for the reduction of silver salts as well as
serve as capping and stabilizing agents [21,24,25].
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Table 1. Green synthesis of AgNPs using plants and their antibacterial applications.

Plants Used Parts Size (nm) Shape Optimum Synthesis
Parameters Target Pathogens References

Plantago major Leaf extract 10−20 Spherical 1 mM, 70 ◦C, 60 min S. aureus, E. coli,
P. aeruginosa [25]

Prunus africana, Camellia
sinensis Plant extract 10−19 Spherical 0.5 mM, 25 ◦C, 24 h E. coli, K. pneumoniae [35]

Tasmanian flax-lily Dried leaves extract Av. 70 Spherical 0.1 mM, 60 ◦C, 25 min S. aureus, S. epidermidis, P.
aeruginosa, C. albican [36]

Carduus crispus Plant extract 33–131 NA 1 mM, room
temperature, 24 h E. coli, M. luteus [37]

Anastatica hierochuntica,
Artemisia absinthium

Plant and seed
extracts

Av. 114,
125.5 Spherical 1 mM, room

temperature, 48 h
P. aeruginosa, E. coli,
S. aureus, C. albicans [38]

Lantana trifolia Leaf extract 5–70 Spherical 1.5 M, 35 ◦C, 2 h
S. aureus, C. albicans,
E. coli, P. aeruginosa,

B. subtilis
[39]

Blumea eriantha Plant extract 10–60 Spherical 1%, ambient
temperature, 24 h

S.aureus, B. subtilis,
B. cereus, E. coli [40]

Cucumis prophetarum Leaf extract 30−50 Polymorphic 1 mM, 80 ◦C, 3 h S. typhi, S. aureus [41]

Clerodendrum viscosum Leaf extract 36−74 Spherical 1 mM, 60 ◦C, 60 min E. coli, P. aeruginosa,
B. subtilis, S. aureus [26]

Grape Proanthocyanidin
from seed 100−120 Aggregated Ambient temperature,

2–3 h S. aureus, P. aeruginosa, E. coli [42]

Spondias mombin Leaf extract Rod or triangular 1 mM, room temperature S. aureus, P. aeruginosa, E. coli [34]

Eulophia herbacea Tuber extract Av. 11.7 NA 1 mM, room
temperature, 5 h

E. coli, S. aureus,
P. aruginosa, B. subtilis [27]

Torreya nucifera Leaf extract 10–125 Spherical 1 M, 20 ◦C, 24 h S. typhimurium [43]

Chlorophytum borivilianum Callus extracts 35–168 Spherical 1 mM, room
temperature, 5 h

B. subtilis, S. aureus,
P. aeruginosa, E. coli [44]

Purple heart plant Leaves extract Av. 104.6 NA 50 mM, 65 ◦C E. coli, S. aureus [45]
Phoenix dactylifera Root hair extract 21–41 Spherical 0.1 mM, 50 ◦C, 48 h C. albicans, E. coli [46]

Taraxacum officinale Leaf extract 5–30 Spherical 1 mM, room
temperature, 15 min

X. axonopodis,
P. syringae [47]

Chicory Seed exudates ≤25 Spherical 5 mM, 30 ◦C
P. aeruginosa,

K. pneumoniae,
A. baumannii, F. solani

[48]

Punica granatum Peel extract 20–40 Spherical 0.1 mM, room
temperature, 72 h

E. coli, S. epidermidis,
P. aeruginosa, S. typhi,
P. vulgaris, S. aureus,

K. pneumonia

[49]

Durio Zibethinus Seed extract 20–75 Spherical, rod 1.5 mM, in sunlight, 30
min

E. coli, B. subtilis,
S. typhimurium, S. typhi [29]

Market vegetable Vegetable waste
extract 10–90 Spherical 1 mM, 37 ◦C, 5 h Klebsiella sp., Staphylococcus

sp. [50]

Rheum palmatum Root extract 44–113 Hexagonal,
spherical

2 mM, room
temperature, 24 h S. aureus, P. aeruginosa [30]

Angelica pubescens Root extract 20–50 Quasi-spherical 5 mM, 80 ◦C, 50 min S. aureus, P. aeruginosa,
E. coli, S. enterica [51]

Protium serratum Leaf extract Av. 74.5 Spherical 1 mM, 25 ◦C, 4 h P. aeruginosa, E. coli,
B. subtilis [52]

Amomum villosum Dried fruit extract 5–15 Spherical 1 mM, room
temperature, 3 s S. aureus, E. coli [28]

Glycyrrhiza uralensis Root extract 5–15 Spherical 1 mM, 80 ◦C, 40 min E. coli, S. aureus, P. aeruginosa,
S. enterica [53]

Ficus palmata Leaf extract 28–33 Spherical 2 mM, room
temperature, 6 h

S. pneumonia, E. coli,
P. aeruginosa,
K. pneumonia,

P. vulgaris

[54]

Euphorbia antiquorum Latex extract 10–50 Spherical 1 mM, room
temperature, 24 h

K. Pneumoniae,
P. mirabilis, V. cholerae,

E. faecalis
[55]

Ocimum Sanctum Leaf extract Av. 14.6 Spherical 2 mM, 35 ◦C, 4 h E. coli [56]
Moringa stenopetala Leaf extract Av. 11.4 NA 1 mM, 60 ◦C, 15 min S. aureus, E. coli [57]

Euphrasia officinalis Leaf extract Av. 40.3 Quasi-spherical 1 mM, 65 ◦C, 19 min
P. aeruginosa, E. coli,

S. aureus,
V. parahaemolyticus.

[58]

Siberian ginseng Dried stem Av. 14.6 Spherical 1 mM, 80 ◦C, 1.5 h
S. aureus, B. anthracis,
V. parahaemolyticus.

E. coli
[59]

Borago officinalis Leaf extract 30–80
Spherical,
hexagonal,
irregular

1 mM, 65 ◦C, 68 s
P. aeruginosa, E. coli,
V. parahaemolyticus,

S. aureus
[60]

Cocoa pod Husk extract 4–32 Spherical 1 mM, 30 ◦C, few
minutes

E. coli, K. pneumoniae,
S. pyogenes, S. aureus,

P. aeruginosa
[61]

Lagenaria siceraria, Luffa
cylindrica, Solanum

lycopersicum, Solanum
melongena, Cucumis sativus

Vegetable peel
extract up to 20 Spherical 2 mM, 80 ◦C, 10 min E. coli, K. pneumoniae [31]

Azadirachta indica Leaf extract Av. 34 Spherical 1 mM, room
temperature, 24 h S. aureus, E. coli [62]
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Table 1. Cont.

Plants Used Parts Size (nm) Shape Optimum Synthesis
Parameters Target Pathogens References

Pedalium murex Leaf extract 10–50 Spherical 10 mM, 20 min

B. subtilis, S. aureus,
E. coli, M. flavus,

P. aeruginosa, B. pumilus,
K. pheumoniae

[63]

Cassia fistula Leaf extract 40–50 Spherical 1 mM, room
temperature, overnight

B. subtilis, S. aureus,
C. kruseii,

T. mentagrophytes
[64]

Psidium guajava Leaf extract 10–90 Spherical 1 mM, 30 ◦C, 10 min P. aeruginosa [65]

Coffea arabica Seed
extract 10–150 Spherical,

ellipsoidal
20 mM, room

temperature, 2 h E. coli, S. aureus [66]

Styrax benzoin Benzoin gum
extract 12–38 Spherical 1 mM, 60 ◦C, 5 h E. coli, P. aeruginosa,

S. aureus, C. tropicalis [21]

Cardiospermum halicacabum Leaf extract Av. 23 Cubic 1 mM, room
temperature, 16 h

P. vulgaris,
P. aeruginosa, S. aureus, B.

subtilis, S. paratyphi,
A. solani, F. oxysporum

[67]

Atrocarpus altilis Leaf extract 20–50 Spherical 1 mM, 25 ◦C, 24 h S. aureus, P. aeruginosa,
E. coli, A. vesicolor [68]

Ficus benghalensis,
Azadirachta indica Bark extracts Av. 60 Spherical 1 M, 80 ◦C, 30 min E. coli, P. aeruginosa,

V. cholera, B. subtilis [69]

Thevetia peruviana Leaf extract Av. 18.1 Spherical 1 mM, 30 ◦C, 4 h
E. coli, K. pneumonia,

P. aeruginosa, S. aureus,
B. subtilis, S. typhi

[70]

Capparis spinosa Leaf extract 5–30 Spherical 10 mM, room
temperature, 15 min

E. coli, S. typhimurium,
S. aureus, B. cereus [71]

Potentilla fulgens Root extract 10–15 Spherical 1 mM, 35 ◦C, 18 h E. coli, B. subtilis [72]

Petroselinum crispum Leaf extract 30–32 Spherical 10 mM, room
temperature, 24 h

K. pneumoniae, E. coli,
S. aureus [73]

Eucalyptus
globulus Leaf extract 5–25 Spherical, oval 1 mM, 37 ◦C, 60 min P. aeruginosa,

E. coli, S. aureus [74]

Banana plant Banana peel extract 23.7 Spherical 1.75 mM, 30 ◦C, 72 h E. coli, P. aeruginosa,
B. subtilis, S. aureus [75]

Zingiber officinale Rhizome 1.4–5.7 Spherical 1 mM, room
temperature, 1 h S. aureus, E. coli [76]

Erythrina indica Root extract 20–118 Spherical 1 mM, room
temperature, overnight

S. aureus, M. luteus,
E. coli, B. subtilis,

S. typhi, S. paratyphi
[77]

Prosopis farcta Plant extract Av. 10.8 Spherical 1 mM, room
temperature, 1 h

S. aureus, B. subtilis,
E. coli, P. aeruginosa [78]

Cassia roxburghii Aqueous extract 10–30 Spherical 1 mM, room
temperature, overnight

B. subtilis, S. aureus,
M. luteus, P. aeruginosa,

E. coli, E. aerogenes
[79]

Garcinia mangostana Fruit extract 30–50 Various 1 mM, 80 ◦C, 15 min E. coli, P. aeruginosa,
S. aureus [80]

Panax ginseng Root extract 10–30 Spherical 1 mM, 80 ◦C, 2 h
B. anthracis, E. coli,
V. parahaemolyticus,
S. aureus, B. cereus

[32]

Panax ginseng Leaf extract 5–15 Spherical 1 mM, 80 ◦C, 45 min

E. coli, S. enterica,
V. parahaemolyticus,

S. aureus, B. anthracis,
B. cereus

[33]

Clitoria ternatea, Solanum
nigrum Leaf extract 20–28 Spherical

100 mM, room
temperature,

60 min

B. subtilis, S. aureus,
S. pyogenes, E. coli,

P. aeruginosa, K. aerogenes
[81]

Mukia maderaspatana Leaf extract Av. 158 Spherical
1 mM, room
temperature,

15–20 min

B. subtilis,
K. pneumoniae,

S. aureus, S. typhi
[82]

Terminalia arjuna Plant extract 8–16 Spherical 1 mM, room
temperature, 15 min S. aureus, E. coli [83]

Eclipta alba Leaf extract 310–400 Cubic 1 mM, 32 ◦C, 24 h E. coli, S. aureus,
P. aeruginosa [84]

Alternanthera dentata Leaf extract 50–100 Spherical 1 mM, 60 ◦C, 45 min E. coli, P. aeruginosa,
K. pneumonia, E. faecalis [85]

Dalbergia spinosa Leaf extract Av. 18 Spherical 100 mM, room
temperature, 30 min

B. subtilis, P. aeruginosa,
S. aureus, E. coli, [86]

Pulicaria glutinosa Plant extract 40–60 Spherical 1 mM, 90 ◦C, 2 h E. coli, P. aeruginosa,
S. aureus, M. luteus [87]

Phyllanthus amarus Aqueous extract 15.7–29.9 Spherical 1 mM, 70 ◦C, 20 min P. aeruginosa [88]

Withania somnifera Leaf powder 5–30 Spherical 1 mM, room
temperature, 12 h S. aureus, E. coli [89]

Acorous calamus Rhizome extract Av. 31.8 Spherical 1 mM, room
temperature, 12 h

B. subtilis, B. cereus,
S. aureus [90]

Cocos nucifera Plant extract Av. 22 Spherical 0.9 mM, 36 ◦C, 24 h

K. pneumoniae,
B. subtilis,

P. aeruginosa,
S. paratyphi

[91]

Boerhaavia diffusa Plant extract Av. 25 Spherical 100 mM, 24 h
A. hydrophila,
P. fluorescens,

F. branchiophilum
[92]

Azadirachta indica Leaf extract 4.7–18.9 Spherical 0.1 N, room temperature,
2 h B. subtilis, S. typhimorium [93]
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Table 1. Cont.

Plants Used Parts Size (nm) Shape Optimum Synthesis
Parameters Target Pathogens References

Coriandrum sativum Seed extract 9.9–12.6 Spherical 0.1 N, room temperature,
2 h B. subtilis [94]

Hibiscus cannabinus Leaf extract 7 –25 Spherical 5 mM, 30 ◦C, 40 min E. coli, P. mirabilis,
S. flexneri. [95]

Ocimum tenuiflorum Leaf extract 25–40 NA 1 mM, room
temperature, 10 min

E. coli, Corney bacterium,
B. substilus [96]

Tribulus terrestris Fruit bodies 16–28 Spherical 1 mM, room
temperature, 36 h

S. pyogens, P. aeruginosa,
E. coli, B. subtilis,

S. aureus
[97]

Lantana camara Fruit extract 12.5–13.0 Spherical 1 mM, room
temperature, 1 h

M. luteus, B. subtilis,
S. aureus, V. cholerae,

K. pneumoniae, S. typhi
[98]

Morinda citrifolia Leaf extract 10–60 Spherical 1 mM, 90 ◦C, 60 min

E. coli, P. aeroginosa,
K. pneumoniae,

E. aerogenes, B. cereus,
Enterococci sp.

[99]

Terminalia chebula Plant extract less than
100

Pentagons,
spherical,
triangular

2 mM, room
temperature, 15–20 min S. aureus, E. coli [100]

Solanum xanthocarpum Berry extract 4–18 Spherical 1 mM, 45 ◦C, 25 min H. pylori [101]

Dioscorea bulbifera Tuber extract 8–20 Nanorods,
triangles 0.7 mM, 50 ◦C, 5 h E. coli, P. aeruginosa,

S. typhi, B. subtilis [102]

Garcinia mangostana Leaf extract Av. 35 Spherical 1 mM, 75 ◦C, 60 min E. coli, S. aureus [103]

Cymbopogan citratus Leaf extract Av. 32 Spherical 1 mM, 37 ◦C, 24 h
E.coli, S. aureus,

P. mirabilis, S. typhi,
K. pnuemoniae

[104]

Sesuvium portulacastrum L. Callus and leaf
extracts 5–20 Spherical 1 mM, room

temperature, 24 h

P. aeruginosa, S. aureus,
L. monocytogenes,

M. luteu, K. pneumoniae,
A. alternata, P. italicum,
F. equisetii, C. albicans

[105]

Av., average; NA, not available; s, second; min, minute; h, hour.

4. Microbe Mediated Synthesis of AgNPs

In the last few years, the potential of green synthesis of AgNPs using microorganisms
has been realized (Table 2). Microorganisms have been shown to be excellent biological
agents for the facile, cost effective, and ecofriendly synthesis of AgNPs, avoiding toxic and
expensive chemicals and the high energy demands required for physiochemical approaches.
Various microorganisms such as bacteria, yeast, fungi, and algae are often favored for the
green synthesis of AgNP because of their rapid growth, simpler cultivation and ease of han-
dling. There are two methods for the green synthesis of AgNP using microorganisms, such
as the extracellular and intracellular methods [12,24]. Microorganisms synthesize various
extracellular and intracellular biomolecules, including amino acid, enzymes, proteins, sugar
molecules, organic materials, and many other primary and secondary metabolites [12,24].
The exact mechanism of biosynthesis of AgNP using microorganisms is still not fully
known. The widely accepted mechanism of microbe-mediated synthesis of AgNPs is
the chemistry of reduction and oxidation, similar to plant-mediated synthesis. First, the
metal ions are reduced to NPs with the presence of microbial enzymes including reductase
enzyme. Then, various extracellular and intracellular biomolecules of microorganisms
serve as the capping and stabilizing agents [2,24]. Huq and Akter [106] have reported the
extracellular synthesis of AgNPs from Massilia sp. MAHUQ-52. The interaction of 1 mM
AgNO3 with the bacterial culture supernatant at 30 ◦C temperature yielded nanoparticles
within 48 h of reaction. The size of synthesized AgNPs from FE-TEM analysis was found to
range between 15 and 55 nm.
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Table 2. Green synthesis of AgNPs using microorganisms and their antibacterial applications.

Microorganisms Method Size
(nm) Shape Optimum Synthesis

Parameters Target Pathogens References

Massilia sp. MAHUQ-52 Extracellular 15–55 Spherical 1 mM, 30 ◦C, 48 h K. pneumoniae,
S. Enteritidis [106]

Streptomyces strains Intracellular 1.17–
13.3 Spherical 5 mM, 30 ◦C, 120 h

B. cereus, E. faecalis,
S. aureus, E. coli, S. typhi,

P. aeruginosa, K. pneumoniae, P.
vulgaris

[107]

Cedecea sp. Extracellular 10–40 Spherical 2 mM, 37 ◦C, 48 h E. coli, P. aeruginosa,
S. epidermis, S. aureus [108]

Arthrobacter
bangladeshi Extracellular 12–50 Spherical 1 mM, 30 ◦C, 24 h S. typhimurium, Y. enterocolitica [109]

Aspergillus terreus Extracellular 60–100 Spherical 100 mM, 27 ◦C, 48 h

K. pneumoniae,
S. aureus, S. typhi,

P. aeruginosa, E. coli,
S. epidermidis, E. faecalis,

P. mirabilis, B. subtilis

[110]

Penicillium
chrysogenum Extracellular 18–60 Spherical 1 mM, 28 ◦C, 24 h C. albicans, C. krusei,

C. tropicalis, C. parapsilosis, C. glabrata [111]

Paenarthrobacter
nicotinovorans Extracellular 13–27 Spherical 1 mM, 30 ◦C, 24 h B. cereus,

P. aeruginosa [12]

Aspergillus fumigatus Intracellular <100 Spherical 3.5 mM, 25 ◦C, 72 h 11 different pathogenic bacteria [112]

Paenibacillus sp. Extracellular 17.4–
52.8 Spherical 0.1 mM, room

temperature, 120 h
S. aureus, E. faecalis,

S. pneumoniae, E. coli [113]

Lysinibacillus xylanilyticus Extracellular 8–30 Spherical 1 mM, 30 ◦C, 48 h V. parahaemolyticus,
S. Typhimurium [114]

Cyanobacteria Desertifilum
sp. Intracellular 4.5–26 Spherical 1 mM, room

temperature, 24 h

B. cereus, P. aeruginosa, B. cercus, B.
subtilis,

S. flexneri, S enterica
[115]

Chlorella ellipsoidea Intracellular Av. 220 Spherical, cubic,
rod, triangular

1 mM, room
temperature, 24 h

S. aureus, E. coli,
K. pneumoniae,
P. aeruginosa

[116]

Citrobacter spp. MS5 Extracellular 5–15 Spherical 1 mM, 40 ◦C, 180 min E. hormaechei,
K. pneumoniae [117]

Sphingobium sp. MAH-11 Extracellular 7–22 Spherical 1 mM, 30 ◦C, 48 h E. coli, S. aureus [2]

Padina sp. Intracellular 25–60 Spherical 10 mM, 60 ◦C, 48 h
S. aureus, B. subtilis,

P. aeruginosa, S. typhi,
E. coli

[118]

Chaetoceros sp., Skeletonema
sp., Thalassiosira sp. Biomass 149–239 Rectangular,

square, regular room temperature, 48 h
E. coli, B. subtilis,

S. pneumonia, Aeromonas sp., S.
aureus

[119]

Penicillium oxalicum Extracellular 60–80 Spherical 1 mM, 37 ◦C, 72 h S. aureus, S. dysenteriae,
S. typhi [120]

Lactobacillus plantarum Intracellular Av. 14.0 Spherical 2 mM, 37 ◦C, 24 h
S. aureus, E. coli,

S. epidermidis,
Salmonella sp.

[121]

Escherichia coli Extracellular 5–50 Spherical 1 mM, 37 ◦C, 72 h

B. subtilis, S. aureus,
B. cereus,

P. aeruginosa,
K. pneumoniae,
E. coli, S. typhi,
E. vermicularis

[122]

Terrabacter humi Extracellular 6–24 Spherical 1 mM, 30 ◦C, 48 h E. coli, P. aeruginosa [20]

Bacillus subtilis Intracellular 3–20 Spherical 1 mM, 30 ◦C, 24 h
S. aureus, E. coli,

S. epidermidis,
K. pneumoniae, C. albicans

[123]

Pseudoduganella eburnea
MAHUQ-39 Extracellular 8–24 Spherical 1 mM, 30 ◦C, 24 h S. aureus, P. aeruginosa [6]

Oscillatoria
limnetica Extracellular 3.3–17.9 quasi-spherical 10 mM, room

temperature, 48 h E. coli, B. cereus [3]

Acinetobacter baumannii Extracellular 37–168 Spherical 1 mM, 37 ◦C E. coli, P. aeruginosa,
K. pneumoniae [124]

Pseudomonas sp.
THG-LS1.4 Extracellular 10–40 Irregular 1 mM, 28 ◦C, 48 h

B. cereus, S. aureus,
C. tropicalis,

V. parahaemolyticus,
E. coli, P. aeruginosa

[125]

Novosphingobium sp.
THG-C3 Extracellular 8–25 Spherical 1 mM, 25 ◦C, 48 h

S. aureus, C. tropicalis,
P. aeruginosa, E. coli,
V. parahaemolyticus,

C. albicans, S. enterica,
B. subtilis, B. cereus

[126]

Sporosarcina koreensis DC4 Extracellular 30–50 Spherical 1 mM, 25 ◦C, 48 h
V. parahaemolyticus, E. coli, S. enterica,

B. anthracis,
B. cereus, S. aureus

[127]

Bacillus sp. AZ1 Extracellular 7–31 Spherical 1 mM, 40 ◦C, 24 h S. typhi, E. coli,
S. epidermis, S. aureus [128]

Aeromonas sp. THG-FG1.2 Extracellular 8–16 Spherical 1 mM, 28 ◦C, 48 h

S. enterica, E. coli,
P. aeruginosa,

V. parahaemolyticus,
B. cereus, B. subtilis,
S. aureus, C. albicans

[129]
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Table 2. Cont.

Microorganisms Method Size
(nm) Shape Optimum Synthesis

Parameters Target Pathogens References

Kinneretia THG-SQI4 Extracellular 15–20 Spherical 1 mM, 28 ◦C, 48 h

C. albicans, E. coli,
C. tropicalis, B. cereus,
B. subtilis, S. aureus,

S. enterica, P. aeruginosa,
V. parahaemolyticus

[130]

Bacillus safensis Extracellular 5–30 Spherical 1 mM, 30 ◦C, 2 h E. coli [131]

Aspergillus niger Intracellular 43–63 Spherical 1 mM, 35 ◦C, 48 h K. planticola, E. coli, Pseudomonas sp.,
B. subtilis, B. cereus [132]

Weissella oryzae Extracellular 10–30 Spherical 1 mM, 25 ◦C, 48 h

V. parahaemolyticus,
B. cereus, B. anthracis,

S. aureus, E. coli,
C. albicans

[133]

Microbacterium resistens Extracellular 10–20 Spherical 1 mM, 30 ◦C, 48 h
S. enterica, S. aureus,
B. anthracis, B. cereus,

E. coli, C. albicans
[134]

Bacillus methylotrophicus Extracellular 10–30 Spherical 1 mM, 28 ◦C, 48 h
V. parahaemolyticus,
S. enterica, E. coli,

C. albicans
[135]

Pseudomonas deceptionensis Extracellular 10– 30 Spherical 1 mM, 25 ◦C, 48 h
S. aureus, S. enterica,
V. parahaemolyticus,

B. anthracis, C. albicans
[136]

Bhargavaea indica Extracellular 30–100

Pentagon,
spherical,

hexagonal,
triangle, nanobar

1 mM, 25 ◦C, 48 h

V. parahaemolyticus,
S. enterica, S. aureus,
B. anthracis, B. cereus,

E. coli, C. albicans

[137]

Actinomycetes Extracellular,
Intracellular 65–80 Spherical 1 mM, 37 ◦C, 72 h

S. aureus, E. coli,
K. pneumoniae, P. vulgaris, P.

aeruginosa
[138]

Bacillus flexus Extracellular 12–61 Spherical,
triangular

1 mM, room
temperature, 8 h

S. pyogenes, B. subtilis,
P. aeruginosa, E. coli [139]

Singh et al. [108] have demonstrated an extracellular synthesis of AgNPs using the
culture supernatant of a bacterial strain Cedecea sp. within 48 h of reaction and found
spherical-shaped nanoparticles of 10–40 nm in size. Mondal et al. [117] have also reported
the rapid synthesis of AgNPs (within 180 min) using the culture supernatants of Citrobacter
spp. MS5. Another report showed that AgNPs were synthesized through bioreduction
of AgNO3 by the culture supernatant of Penicillium chrysogenum [111]. Sphingobium sp.
MAH-11 and Pseudoduganella eburnea MAHUQ-39 have the ability to produce AgNPs with
higher antibacterial activities against pathogenic microbes [2,6]. Eltarahony et al. [107] have
reported the intracellular synthesis of AgNPs (within 5 min) using Streptomyces strains.
Hamida et al. [115] have also reported intracellular synthesis of AgNPs using Cyanobacteria
Desertifilum sp. They found spherical-shaped nanoparticles of a small size, in the range
of 4.5–26 nm. Various fungi and algae were also used for facile, rapid, and ecofriendly
synthesis of AgNPs. For instance, the culture supernatant of Aspergillus terreus was used
to produce AgNPs with a size of 60–100 nm [110]. Raza et al. [112] have reported the
intracellular synthesis of AgNPs using a fungus strain Aspergillus fumigatus KIBGE-IB33.

5. Critical Parameters for Rapid, Facile, and Stable Synthesis of AgNPs

Several factors play a key role for rapid, stable, and mass production of AgNPs such
as the concentration of plant extracts and metal salts, incubation time, temperature, pH,
etc. (Figure 3). The shape and size of synthesized nanoparticles also depend on these
factors. Extracts of the medicinal plant Potentilla fulgens was used by Mittal et al. [72]
for the green synthesis of AgNPs and they found that the various physico-chemical pa-
rameters including concentrations of plant extract and metal ions, incubation time and
temperature, and the pH of the reaction time greatly affected the rate of synthesis as well
as their shape, size, and yield. They used different concentrations of plant extract (1 to
200 mg in 50 mL water) and found that 4 mg extract in 50 mL water was able to produce the
highest concentration of AgNPs. They also used different concentrations of AgNO3 from
0.5 to 5 mM and revealed that the yield of AgNPs increased with the increase of AgNO3
concentration from 0.5 to 1 mM, beyond which, there was again a fall in the absorbance.
They found that 45◦C is the best temperature for maximum yield and concluded that at
a higher temperature, the rate of synthesis of smaller size nanoparticles increased. The
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synthesis was also influenced by the pH of reaction mixture. They revealed that at an
alkaline pH, smaller size nanoparticles were formed, whereas at an acidic pH, larger size
nanoparticles were observed. Moreover, incubation time had a great effect on the synthesis
process as well as the particle size distribution [72]. Nayak et al. [69] have reported the
effect of temperature, pH, and incubation time for the green synthesis of AgNPs using
bark extracts of A. indica and F. benghalensis and concluded that 80◦C temperature, a pH
of 10 and 30 min incubation are the optimum conditions for rapid and stable synthesis.
Similarly, Hamouda et al. [3] have shown the effect of plant extracts and AgNO3 concen-
trations for biosynthesis of AgNPs using an aqueous extract of Oscillatoria limnetica and
reported that concentrations of the aqueous extract of Oscillatoria limnetica and AgNO3
affected the characteristics of synthesized AgNPs through controlling its size and shape. As
with plant-mediated synthesis, microbe-mediated synthesis is also significantly influenced
by these parameters. According to Huq [6], extracellular synthesis of AgNPs using culture
supernatant of Pseudoduganella eburnea MAHUQ-39 was affected by temperature and metal
salt (AgNO3) concentration. It was found that 30 ◦C temperature, 1 mM AgNO3 (final
concentration) and 24 h incubation time are the best conditions for the rapid and stable
synthesis of AgNPs using P. eburnea. Many other recent studies also showed the effect of
concentration of plant extract and metal salt, incubation time, temperature, and pH for the
rapid and stable synthesis of homogenous AgNPs with a high yield using both plants and
microbes [25,26,48,108].

Polymers 2021, 13, x 11 of 24 
 

 

AgNPs using culture supernatant of Pseudoduganella eburnea MAHUQ-39 was affected by 
temperature and metal salt (AgNO3) concentration. It was found that 30 °C temperature, 
1 mM AgNO3 (final concentration) and 24 h incubation time are the best conditions for 
the rapid and stable synthesis of AgNPs using P. eburnea. Many other recent studies also 
showed the effect of concentration of plant extract and metal salt, incubation time, tem-
perature, and pH for the rapid and stable synthesis of homogenous AgNPs with a high 
yield using both plants and microbes [25,26,48,108]. 

 
Figure 3. Optimization of parameters for stable, monodispersed, rapid and high-yield of AgNPs. 

6. Characterization of Green Synthesized AgNPs 
Characterization of AgNPs is an important step of green synthesis to check their 

morphology, size, shape, purity, surface chemistry, etc. Several instruments have been 
utilized for characterizations of green synthesized AgNPs such as UV-visible spectro-
photometry, X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission 
electron microscope (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Dynamic 
light scattering (DLS), and Zeta potential analyzer, etc. Synthesis of AgNPs is initially 
observed by the naked eye due to the change of color. Generally, the dark brown color of 
the reaction mixture indicates the synthesis of AgNPs. Then, the formation of AgNPs is 
confirmed by UV-visible spectrophotometry. Synthesized AgNPs showed a strong peak 
at around 400–470 nm in UV-visible spectrophotometry. The absorption spectra de-
pended on the morphology, size and shape of biosynthesized of AgNPs [12,140]. SEM 
and TEM are the powerful tools to characterize the nanoparticles. Both SEM and TEM are 
used to observe the morphology, shape, size, and the degree of particle aggregation and 
purity of synthesized nanoparticles [21,108,114]. XRD is an analytical technique which 
has been utilized to evaluate the structural features of nanoparticles such as the degree of 
crystallinity, particle sizes, etc. [20]. Dynamic light scattering (DLS) is used to investigate 
the hydrodynamic size and polydispersity index of synthesized nanoparticles. Meas-
urement of Zeta potential is very important to check the stability of AgNPs in aqueous 
suspensions. AgNPs with a Zeta potential less than −25 mV or greater than +25 mV typ-
ically have high stability [108,141]. 

FTIR spectroscopy is a very important tool to investigate the biomolecules respon-
sible for the capping and stabilizing of nanoparticles [2]. Biosynthesis of AgNPs using 
culture supernatant of Sphingobium sp. MAH-11 and their characterization by UV–vis, 

Figure 3. Optimization of parameters for stable, monodispersed, rapid and high-yield of AgNPs.

6. Characterization of Green Synthesized AgNPs

Characterization of AgNPs is an important step of green synthesis to check their mor-
phology, size, shape, purity, surface chemistry, etc. Several instruments have been utilized
for characterizations of green synthesized AgNPs such as UV-visible spectrophotometry,
X-ray diffraction (XRD), Scanning electron microscope (SEM), Transmission electron micro-
scope (TEM), Fourier Transform Infrared Spectroscopy (FTIR), Dynamic light scattering
(DLS), and Zeta potential analyzer, etc. Synthesis of AgNPs is initially observed by the
naked eye due to the change of color. Generally, the dark brown color of the reaction
mixture indicates the synthesis of AgNPs. Then, the formation of AgNPs is confirmed
by UV-visible spectrophotometry. Synthesized AgNPs showed a strong peak at around
400–470 nm in UV-visible spectrophotometry. The absorption spectra depended on the
morphology, size and shape of biosynthesized of AgNPs [12,140]. SEM and TEM are the
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powerful tools to characterize the nanoparticles. Both SEM and TEM are used to observe
the morphology, shape, size, and the degree of particle aggregation and purity of synthe-
sized nanoparticles [21,108,114]. XRD is an analytical technique which has been utilized to
evaluate the structural features of nanoparticles such as the degree of crystallinity, particle
sizes, etc. [20]. Dynamic light scattering (DLS) is used to investigate the hydrodynamic size
and polydispersity index of synthesized nanoparticles. Measurement of Zeta potential is
very important to check the stability of AgNPs in aqueous suspensions. AgNPs with a Zeta
potential less than −25 mV or greater than +25 mV typically have high stability [108,141].

FTIR spectroscopy is a very important tool to investigate the biomolecules responsible
for the capping and stabilizing of nanoparticles [2]. Biosynthesis of AgNPs using culture
supernatant of Sphingobium sp. MAH-11 and their characterization by UV–vis, TEM, XRD,
DLS, and FTIR has been reported by Akter and Huq [2]. Synthesis of AgNPs was initially
observed by changing of color into dark brown and finally the synthesis was confirmed on
the basis of the appearance of a sharp peak at 423 nm in the UV–vis region of the spectrum.
The TEM analysis revealed the spherical shape and the size was 7–22 nm. The SAED pattern
revealed sharp rings which indicated the crystalline nature of synthesized AgNPs. The
XRD pattern also showed the crystalline structure of AgNPs. The FTIR spectrum showed
that various biomolecules acted as reducing agents as well as capping and stabilizing
agents during the synthesis process (Figure 4), [2]. Sukweenadhi et al. [25] have reported
the green synthesis of AgNPs from leaf extract of Plantago major and the synthesized AgNPs
were characterized by UV–vis, TEM, SEM, XRD, DLS and FTIR.

1 
 

 

Figure 4. R2A broth with AgNO3 as control (A); biosynthesized AgNPs (B); UV–vis spectra (C);
FE-TEM images (D,E); SAED pattern (F); EDX spectrum (G); X-ray diffraction pattern (H); and FT-IR
spectra of biosynthesized AgNPs (I). This figure has been reprinted with permission from Ref. [2],
copyright 2020, Informa UK Limited.

7. Antibacterial Application of Green Synthesized AgNPs

At the present time, nanoparticles have gained lots of attention by reason of the
continuous improvement in treatment of bacterial infections and diseases, as well as
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inefficient treatment [142]. Among many applied nanoparticles, AgNPs have shown
significant application in the reduction of pathogenic microbes and also in the treatment
of microbial infections. Due to the rapid increase of antibiotic resistance in this period,
this has revived the attention of the researchers investigating the therapeutic abilities of
AgNPs systems as potential antimicrobial agents [142]. The published articles proposed the
antibacterial activities of AgNPs, and explored them as a promising strategy which could
be used as effective growth inhibitors in various microorganisms, antimicrobial control
systems and for developing silver-coated medicinal devices, and silver-based dressings,
such as nanogels, nanolotions, etc. [12,143,144]. The smaller particle size and greater surface
volume of AgNPs holds an extensive contact area with the microbes. These features of
AgNPs strongly increases their biological and chemical properties, which greatly helps
them to show as robust bactericidal material [145]. This study also showed that AgNPs
inhibited the growth of E. coli ATCC-15224 on both liquid as well as solid growth media.
AgNPs with the concentration of 60 µg/mL have shown a complete cytoxicity to the E. coli
bacterial strain, and the lower concentration of 60 µg/mL inhibited bacterial cell growth
and multiplication [145].

Recently, AgNPs were synthesized using different plants and their various parts as
well as bacteria, and the AgNPs produced were tested against various pathogenic microbes
including multidrug-resistant bacteria (Tables 1 and 2). Huq and Akter [106] reported
bacterial-mediated synthesis of AgNPs and their antibacterial activity against pathogenic
strains of K. pneumoniae and S. Enteritidis. The synthesized AgNPs showed a 17.6 and
a 16.8 mm zone of inhibition (ZOI) against K. pneumoniae and S. Enteritidis, respectively,
whereas some commercial antibiotics such as erythromycin, penicillin, vancomycin, olean-
domycin, novobiocin, and lincomycin were resistant or displayed very weak activity against
these pathogens. The minimum inhibitory concentration (MIC)/minimum bactericidal con-
centration (MBC) values of synthesized AgNPs against K. pneumoniae and S. Enteritidis were
12.5/50.0 and 25.0/50.0 µg/mL, respectively. These MIC/MBC values were well below other
antimicrobial agents including zinc oxide and gold nanoparticles against K. pneumoniae and
S. Enteritidis. Another study reported Arthrobacter bangladeshi mediated green synthesis
of AgNPs and investigated their antibacterial activity against pathogenic strains of S. ty-
phimurium and Y. enterocolitica. The green synthesized AgNPs showed a 18.3 and a 20.4 mm
ZOI against S. typhimurium and Y. enterocolitica, respectively. The MIC/ MBC values of synthe-
sized AgNPs against S. typhimurium and Y. enterocolitica were 6.2/12.5 and 3.1/12.5 µg/mL,
respectively. These MIC/MBC values were significantly lower than some other antimicrobial
agents against S. typhimurium and Y. enterocolitica [109].

Ahmed et al. [36] reported the green synthesis of AgNPs using dried leaf extract
of Tasmanian flax-lily and evaluated their antibacterial activity against several microbes
including S. aureus, S. epidermidis, P. aeruginosa and C. albicans. Chlorophytum borivilianum
callus extract was utilized for the green synthesis of AgNPs and the synthesized nanoparti-
cle was used to investigate the antimicrobial activity towards the human pathogens such
as B. subtilis, S. aureus, P. aeruginosa and E. coli. This result revealed that the synthesized
AgNPs showed strong inhibitory activity against tested pathogens [44]. Plantago major,
Prunus africana and Camellia sinensis were also reported to synthesize small-size AgNPs
and evaluated against S. aureus, E. coli, P. aeruginosa and K. pneumoniae [25,35]. It has been
reported that smaller size NPs showed higher antibacterial activities due to the larger
surface area [146]. It was reported that AgNPs has shown remarkable antibacterial efficacy
against antibiotic-resistant human pathogenic strains S. aureus, E. coli, and P. aeruginosa [2].
Hasnain et al. [45] reported on the purple heart plant leaves extract -mediated synthesis of
AgNPs and evaluated their antibacterial activity against E. coli, and S. aureus. They found
that the purple heart plant leaves extract-mediated synthesized AgNPs showed signifi-
cantly strong antibacterial activity against both E. coli, and S. aureus compared to the purple
heart plant leaves extract. Another report also proposed the excellent antimicrobial activity
of biosynthesized AgNPs against various Gram-negative and Gram-positive pathogenic
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microorganisms which showed the way to use it as a potential application of antibacterial
agent against multidrug-resistant bacteria [126].

Recently a few studies have stated that the conjugation of AgNPs with bactericidal
agents may reduce the toxic effect towards the mammalian cells whilst increasing the
bactericidal activity. This conjugation helps to increase the amount of antibacterial agent
in the specific bacterial site and thus the therapeutic activity of the antibiotic agents could
be enhanced against the bacterial infection [147,148]. It was also reported that AgNPs can
be applied on a clinical platform against human pathogenic strains C. albicans, S. enterica,
E. coli, and V. parahemolyticus [134,135]. It was demonstrated that green synthesis AgNPs
has shown antimicrobial activity against multidrug-resistant pathogenic microbes. They
also mentioned that it was ecofriendly, safe, facile, effective, and economical, which could
be applied in both medical and non-medical sectors, especially as an antimicrobial agent
to control drug-resistant pathogens [20]. The biosynthesized AgNPs presented great an-
timicrobial effect against multidrug-resistant pathogens such as S. aureus and P. aeruginosa.
The MBCs to inhibit S. aureus and P. aeruginosa were 200 and 50 µg/mL, respectively [6].
In another study this author proposed that the AgNPs synthesized by strain MAHUQ-40
showed significant antibacterial activity against V. parahaemolyticus and S. Typhimurium
with MICs 3.12 and 6.25 µg/mL, respectively [114], whereas some commercial antibiotics
such as penicillin G, erythromycin, oleandomycin, lincomycin, and vancomycin were
resistant or displayed very weak activity against these pathogens. Another study inves-
tigated antimicrobial activity against both Gram-positive B. cereus and Gram-negative
bacteria P. aeruginosa. The bacterial-mediated synthesized AgNPs inhibited the growth of
pathogenic strains B. cereus and P. aeruginosa through developing a clear zone of inhibi-
tion [12]. Due to this killing ability, AgNPs are recognized for their remarkable antibacterial
activity. Moreover, the modification in AgNPs surface developed the interactions of the
constituents and this surface modification of AgNPs through chemical functionalization
has gained much consideration which could be useful in numerous areas such as medical,
engineering, and biological uses [149,150].

8. Antibacterial Mechanisms of AgNPs

The most important thing about nanoparticles is their mechanism of action and this
mechanism mostly depends upon the size, pH, and ionic strength of the medium, and
also on the type of capping agent. However, the complete antibacterial mechanism of
AgNPs is still not fully known and has not been completely explained. According to the
previous studies, it could be considered that AgNPs may frequently release the silver ions
(Ag+), which might be considered as one of the mechanisms behind the bactericidal activity
of AgNPs [142,151]. It has been demonstrated that the Ag+ ion forms complexes with
the nucleic acids and interacts with the nucleosides of nucleic acids to show antibacterial
activities. Nanoparticles altered the membrane permeability as evident from the release
of sugars, proteins, and nuclear material through the damaged membrane [152]. The
electrostatic attractions as well as an affinity towards the sulfur proteins enhanced the
adhesion of Ag+ ion to the cytoplasm and cell membrane and lead to the disruptions of
bacterial casings with enhancing the permeability of bacterial cell membrane [153].

The production of reactive oxygen species (ROS) is increased due to the production of
free Ag+ ions by the cells, which may interrupt adenosine triphosphate (ATP) release [154].
This ROS may play an important role to disrupt the cellular membrane and the alteration
in the deoxyribonucleic acid, which could cause different issues related to DNA, including
DNA replication and cell propagation. On the other hand, free Ag+ ions may efficiently
interfere the protein synthesis by denaturing cytoplasmic ribosomal components [155]. The
release percentage of Ag+ ions can inhibit the growth of bacteria because the nanoscale
size of AgNPs has the ability to penetrate the bacterial cell wall as well as denaturation
of the cell membranes [156]. Due to denaturation of the cell membrane the intracellular
and extracellular components of bacterial cell membrane may be ruptured which also
causes cell lysis [157]. The antibacterial mechanisms of the AgNPs are mainly influenced
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by their dissolution profile in the reaction media and dissolution efficacy also depend on
the synthesis and processing parameters [158]. Although the exact antibacterial mechanism
of AgNPs has not been entirely clarified, different antibacterial actions of AgNPs have been
proposed in Figure 5.
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The researchers proposed that the biosynthesized AgNPs may affect the bacterial
cell morphology and penetrate the cell membrane by damaging the of cell wall of E. coli
and S. aureus, which may decrease the reproduction of cell and ultimately lead to cell
death. The FE-SEM images proved the strong antibacterial mechanism of AgNPs against
pathogenic bacteria and promoted the application of AgNPs as an antimicrobial agent [2].
Another study demonstrated that synthesized AgNPs changed the structural function of
bacterial cells like S. aureus and P. aeruginosa. These mechanical activities of the proposed
AgNPs create a promising hope to recognize it as an effective antimicrobial agent for
various therapeutic applications against S. aureus and P. aeruginosa infections [6]. It was
stated that AgNPs show the efficacy to alter the cell morphology as well as damage the
cell membrane of tested pathogens (Figure 6). The main mechanism of AgNPs is that
these nanoparticles strongly attach to the bacterial cell membrane surface and disturb its
proper function, because of the enhancement of DNA damage [126]. The AgNPs also have
the capability to penetrate the cell membrane and when it penetrates the cell membrane
it potentially disrupts the cellular components by reacting with the sulphur-mediated
proteins and phosphorus-mediated complexes like deoxyribonucleic acid [159]. Scanning
electron microscopy (SEM) and TEM studies demonstrated that AgNPs shown the ability
to adhere and interact with E. coli and penetrate into the bacterial cells. This adhesion and
interaction ability increases the antibacterial activity of AgNPs, which are attributed with
total surface area of nanoparticles [145]. Thus, the ecofriendly synthesis of AgNPs could be
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useful in various applications in both pharmaceutical and non- pharmaceutical sectors to
eradicate drug-resistant pathogens [20].
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AgNPs have changed and damaged V. parahaemolyticus and S. typhimurium membrane
integrity, which reduced the metabolic activity and normal cell function caused bacterial
cells’ death [114]. The field emission scanning electron microscopy analysis demonstrated
that AgNPs were responsible for damaging the cell wall and altering the cell morphology
of treated Gram-positive and Gram-negative pathogenic bacteria, leading to the death of
cells [12]. The literature demonstrated that AgNPs trigger the inhibition of protein synthesis
as well as cell wall synthesis, which provides strong evidence about the protein disruption
of the outer cellular membrane and increasing ATP leakage, resulting in cell death [160].

Apart from these, the size and shape of the AgNPs increase the release of Ag+ ions
owing to their greater surface area which influence potential activity against bacterial
disease. The dissolution rate of AgNPs also interferes with its antimicrobial level. If the
dissolution rate is high, then the potential activity could be increased [161]. It is generally
proposed that AgNPs smaller than 10 nm may directly penetrate cell membranes, enter
into the bacterial cells, and initiate cell lysis [162]. Therefore, the finding may provide a
meaningful statement about AgNPs to use as an alternative antibacterial agent to protect
pathogenic bacteria as well as to treat bacterial infectious diseases.

9. Conclusions and Future Prospects

Green synthesis of AgNPs is preferred due to its eco-friendly nature. The utilization
of various parts of plant, bacteria, fungi, algae is an efficient, facile and environmentally
friendly way to synthesize AgNPs. Plant extracts contain different biomolecules such as
amino acids, proteins, enzymes, terpene, alkaloids, flavonoids, phenols, tannins, vitamins,
etc., which act as reducing, capping, and stabilizing agents. Similarly, microorganisms syn-
thesize various extracellular and intracellular biomolecules such as enzymes, amino acid,
proteins, and many other primary and secondary metabolites that act as reducing agents as
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well as capping and stabilizing agents during the synthesis process. Biosynthesized AgNPs
have great bactericidal potential against various Gram-positive and Gram-negative bacteria.
In this review, green synthesis of AgNPs using plants and microbes has been comprehen-
sively reviewed. The antibacterial applications and mechanisms of the biosynthesized
AgNPs against pathogenic microbes have also been highlighted. Although the rapid, facile
and eco-friendly synthetic methods using plants and microbes have shown great potential
in AgNPs, the exact mechanism of synthesis and the mode of antimicrobial action are still
not fully understood. Hence, several points might be considered for the future synthesis of
AgNPs from plants or microbes. First, the selection of plant or microbes for easy, rapid and
eco-friendly synthesis. For plant selection, researchers should consider the availability of
plants and their extraction process. Plants should be available and the extraction process
should be simple for facile and mass production of AgNPs. Similarly, researchers should
focus on non-pathogenic and rapid growth microbes for safe and easy handling during
the synthesis process. In this case, probiotic microbes could be the great synthetic agent.
Second, investigation of the biomolecules present in plant extracts or in microbial biomass
or culture supernatant. It is believed that different biomolecules present in plant extracts or
in microbial culture supernatant are mainly responsible for the synthesis and stabilization
of AgNPs. The role of various enzymes for biosynthesis needs to be studied in detail.
Additionally, these biomolecules are also responsible to enhance the antibacterial efficacy
of synthesized AgNPs. Therefore, it is important to investigate the biomolecules present
in the plant extract or in microbial culture supernatant for successful synthesis of AgNPs.
Third, optimization of parameters for rapid, stable and mass production of AgNPs. Several
studies reported that various parameters such as concentration of the plant extract and
AgNO3, incubation time and temperature, pH of reaction, etc. have great effect on synthesis
process. Hence, mass production on an industrial scale can be achieved by optimizing
these reaction conditions. Fourth, investigation of the antibacterial mechanisms. Most of
the studies reported the efficacy of AgNPs in the screening level without investigating the
exact mechanisms. It is very important to find out the mode of action of AgNPs against
pathogens. Fifth, investigation of cytotoxic effect of biosynthesized AgNPs on human
cells. Some studies reported that AgNPs have cytotoxic effects on human cells. Hence, it is
essential to investigate the potential toxicity of biosynthesized AgNPs on healthy human
cells to ensure their safe use for human and the environment.
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