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Abstract

The transcription factors Runx1 and c-Myc have individually been shown to regulate important gene targets as well
as to collaborate in oncogenesis. However, it is unknown whether there is a regulatory relationship between the two
genes. In this study, we investigated the transcriptional regulation of endogenous c-Myc by Runx1 in the human T
cell line Jurkat and murine primary hematopoietic cells. Endogenous Runx1 binds to multiple sites in the c-Myc locus
upstream of the c-Myc transcriptional start site. Cells transduced with a C-terminally truncated Runx1 (Runx1.d190),
which lacks important cofactor interaction sites and can block C-terminal-dependent functions of all Runx
transcription factors, showed increased transcription of c-Myc. In order to monitor c-Myc expression in response to
early and transiently-acting Runx1.d190, we generated a cell membrane-permeable TAT-Runx1.d190 fusion protein.
Murine splenocytes treated with TAT-Runx1.d190 showed an increase in the transcription of c-Myc within 2 hours,
peaking at 4 hours post-treatment and declining thereafter. This effect is dependent on the ability of Runx1.d190 to
bind to DNA. The increase in c-Myc transcripts is correlated with increased c-Myc protein levels. Collectively, these
data show that Runx1 directly regulates c-Myc transcription in a C-terminal- and DNA-binding-dependent manner.
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Introduction

The transcription factor Runx1 (also known as AML-1,
PEPB2αB, CBFα2) is a member of the Runx family of
transcription factors. It was originally isolated as a regulator of
viral enhancers [1,2] as well as the target of chromosomal
translocations in human leukemia [3,4], and plays critical roles
in hematopoiesis [5–12]. There are three mammalian Runx
family members, which share a highly conserved Runt
homology domain that is responsible for binding to DNA and
was first characterized based on significant homology to the
Drosophila pair-rule gene runt [1,3,13–19]. Besides the highly
conserved runt domain, Runx family members also contain a
nuclear localization sequence (NLS) C-terminally juxtaposed to
the runt domain as well as a downstream nuclear matrix
targeting sequence (NMTS) [20,21]. The C-terminus of Runx

transcription factors also contain sites for cofactors so that
Runx transcription factors nucleate complexes that enhance or
repress transcription in a cell context- or gene locus-dependent
manner [20,22–34]. The deletion of the Runx1 C-terminus
downstream of the NLS (Runx1.d190) increases DNA-binding
affinity and blocks Runx activity that is dependent on the
presence of the Runx C-terminus, such as Foxp3
transactivation and CD4 silencing [35–37]. CD4 can be
silenced by all three Runx family members; Runx1.d190 blocks
all CD4-silencing activity [36]. RAG-1 and RAG-2 are also
silenced by an intergenic silencer whose activity is dependent
on one Runx binding site [38].

The interaction of Runx1 with its ubiquitously expressed non-
DNA-binding partner CBFβ via the Runt domain increases the
affinity of Runx1 for DNA [39–42]. Moreover, the binding of
CBFβ to Runx1 decreases degradation of Runx1 [43]. Runx1
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binds to the DNA consensus sequence YGYGGT, where Y
represents a pyrimidine [15,39,44]. Single missense mutations
within the Runt domain severely diminish or even ablate
binding Runx1 DNA binding and are associated with
myelodysplasia and the development of acute myeloid
leukemia, perhaps by haploinsufficiency and lowered gene
dosage or by interference with the homodimerization of
wildtype Runx1 or its binding to CBFβ. The translocation
product AML1-ETO and frameshift and nonsense mutations
resulting in the loss of the C-terminus, with concurrent retention
of nuclear localization, CBFβ-binding and DNA-binding, are
thought to be associated with leukemia through dominant
opposition to C-terminally-dependent functions of endogenous
Runx transcription factors [45–50].

The master regulatory transcription factor c-Myc also is
critical for hematopoiesis and oncogenesis, and regulates the
transcription of 15% of all genes (www.myc-cancer-gene.org
[51–53]). C-Myc controls various fundamental and diametrically
opposed cellular processes such as cell division, growth,
differentiation and apoptosis in a cell context-dependent
manner [54–57]. It is commonly elevated in aggressive cancer
cells, accumulating at the promoters of actively transcribed
genes and amplifying the cancer cell transcriptome [58].
Transient expression of c-Myc is also important for the cellular
reprogramming that generates induced pluripotent stem cells
[59,60]. C-Myc is regulated at transcriptional and translational
levels primarily by mitogenic signals associated with growth
and proliferation [61,62]. C-Myc protein is also strictly regulated
and has a very short half-life of less than 30 minutes, further
highlighting the importance of the tight regulation of the gene
and its protein product in a normal cell [63–65].

Runx1 cooperates with c-Myc in oncogenesis as well as in
accelerating the development of Myc-induced lymphomas
[66–68]. However, it is unknown whether there is a direct
regulatory relationship between the two genes. In this study we
investigate whether Runx1 directly regulates the expression of
c-Myc in hematopoietic cells. We show that endogenous
Runx1, as well as a C-terminally truncated form of Runx1
(Runx1.d190), directly bind to both the human and murine c-
Myc loci. We also show that introduction of Runx1.d190
increases the transcription and protein levels of c-Myc in
immune system cells. Since Runx1.d190 blocks functions of
Runx transcription factors that require association of the Runx
C-terminus with Runx-binding sites on the DNA, it is likely that
full-length Runx1 represses c-Myc transactivation.

Materials and Methods

Ethical statement
All animal work was conducted in accordance with an animal

use protocol approved by the University of Massachusetts
Amherst Institutional Animal Care and Use Committee
(2011-0046).

Plasmid constructs
The DNA sequences corresponding to the first 204 amino

acids of distal Runx1 (distal Runx1.d190) and full-length distal
Runx1 (Runx1 FL) were subcloned from MSCV constructs [36]

by digestion with BglII and EcoRI and ligation into the BglII/
EcoRI-digested vector pEGFP-N1 (Clontech, Mountain View,
CA), in frame at its 3’ end with EGFP. The DNA sequence
corresponding to the first 204 amino acids of distal Runx1
(distal Runx1.d190) was subcloned into the EcoRI-NheI sites of
the pLEIGW [69] lentiviral vector. Distal Runx1.d190 was PCR-
amplified with primers containing EcoRI and XhoI sites: forward
5’-
GAGGAATTCGATGGCTTCAGACAGCATTTTTGAGTCATTTC
C-3’, reverse 5’-
CGGCTCGAGCCCGGGCTTGGTCTGATCATCTAG-3’. The
DNA was ligated into the pET30 vector (EMD Millipore,
Billerica, MA) or the pET 28b TAT vector 2.1 (generous gift of
Dr. S.F. Dowdy) and confirmed by sequencing. The
QuikChange Site-Directed Mutagenesis kit (Agilent
Technologies, Santa Clara, CA) was used to generate the
lysine 167 to alanine (K167A) mutation in the TAT-distal
Runx1.d190 construct according to the manufacturer’s
instructions and using the primers: forward, 5’-
CCATAGAGCCATCGCAATCACAGTGGACGGCCCC-3’ and
reverse, 5’-GGGGCCGTCCACTGTGATTGCGATGG
CTCTATG-3’. The construct was sequenced to confirm the
presence of the lysine 167 to alanine mutation.

Transfection and staining of 293T cells
293T cells were transfected with 6 µL of FuGene HD (Roche,

Indianapolis, IN) and 1 µg of pEGFP-N1 vector alone, or
pEGFP-N1 with Runx1.d190 or full-length Runx1 fused in
frame to the 5’ end of EGFP as per manufacturer’s instructions.
Forty-eight hours after transfection, cells were stained with 1
µg/mL Hoescht 33342 (Pierce, Rockford, IL) in PBS. Images
were acquired with an Axiovert 200M Zeiss microscope, 40x,
and Improvision Openlab software.

Lentiviral packaging and infection
Supernatants were harvested 48 hours after transfection of

293T cells with 1 µg of the pLEIGW-Runx1.d190 construct or
empty pLEIGW and 6 µL of FuGene 6 (Roche). Lentiviral
supernatants along with 6 µL FuGene 6 were added to 2×105

Jurkat T cells (clone E6-1, American Type Culture Collection,
Manassas, VA, USA) that had been seeded into six-well plates
16 hours previously. The cells were left to recover for 48 hours
after which they were analyzed by flow cytometry. GFP+ cells
were enriched to more than 90% on a cell sorter and
maintained in RPMI 1640 (Invitrogen, Carlsbad, CA) with 10%
heat-inactivated FBS and antibiotics at 37°C and 5% CO2.

Microarray data analysis
Jurkat T cells transduced with empty vector pLEIGW or

pLEIGW-Runx1.d190, cloned and matched for comparable
EGFP expression were lysed in Qiazol (Qiagen). RNA was
extracted according to the manufacturer’s instructions and was
run on 2 Illumina Mouse6 v2 BeadArrays to provide a technical
replicate for each experiment. Raw expression data were
analyzed in R (v 2.10.1) using the Bioconductor (v 2.6.1)
beadarray package (v 1.14.0) [70–72]. Limma (v 3.2.3) was
used to log2 transform and quantile normalize raw expression
values [73]. For differential expression analysis arrays were
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classified either as “Control” or “Experimental”. Replicate
arrays were treated as true technical replicates and not
biological replicates; correlation between technical replicates
was calculated using the “duplicateCorrelation” limma function.
The technical replicate correlation was used during the initial
“lmFit” linear modeling step. The probability of a true difference
in expression (empirical Bayes statistics) between classes was
calculated using the “eBayes” function. The probability of
differential expression was corrected for multiple tests by the
false discovery rate (FDR; Benjamini and Hochberg method)
[74]. Probes with p-values less than 0.05 were considered to
be differentially expressed. Of the 45,281 transcript probes
interrogated by the Illumina array a total of 7,034 probes
(15.5%) met our cutoff criteria.

Chromatin immunoprecipitation (ChIP) assay
The ChIP assays were carried out using Protein G agarose

beads (Millipore, Billerica, MA) according to manufacturer’s
instructions, with the following modifications. 2 x 106 cells/mL
were fixed with 1% formaldehyde (methanol-free, Ted Pella,
Redding, CA) for 10 minutes at 37oC. To prepare chromatin,
cells were sonicated at a concentration of 2 x 106 cells/300 µL.
Jurkat T cells were sonicated 3 times on ice at 25% power for
10 second pulses and splenocytes were sonicated for 3 times
on ice at 30% power for 10 second pulses. Chromatin was
immunoprecipitated with the control antibody rabbit pre-
immune sera, rabbit polyclonal murine anti-distal Runx1 [37],
IgG (Southern Biotech, Birmingham, AL) or a His-probe (AD
1.1.10) antibody (Santa Cruz Biotechnology, Santa Cruz, CA).
Protein-DNA complexes were eluted by incubating tubes at
50oC for 10 minutes then at room temperature for 10 minutes
with rotation for a total of 2 times. DNA was purified using
QIAEX II resin (Qiagen). 1-2 µL of the DNA was used as a
template in a 25 µL reaction using PCR master mix or Hot Start
PCR master mix (Promega) according to the manufacturer’s
instructions. Murine c-Myc primers and conditions were as
follows: (i) -0.9 kb forward 5’-
AGGGTACATGGCGTATTGTGTGGA-3’, -0.9 kb reverse 5’-
ATGAATTAACTGCGCGCCCGA-3’; (ii) -4.25 kb forward 5’-
GGGTACAGTACGGGCAAGTC-3’, -4.25 kb reverse 5’-
TGGGTAGAGCTGACCCTCAA-3’; (iii) -5.37 kb forward 5’-
AAGCGTCTCAAGGATGACCGTTC-3’, -5.37 kb reverse 5’-
AACAGGGCCTCATTTGTGGTCA-3’; and (iv) -7.63 kb forward
5’-CCATATCTGCACACTGAAGCA-3’, -7.63 kb reverse 5’-
TGGGTCTCCTGATGTTCCTC- 3’. Cycling conditions: 95°C, 2
minutes; 95°C, 30 seconds; 54°C (primer set iv) or 58°C (primer
sets i, ii and iii), 30 seconds; 72°C, 30 seconds for 35 cycles.
Human c-Myc primers and conditions were as follows: (i) -0.83
kb forward, 5’-CACTCTCCCTGGGACTCTTG-3’, -0.83 kb
reverse 5’-CAGCCGAGCACTCTAGCTCT-3’; (ii) -7.86 kb
forward 5’-AAGGAGGCCTTTCTCTGACAGCTA-3’, -7.86 kb
reverse 5’-CTCAGCACTTTGGTTCAGGCAGTT-3’; and (iii)
-8.93 kb forward 5’-AATGCCCAGATCCACTCACCAAGA-3’
-8.93 kb reverse 5’-TTGGAGACAATTCCAAACCCACCC-3’.
Cycling conditions: 95°C, 30 seconds; 56°C (primer set i), 59°C
(primer sets ii and iii), 30 seconds; 72 °C, 30 seconds for 29-35
cycles. Adobe Photoshop (San Jose, CA) was used to quantify
band intensity and background.

Anti-distal Runx1 antibody affinity comparison
2.5 µg of histidine-tagged Runx1.d190 or TAT-Runx1.d190

was incubated with 10 µL of 50% slurry Nickel Sepharose 6
Fast Flow beads (GE Healthcare, Piscataway, NJ) in 100 µL of
PBS containing 1 µg/mL pepstatin and 1 µg/mL aprotinin at 4oC
for 3 hours. Samples were made up to 1 mL volumes with PBS
containing 1 µg/mL pepstatin and 1 µg/mL aprotinin and fixed
with 1% formaldehyde (methanol-free, Ted Pella) at 37oC for
10 minutes to mimic ChIP conditions or samples were left
unfixed for later assessment of protein retention by the beads.
The supernatant was removed and the beads were washed
with ice-cold PBS containing 1 µg/mL pepstatin and 1 µg/mL
aprotinin. The beads were resuspended into 1 mL of ChIP
dilution buffer containing 1 µg/mL pepstatin and 1 µg/mL
aprotinin. Anti-mouse distal Runx1 or preimmune sera was
added after which the mixture was incubated overnight at 4oC.
The beads were subsequently washed under ChIP conditions.
10 µL of 2x Laemmli buffer was added to the samples, which
were then boiled at 95oC for 10 minutes. The entire sample
was loaded onto a 12% SDS-PAGE gel. Immunoblot analysis
was carried out as described below to probe for bound anti-
distal Runx1 immunoglobulin on fixed protein beads (anti-rabbit
IgG-HRP, Santa Cruz Biotechnology) and bound polyhistidine-
tagged protein on unfixed beads (Tetra-His antibody from
Qiagen, Valencia, CA).

Purification of and transduction with TAT-Runx1.d190
and TAT-Runx1.d190-KI67A protein

Bacterial cultures containing TAT-distal Runx1.d190 or TAT-
distal Runx1.d190-K167A inserted into pET 28b TAT 2.1
plasmid were grown in Terrific broth at 37oC with shaking and
diluted 1:10 after 16 hours. 500 µM IPTG was added and the
culture was shaken for 5 hours at 37oC. Cells were centrifuged
at 5000 rpm for 10 minutes, resuspended in 10 mL of buffer Z
(8M urea, 100mM NaCl, 20 mM HEPES pH 8.0) and sonicated
3 times on ice at 30% for 15 second pulses. The lysate was
clarified by centrifugation at 12,000 rpm for 10 minutes at 4oC.
Halt protease inhibitor cocktail (Thermo Scientific, Rockford, IL)
was added (according to manufacturer’s recommendations) as
well as 20mM imidazole. The lysate was incubated with 5 mL
50% slurry Nickel Sepharose 6 Fast Flow beads (GE
Healthcare) in buffer Z plus 20 mM imidazole overnight at 4oC.
The beads were washed with 5 bead volumes of 20 mM
imidazole in buffer Z for 15 minutes at 4oC for a total of 3 times.
The protein was eluted by adding 2 bead volumes of 200 mM
imidazole in buffer Z and incubating for 2 hours at 4oC with
rotation. The beads were collected at 500 x g for 5 minutes at
4oC and the elution was repeated using 500 mM imidazole in
buffer Z with rotation overnight at 4oC. The combined protein
fractions was diluted with one volume of 20 mM HEPES pH 8.0
and filtered after which the protein was concentrated using
Amicon Ultra-10K MWCO (Millipore) according to the
manufacturer’s instructions. The urea/imidazole buffer was
further exchanged for PBS, pH 7.4 containing 10% glycerol, 1
µg/mL pepstatin and 1 µg/mL aprotinin using a PD-10 (GE
Healthcare) desalting column according to manufacturer’s
instructions. LPS was removed by adding 60 µL polymyxin
bead suspension (Sigma, St. Louis, MO) per milliliter of eluted
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protein and incubating with rotation for 5 minutes at 4oC. The
purified protein was centrifuged at 13,000 rpm for 10 minutes
after which it was filtered to 0.2 microns, aliquoted, flash frozen
and stored at -80oC. The protein concentration was determined
by comparison to BSA standards on a Coomassie stained
SDS-PAGE gel.

Red blood cells in C57Bl/6J splenocytes were lysed by
adding 0.9 mL lysis buffer (144 mM ammonium chloride, 17
mM Tris-HCl pH 7.2), incubating for 5 minutes, after which the
cells were washed twice with CBE (PBS, 0.2% BSA and 1mM
EDTA, pH 7.4). The cells were resuspended in HL1 serum free
media (Lonza, Allendale, NJ) supplemented with 2mM
Glutamax, 50 units/mL penicillin, 50 µg/mL streptomycin and
0.05 µg/mL gentamycin (Invitrogen). 6-8 x 106 cells were
treated with 0.5 µM TAT peptide 48-57 (Anaspec, Fremont,
CA) or TAT-distal Runx1.d190 for 1-4 hours in a 1 mL volume.

Immunoblot analysis
For analysis of TAT fusion protein purification, proteins were

separated on a 12% SDS-PAGE gel and transferred to
Immobilon P (Millipore). The blot was probed with Tetra-His
antibody (Qiagen) according to manufacturer’s instructions.

For analysis of c-Myc protein levels, splenocytes were
harvested from C57Bl/6J mice and the red blood cells were
lysed as described above. 6-8 x 106 cells/mL of supplemented
HL1 serum-free media were treated with 0.5 µM TAT peptide
48-57, TAT-Runx1.d190-K167A or TAT-Runx1.d190 protein for
4 hours. The cells were washed with PBS and lysed directly in
1x Laemmli sample buffer at a concentration of 1 x 106 cells/10
µL buffer and incubated at 95oC for 5 minutes and on ice for 1
minute. The lysate was transferred to a QIAshredder column
(Qiagen) and centrifuged at 13,000 rpm for 5 minutes at 4oC.
Samples containing 1-4 x106 cell equivalents were separated
on a 10% SDS-PAGE and transferred to Immobilon P
(Millipore) paper or Hybond-P PVDF (GE). The blot was probed
with anti-c-Myc 9E10 antibody or goat polyclonal anti-actin
(I-19) (Santa Cruz Biotechnology) as a loading control. Protein
levels were determined by using Adobe Photoshop to quantify
band intensities and background.

Quantitative real-time PCR analysis
2 x 106 Jurkat T cells or 6-8 x 106 splenocytes were treated

as described above and resuspended in 0.5 mL of Qiazol
(Qiagen). RNA was extracted using an RNeasy MinElute kit
(Qiagen), treated with DNAse (Invitrogen) and cDNA synthesis
carried out using AMV Reverse Transcription System
(Promega, Madison, WI) or iScript cDNA synthesis kit (Bio-
Rad, Hercules, CA). Quantitative real-time PCR reactions were
carried out using Takara SYBR Premix Ex Taq (Clontech) in
the Mx3005P system (Agilent Technologies) according to the
manufacturer’s instructions. The primers murine GAPDH1
forward 5’-CCAATGTGTCCGTCGTGGATCTG-3’; murine
GAPDH1 reverse 5’-TGCCTGCTTCACCACCTTCT TG-3’;
murine c-Myc forward 5’-GAGACACCGCCCACCACCAG-3’,
murine c-Myc reverse 5’-AGCCCGACTCCGACCTCTTG-3’,
were used with the cycling conditions: 95°C for 10 seconds,
95°C for 5 seconds, 60°C for 10 seconds, 72°C for 22 seconds
for 40 cycles. The primers murine GAPDH2 forward 5’-

TCGTCCCGTAGACAAAATGG-3’; murine GAPDH2 reverse,
5’-TTGAGGTCAATGAAGGGGTC-3’; murine CD4 forward 5’-
ACTGACCCTGAAGCAGGAGA-3’; murine CD4 reverse, 5’-
TCCTGGAGTCCATCTTGACC-3’, were used with the cycling
conditions: 95°C for 10 seconds, 95°C for 5 seconds, 54°C for
10 seconds, 72 °C for 22 seconds for a total of 40 cycles.
GAPDH2 primers were obtained from qprimerdepot and were
used to generate Figure S2. The primers human GAPDH
forward 5’- TGCACCACCAACT GCTTAGC-3’; human GAPDH
reverse 5’-GGCATGGACTGTGGTCATGAG-3’; human MYC
forward 5’-CAGCTGCTTAGACGCTGGATT-3’, human MYC
reverse 5’-GTAGAAATACGGCTGCACCGA-3’; human
SERPINB2 forward 5’-GTTCATGCAGCAGATCCAGA-3’;
human SERPINB2 reverse 5’-
CGCAGACTTCTCACCAAACA-3’ were used with the cycling
conditions: 95°C for 10 seconds, 95°C for 5 seconds, 55°C for
10 seconds, 72°C for 22 seconds for 40 cycles. Human GAPDH
and MYC primers were obtained from qprimerdepot. ΔCτ was
used to describe the difference between the threshold cycle
(CT) value of the target gene and the CT of the reference gene
GAPDH, i.e., ΔCτ = Cτ (target) -Cτ(GAPDH). The relative mRNA
expression level was calculated using the instrument’s software
as 2-[ΔCτ(treated cells) -ΔCτ (untreated cells)]. For randomly selected data
sets, calculations were performed manually to confirm
consistency with software results. PCR products were also
resolved on a 2% agarose gel to ensure that only a single band
of the correct size was present in samples.

Statistical analysis
Statistical analysis was performed using Prism 5.0 software.

Two-sided t tests with a 95% confidence interval were used to
calculate any significant differences between 2 groups. P-
values less than or equal to 0.05 were considered significant.

Results

Endogenous Runx1 occupies three consensus Runx-
binding sites upstream of the human or murine c-Myc
transcriptional start sites

In order to determine whether Runx1 is capable of regulating
c-Myc expression, we carried out chromatin
immunoprecipitation analysis (ChIP) to characterize Runx1
binding to the c-Myc locus. We surveyed the c-Myc locus 10 kb
upstream of the start site in humans (Figure 1A) and mice
(Figure 2A) for potential consensus Runx binding sites. There
are nine to eleven consensus Runx binding sites in the human
and murine 10 kb regions, for which we designed seven primer
sets. Three of these primer sets (arrow heads, Figures 1A and
2A) generated a PCR product of the correct size from input
chromatin and chromatin precipitated by an anti-Runx1
antibody recognizing the first 19 amino acids of distal Runx1,
but not from chromatin precipitated by the negative control
preimmune sera. These results indicated that endogenous
distal Runx1 binds to multiple sites in the c-Myc locus in human
Jurkat T cells (Figure 1B) and murine primary splenocytes
(Figure 2B). Several other primer sets did not generate a PCR
product of the correct size or amplified a product from
chromatin precipitated by the negative control preimmune sera
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and were thus ineligible for further use. However, a primer set
amplifying a PCR product of the correct size containing the
Runx-binding site at position -0.9 kb from input murine
splenocyte chromatin did not amplify the equivalent PCR
product from chromatin precipitated by either the negative
control preimmune sera or by the anti-Runx1 antibody,
indicating that endogenous distal Runx1 does not bind to the
consensus Runx-binding site closest to the murine c-Myc
transcriptional start site (Figure 2A, 2B).

Runx1 lacking its C-terminal half upregulates human c-
Myc transcription

We next examined whether and in what direction Runx
transcription factors regulated c-Myc transcription in human
Jurkat T cells lentivirally transduced with a C-terminally
truncated form of Runx1 (Runx1.d190). Runx1.d190 retains the
runt DNA-binding domain and nuclear localization sequence
but lacks the C-terminal half of the protein, which contains
important cofactor interaction sites (Figure 3A). Like full-length
Runx1, Runx1.d190 preferentially localizes to the nucleus of
cells (Figure 3B). Additionally, Runx1.d190 binds to DNA more
efficiently than full-length Runx1 and exhibits activity opposite
to that of Runx transcription factors for C-terminal dependent
functions [36,37]. Thus, we predicted that lentivirally-
transduced Runx1.d190 would act in dominant opposition to
endogenous Runx1 present in the control Jurkat T cells
transduced with empty vector. We carried out microarray
analysis using Illumina BeadArrays to characterize the effect of
Runx1.d190 on c-Myc transcription as well as other targets of
Runx1. Microarray analyses showed that several important
genes exhibit either positive or negative changes in their
expression upon transduction with Runx1.d190, which is
consistent with the context-dependent repressive or
transactivating activity of Runx transcription factors. The
transcript level of c-Myc is increased in Runx1.d190-
transduced Jurkat cells compared to the empty pLEIGW vector
control in microarray and quantitative real-time PCR analysis,
implying that endogenous full-length Runx1 normally represses
c-Myc expression (Figures 3C, 4B). The serpin protease
inhibitor B2 (SERPINB2), which has not been previously shown
to be a target of Runx, is also upregulated in microarray and
quantitative real-time PCR analysis (Figures 3C, 4A).
Recombination activating gene 1 (RAG1) [38] and the anti-
apoptotic gene BCL2 [75], which are known to be repressed by
full-length Runx1, are also upregulated, which is consistent
with the dominant inhibitor nature of Runx1.d190 (Figure 3C).
In contrast, the cytolytic serine protease granzyme K (GZMK) is
downregulated, which is consistent with studies that show that
Runx family transcription factors transactivate the granzyme
family member granzyme B [76] (Figure 3C). There are ten
consensus Runx-binding sites less than 10 kb upstream of the
SERPINB2 start site and the regulatory region 10 kb upstream
of the GZMK start site contains nine consensus Runx-binding
sites (data not shown), suggesting that Runx transcription
factors bind directly to both loci. ChIP analysis of human Jurkat
T cells transduced with Runx1.d190 shows Runx occupancy of
the human c-Myc locus at positions i, ii, and iii (Figure 3D).
Although the anti-distal Runx1 antisera used in the ChIP

analysis recognizes both endogenous Runx1 (Figures 1B, 2B,
and 3D) and the lentivirally transduced Runx1.d190 (Figure
3D), the change in the transcription of c-Myc and other genes
upon expression of Runx1.d190 on a background of
endogenous Runx1 suggests that Runx1.d190 is occupying at
least one of the three Runx-binding sites examined upstream of
the human c-Myc transcriptional start site.

Membrane permeable C-terminally truncated Runx1
binds to the murine c-Myc enhancer and upregulates
transcription of c-Myc

Jurkat cells are an immortalized T cell leukemia cell line, with
potential dysregulation in multiple oncogenes. Lentiviral
integration into the genome and transcriptional regulation of the
inserted gene adds to the variability of this system. To more
precisely determine the temporal nature of expression of c-Myc
in response to Runx1.d190 in normal cells, we treated murine
primary splenocytes with an early and transiently acting cell
membrane-permeable fusion protein consisting of Runx1.d190
and the cell penetrating peptide TAT (Figure 5A). The TAT
peptide is capable of transporting proteins to which it is fused
across cell membranes rapidly, with efficiencies close to 100%,
and is thus an excellent tool for delivering Runx1.d190 into
primary cells [77–80]. TAT-Runx1.d190 was purified under
denaturing conditions in order to increase its membrane-
translocation efficiency (Figure S1). TAT-Runx1.d190 labeled
with fluorescein isothiocyanate (FITC) was visualized inside
non-adherent human leukemic NK cells within 15 minutes
(Figure S2A). TAT-Runx1.d190 protein is active as
demonstrated by the derepression of CD4 (Figure S2B) which
is a known function of Runx1.d190 [36]. Attempts to generate
functional TAT-Runx1 were unsuccessful (data not shown).
The TAT-Runx1.d190 construct consists of Runx1.d190 fused
to the TAT cell penetrating peptide (YGRKKRRQRR) at its N-
terminus, along with both N-terminal and C-terminal
polyhistidine tags (Figure 5A). The anti-distal Runx1 antisera
recognizes epitopes in the N-terminal 19 amino acids of Runx1
transcribed from the distal P1 promoter. In order to determine
whether the fusion of the TAT sequence to the N-terminus of
the Runx.d190 affects its recognition by the anti-distal Runx1
antisera, we examined the binding of anti-distal Runx1 antisera
to equivalent amounts of TAT-Runx1.d190 and Runx1.d190
immobilized on beads. Both proteins have polyhistidine tags at
their N and C-termini, differing only in the presence of the TAT
peptide fused to the N-terminus of TAT-Runx1.d190 (Figure
5A). Less anti-distal Runx1 antisera is bound by TAT-
Runx1.d190 (Figure 5B, lane 6) than by an equivalent amount
of Runx1.d190 (Figure 5B, lane 3), predicting that the anti-
distal Runx1 antisera will preferentially recognize endogenous
distal Runx1 in ChIP experiments. To determine whether TAT-
Runx1.d190 could compete with endogenous Runx1 for
binding to Runx consensus sites in the c-Myc locus, primary
murine splenocytes were treated with TAT peptide (control) or
TAT-Runx1.d190 after which ChIP analysis was carried out
using anti-distal Runx1 antibody. Compared to the TAT peptide
treatment control, treatment with TAT-Runx1.d190 fusion
protein significantly decreased the association of distal Runx1
recognized by the anti-distal Runx1 antisera at all three sites
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Figure 1.  Endogenous Runx1 binds to multiple sites in the human c-Myc locus.  (A) Schematic of the human c-Myc locus 10
kb upstream of the transcriptional start site, with consensus Runx binding sites (5’-TGCGGT-3’ or 5’-ACCACA-3’) indicated as grey
rectangles. The locations of the PCR primers used in ChIP analysis are indicated by arrowheads and i, ii or iii. A grey circle
indicates that endogenous Runx1 occupies that site. (B) ChIP analysis using human Jurkat T cells. A 1% fraction was reserved as
an input control (Input) and the remaining chromatin was immunoprecipitated with preimmune sera (Pre-immune) or anti-distal
Runx1 (α-Runx1). PCR was carried out using primer sets amplifying Runx binding sites at -0.83 (i), -7.9 (ii) and -8.9 kb (iii) upstream
of the human c-Myc transcriptional start site. N=3. (C) Sequence surrounding consensus Runx binding sites. Binding sites for
transcription factors known to functionally or physically interact with Runx transcription factors (Ets-1, Hes-1, PU.1, LEF-1, Myb and
CEBPα [22,25,27,30,85,92]) or implicated in transcriptional silencing (AP4/ZEB E-box and RAP1 [86,87,93]) are identified [94].
doi: 10.1371/journal.pone.0069083.g001
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Figure 2.  Endogenous Runx1 binds to multiple sites in the murine c-Myc locus.  (A) Schematic of the murine (A) c-Myc locus
10 kb upstream of the transcriptional start site with consensus Runx binding sites indicated as grey rectangles. The locations of the
PCR primers used in ChIP analysis (shown in B) are indicated by arrowheads and i, ii, iii or iv. An X indicates a Runx binding site
that is not occupied by endogenous Runx1; a grey circle indicates that endogenous Runx1 occupies that site. (B) ChIP analysis
using primary murine splenocytes. A 1% fraction was reserved as an input control (Input) and the remaining chromatin was
immunoprecipitated with preimmune sera (Pre-immune) or anti-distal Runx1 (α-Runx1). PCR was carried out using primer sets
amplifying (B) Runx binding sites located at -0.9 (i), -4.3 (ii), -5.4 (iii) and -7.6 kb (iv) upstream of the murine c-Myc transcriptional
start site. N=3. (C) Sequence surrounding consensus Runx binding sites. Binding sites for transcription factors known to collaborate
with Runx transcription factors (Ets-1, Hes-1, PU.1, LEF-1, Myb and CEBPα [22,25,27,30,85,92]) or implicated in transcriptional
silencing (AP4/ZEB E-box and RAP1 [86,87,93]) are identified [94].
doi: 10.1371/journal.pone.0069083.g002
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examined (Figure 5C, D). The decrease in immunoprecipitated
distal Runx1 binding to the c-Myc locus upon TAT-Runx1.d190
treatment is consistent with TAT-Runx1.d190 displacing
endogenous distal Runx1. To determine whether TAT-
Runx1.d190 replaced endogenous Runx1 at any of these sites,
ChIP analysis was carried out using an anti-polyhistidine
antibody specifically recognizing only the histidine-tagged TAT-
Runx1.d190 protein. TAT-Runx1.d190 replaced endogenous

Runx1 on the murine c-Myc locus at the -5.4 kb site (Figure
5E). Although TAT-Runx1.d190 association with the -4.3 kb
and -7.6 kb sites was not detectable with the anti-polyhistidine
antibody, this could be attributable to the presence of two Runx
binding sites within 100 bp at -5.4 kb versus only one Runx
binding site each at -4.3 kb and -7.6 kb (Figure 2C). The
increased density of TAT-Runx1.d190 at -5.4 kb site may have
increased the avidity of the anti-polyhistidine antibody for TAT-

Figure 3.  Human Jurkat T cells lentivirally transduced with Runx1.d190 show increased transcription of c-Myc.  (A)
Schematic of the structure of Runx1 and Runx1.d190. (B) 293T. cells were transfected with empty pEGFP-N1 vector (EGFPonly,
left column) as a control for cytoplasmic staining, pEGFP-N1 vector containing full-length Runx1 fused in-frame to EGFP (Runx1FL,
middle column) or Runx1.d190 fused in-frame to EGFP (Runx1.d190, right column). The nuclear DNA was visualized by staining
with Hoescht 33342 (Nuclear, top row). Nuclear (top row) and EGFP (middle row) fluorescence are shown in isolation and merged
(Merged, bottom row). (C) Relative differences in transcription between Jurkat T cells lentivirally transduced with control empty
vector or vector encoding Runx1.d190 as determined by microarray analysis are shown. A complete listing of genes whose
transcription is affected by Runx1.d190 in Jurkat T cells is located at http://www.ncbi.nlm.nih.gov/geo/. (D) ChIP analysis. Chromatin
was prepared from Jurkat T cells lentivirally transduced with Runx1.d190 and immunoprecipitated with preimmune sera (Pre-
immune) or anti-distal Runx1 (α-Runx1). PCR was carried out using primer sets amplifying Runx1-binding sites at -0.83 (i), -7.9 (ii)
and -8.9 kb (iii) upstream of the human c-Myc transcriptional start site. N=3.
doi: 10.1371/journal.pone.0069083.g003
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Runx1.d190-DNA complexes so that the immunoprecipitated
DNA could be detected. Alternatively, TAT-Runx1.d190
treatment may have indirectly blocked endogenous Runx
transcription factors from binding to the -4.3 kB and -7.6 kb
sites through catalyzing nucleosome movement.

The effect of cell membrane permeable TAT-Runx1.190
on murine c-Myc transcription is dependent on the
continued binding of TAT-Runx1.190 to the locus

In order to investigate the timing of transactivation of c-Myc
by TAT-Runx.d190, we treated primary murine splenocytes
with 0.5 µM TAT-Runx1.d190 every 2 hours, harvesting 2
hours after the third treatment (sample X3, Figure 6A).
Alternatively, cells were given a single treatment of 0.5 µM
TAT-Runx1.d190 at 0 hours and harvested immediately, or at
2, 4, or 6 hours post-treatment (Figure 6A). The transcript level
of c-Myc is significantly increased in response to either single
or repeated TAT-Runx1.d190 protein treatments (Figure 6B). It
is interesting to note that there is no significant difference in the
increase in transcript levels in response to three treatments
and harvest at 6 hours compared to only one treatment of TAT-

Runx1.d190 and harvest 6 hours later, indicating that the effect
of the initial dose of recombinant TAT-Runx1.d190 is maximal
and stable for at least 6 hours (Figure 6B). C-Myc transcript
levels return to baseline in splenocytes harvested 24 hours
after one treatment with TAT-Runx1.d190 (data not shown),
suggesting that TAT-Runx1.d190 does not catalyze a long-
lasting epigenetic modification of the c-Myc locus.

To investigate whether the increase in c-Myc expression is
dependent on TAT-Runx1.d190 binding to Runx binding sites
and the ensuing blockage of endogenous Runx1 binding, we
treated splenocytes with TAT-Runx1.d190 containing a
mutation in the Runx1 runt DNA-binding domain (K167A),
which has previously been shown to decrease the binding of
Runx1 to DNA [43,45,47]. Splenocytes treated with TAT-
Runx1.d190-K167A protein exhibited a significant decrease in
c-Myc transcription compared to the mRNA levels observed in
splenocytes treated with wildtype TAT-Runx1.d190 protein
(Figure 6C), which is consistent with a model in which TAT-
Runx1.d190 is displacing endogenous Runx transcription
factors by binding to Runx binding sites in the DNA and
inducing the transcription of c-Myc by acting in opposition to
endogenous Runx1 with an intact C-terminus.

Figure 4.  Real-time PCR confirms human Jurkat T cells retrovirally transduced with Runx1.d190 exhibit increased
transcription of SERPINB2 and c-Myc.  Relative differences in transcription for SERPINB2 (A) and MYC expression (B) between
Jurkat T cells retrovirally transduced with control empty vector or vector encoding Runx1.d190 (Runx1.d190) as determined by
quantitative RT-PCR are shown. Columns represent the mean of data from two independent experiments in which duplicates were
analyzed. Error bars represent standard deviation from the mean.
doi: 10.1371/journal.pone.0069083.g004
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Figure 5.  Binding of membrane-permeable TAT-Runx1.d190 protein to the murine c-Myc locus.  (A) Schematic of TAT-
Runx1.d190 fusion protein. The Runx1.d190 protein lacks the TAT peptide, but has N-terminal and C-terminal polyhistidine tags. (B)
Differential affinity of polyclonal antisera recognizing the N-terminus of distal Runx1 for Runx1.d190 and TAT-Runx1.d190 proteins.
Histidine-tagged Runx1.d190 (lanes 2 and 3), or TAT-Runx1.d190 protein (lanes 4 and 6) adhered to nickel beads, or nickel beads
alone (lanes 1 and 5) were fixed in 1% formaldeyde to simulate ChIP conditions and incubated with control Pre-immune sera (lanes
2 and 4) or anti-distal Runx1 (α-Runx1) antisera (lanes 1, 3, 5 and 6). The amount of pre-immune or anti-distal Runx1 immunoglobin
associated with fixed Runx1.d190 or TAT-Runx1.d190 proteins is shown on a representative immunoblot probed with anti-
immunoglobin (Anti-Ig). The amount of Runx1.d190 or TAT-Runx1.d190 proteins immobilized on the beads prior to fixation is shown
on a representative immunoblot probed with anti-polyhistidine (Anti-histidine). N=3. (C) ChIP analysis of chromatin from murine
splenocytes treated with 0.5 µM TAT peptide or TAT-Runx1.d190 protein and immunoprecipitated with preimmune sera (Pre-
immune) or anti-distal Runx1 (α-Runx1). PCR was carried out with primer pairs amplifying consensus Runx-binding sites at -4.3 (ii),
-5.4 (iii), and -7.6 (iv) kb upstream of the murine c-Myc transcriptional start site. A representative of three independent experiments
is shown. (D) The PCR product yields from chromatin from TAT peptide- or TAT-Runx1.d190-treated murine splenocytes
immunoprecipitated with anti-distal Runx1, relative to input, are graphed. The PCR primers used are indicated on the x-axis. P-
values derived from a two-tailed t test indicating statistical significance are shown above the brackets. (E) ChIP analysis of
chromatin prepared from murine splenocytes treated with 0.5 µM TAT peptide or TAT-Runx1.d190 protein and immunoprecipitated
with control IgG (IgG) or anti-polyhistidine (α-Histidine). PCR was carried out with primer pairs amplifying consensus Runx-binding
sites at -4.3 (ii), -5.4 (iii), and -7.6 (iv) kb upstream of the murine c-Myc transcriptional start site. N=3.
doi: 10.1371/journal.pone.0069083.g005
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Figure 6.  TAT-mediated Runx1.d190 increases c-Myc transcription in primary murine splenocytes.  (A) Experimental design.
Murine splenocytes were left untreated (Untr.), or treated with 0.5 µM TAT-Runx1.d190 protein every 2 hours for a total of 3
treatments (X3), and harvested at the 6 hour time point. Alternatively, splenocytes were given a single protein treatment of 0.5 µM
TAT-Runx1.d190 protein and harvested at 0, 2, 4 or 6 hours post-treatment. (B) SYBR Green real time PCR was carried out using
cDNA prepared from the samples treated as in (A). The results of 2 independent experiments are shown. Treatment conditions
described in (A) are indicated on the x-axis. Bars represent standard deviation from the mean. (C) Real-time PCR was carried out
using cDNA from murine splenocytes treated with 0.5 µM TAT peptide, TAT-Runx1.d190, or TAT-Runx1.d190-K167A for 4 hours.
The results of three independent experiments are shown. Bars represent standard deviation from the mean. A p-value indicating
statistical significance derived from a two-tailed t test is shown.
doi: 10.1371/journal.pone.0069083.g006
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The increase in murine c-Myc transcription mediated by
TAT-Runx1.d190 leads to an increase in c-Myc protein

We next examined whether the increase in c-Myc
transcription induced by TAT-Runx1.d190 treatment leads to
an increase in c-Myc protein. Primary murine splenocytes were
treated with 0.5 µM TAT-Runx1.d190, TAT-Runx1.d190-K167A
protein or TAT peptide as a control for 4 hours. Whole cell
lysates were immunoblotted with c-Myc 9E10 antibody or a
goat polyclonal anti-actin antibody as a loading control. C-Myc
protein levels in cells treated with TAT-Runx1.d190 were
significantly increased compared to those in cells treated with
TAT peptide control (Figure 7A,B) or with the DNA binding
mutant TAT-Runx1.d190-K167A (Figure 7B), which is
consistent with an increase in c-Myc transcripts resulting in a
rapid increase in c-Myc protein.

Discussion

Runx1 directly regulates the transcription of c-Myc in
hematopoietic cells in a C-terminal-dependent and DNA-
binding-dependent manner. Endogenous Runx1 occupies at
least three sites on the human or murine c-Myc locus. It is likely
that endogenous Runx1 and the other two Runx family
transcription factors repress c-Myc transcription, since the
introduction of a C-terminally deleted form of Runx1
(Runx1.d190) that acts in opposition to full-length Runx1 or
Runx3 on the CD4 silencer results in the increased
transactivation of c-Myc [36]. This effect is seen with
microarray and quantitative real-time PCR analyses of
lentivirally transduced human Jurkat T cells or with primary
murine cells treated with a membrane-permeable form of
Runx1.d190, indicating that the Runx-mediated repression of c-
Myc transcription is evolutionarily conserved. The rapid
increase in c-Myc transcription seen after treatment with the
Runx1.d190 membrane-permeable protein, coupled with the
occupancy of the c-Myc locus by either endogenous Runx1 or
by TAT-Runx1.d190, supports the hypothesis that this is a
direct effect on the c-Myc locus. The upregulation of c-Myc
transcripts and protein by the C-terminally deleted form of
Runx1 is important in the context of Runx1 mutations and
translocations that remove the C-terminus and are associated
with cancerous transformation; full-length Runx transcription
factors may serve as tumor suppressors that tune down the
expression of oncogenic c-Myc.

Runx1.d190 also upregulates transcription of the serine
protease inhibitor serpinB2/plasminogen activator inhibitor-2
gene (SERPINB2) and downregulates transcription of
granzyme K (GZMK). It is likely that full-length Runx
transcription factors downregulates SERPINB2 and
upregulates GZMK expression directly as both loci contain
multiple consensus Runx binding sites upstream of the
transcriptional start site. At least one member of the serpin
family has been shown to inhibit one of the granzyme genes;
thereby protecting cancer cells from cytolysis (reviewed in 81],
and [82). Additionally, high levels of GZMK released from NK
cells have been shown to play a protective role in multiple
sclerosis by killing activated T cells associated with CNS
inflammation [83]. Thus, full-length Runx transcription factors

may act on various gene targets including c-Myc with the
aggregate affect of suppressing cancerous transformation.

Runx transcription factors can act as cell context-dependent
transactivators or repressors. It is thought that they do so by
recruiting other transcription factors or chromatin-modifying
enzymes, via interactions with the Runx C-terminus and DNA-
binding domain. One explanation for the effect of Runx1.d190
on c-Myc transcription is that Runx1.d190 acts by displacing
endogenous Runx1 on critical c-Myc locus Runx binding sites
and that its lack of a C-terminus prevents it from interacting
with important repressive co-factors, such as AP4, ZEB, Hes-1,
Myb RAP1, TLE/Groucho, Ear-2, Suv39H1 histone
methyltransferase, or histone deactylases, or localizing
appropriately in the nucleus through its nuclear matrix targeting
sequence (NMTS) (reviewed in 84). The best-characterized
Runx-controlled silencers are an intronic sequence in the CD4
locus and an intergenic silencer located between RAG-1 and
RAG-2 [36,38,85–89]. These silencers control the expression
of genes whose expression are tightly developmentally
regulated and permanently silenced in many cell populations;
however both CD4 and c-Myc transcription is more dynamically
regulated. It remains to be seen whether all Runx binding sites
are required to be occupied for Runx repression of c-Myc or
whether other transcription factors are required to make Runx
binding sites accessible for binding. Hes-1, Myb and the E-box-
binding bHLH transcription factors AP4 and ZEB bind to the
CD4 silencer and collaborate with Runx transcription factors to
repress CD4 transcription [85–88]. Both AP4 and Runx1
repress p21 transcription [90,91]. The same collaborations may
be taking place on the c-Myc locus, as there are E-boxes and
Myb and Hes-1 binding sites upstream of the c-Myc
transcriptional start site in both the human and murine c-Myc
loci (Figures 1C, 2C). AP4 is itself induced by c-Myc, which
suggests a possible negative feedback loop controlling c-Myc
expression [90].

It is of interest that the increase in c-Myc transcription
caused by a single treatment of TAT-Runx1.d190 at 6 hours
pre-harvest is not significantly different than the increase
attributable to multiple treatments with TAT-Runx1.d190 at 6, 4
and 2 hours pre-harvest. This suggests that the first dose of
protein saturates Runx1-binding sites and that the protein is
stable on the DNA for approximately 24 hours post-treatment,
which is when c-Myc transcription returns to baseline (data not
shown). DNA binding by TAT-Runx1.d190 is required, in that a
single point mutation that decreases DNA-binding (K167A)
results in a protein that neither significantly increases c-Myc
transactivation nor c-Myc protein. The K167A Runx1 mutant
used in our studies shows some binding in the presence of its
non-DNA-binding subunit CBFβ, which is ubiquitously
expressed [45,47]. It is likely that the slight increase in c-Myc
transcripts and protein seen in cells treated with TAT-
Runx1.d190K167A is due to this phenomenon.

C-Myc is a powerful transcription factor at the nexus of
normal cell processes and oncogenesis. Thus, the regulation of
c-Myc transcription by Runx transcription factors has significant
implications for our understanding of how Runx family
transcription factors regulate hematopoiesis and oncogenesis.
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Figure 7.  Increased c-Myc mRNA transcription correlates with increased c-Myc protein levels.  Murine splenocytes were
treated with 0.5 µM TAT peptide, TAT-Runx1.d190-K167A or TAT-Runx1.d190 for 4 hours. (A, B) Representative immunoblots of
whole cell lysates probed with c-Myc 9E10 antibody (top panel) or a goat polyclonal anti-actin antibody (bottom panel) are shown.
(B, D) Quantification of c-Myc protein levels normalized to actin levels from immunoblots. Bars represent standard deviation from
the mean. A p-value indicating statistical significance derived from a two-tailed t test is shown. N=4 (A), N=3 (B).
doi: 10.1371/journal.pone.0069083.g007
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Supporting Information

Figure S1.  Purification of a 25 kDa TAT-Runx1.d190
protein under denaturing conditions.  (A) Representative
Coomassie stained SDS-PAGE gel. The bacterial lysate (lane
1) containing the protein was incubated overnight with nickel
beads under 8M urea denaturing conditions. The flow-thru
supernatant (lane 2) containing unbound proteins was removed
before the nickel beads were washed (lane 3) extensively to
remove non-specifically bound proteins. The TAT-Runx1.d190
protein was eluted from the washed beads using 200 and 500
mM imidazole (lanes 4 and 5). The protein was concentrated
(lane 6) and further purified using a PD-10 desalting column
(lanes 7 and 8) to exchange remaining urea/imidazole buffer
for PBS containing 10% glycerol. Any remaining LPS was
removed by polymyxin beads leaving a relatively pure final
fraction (lane 9). An arrowhead indicates TAT-Runx1.d190
protein. (B) Representative immunoblot of the fractions
described in (A) probed with anti-polyhistidine antibody.
(TIF)

Figure S2.  Characterization of TAT-Runx1.d190 fusion
protein activity.  (A) Detection of fluorescein isothiocyanate
(FITC)-labeled TAT-Runx1.d190 association with non-adherent

human leukemic NK YT cells. YT cells were incubated with 1.2
µM FITC-labeled Runx1.d190 or BSA for 10 minutes at 37oC.
The cells were washed extensively and analyzed by flow
cytometry. FITC-labeled TAT-Runx1.d190 and FITC-labeled
BSA treated cell populations are indicated, with FITC
fluorescent intensity on the x-axis. (B) TAT-Runx1.d190
represses CD4 expression. Thymocytes from Eμ-Bcl-2-25 mice
were incubated with media only (untreated), or treated with 0.2
µM BSA, TAT peptide, or TAT-Runx1.d190 for 4 hours (4°C for
the first 30 minutes followed by 37°C for 3.5 hours). Bars
represent standard deviation from the mean. N=3.
(TIF)
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