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Abstract

Histopathologic assessment routinely provides rich microscopic information about tissue structure 

and disease process. However, the sections used are very thin, and essentially capture only 2D 

representations of a certain tissue sample. Accurate and robust alignment of sequentially cut 2D 

slices should contribute to more comprehensive assessment accounting for surrounding 3D 

information. Towards this end, we here propose a two-step diffeomorphic registration approach 

that aligns differently stained histology slides to each other, starting with an initial affine step 

followed by estimating a deformation field. It was quantitatively evaluated on ample (n = 481) and 

diverse data from the automatic non-rigid histological image registration challenge, where it was 

awarded the second rank. The obtained results demonstrate the ability of the proposed approach to 

robustly (average robustness = 0.9898) and accurately (average relative target registration error = 

0.2%) align differently stained histology slices of various anatomical sites while maintaining 

reasonable computational efficiency (<1 min per registration). The method was developed by 

adapting a general-purpose registration algorithm designed for 3D radiographic scans and 

achieved consistently accurate results for aligning high-resolution 2D histologic images. Accurate 

alignment of histologic images can contribute to a better understanding of the spatial arrangement 

and growth patterns of cells, vessels, matrix, nerves, and immune cell interactions.
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1. Introduction

Histologic and, more recently, immunohistochemical evaluation of resected tissue by 

anatomic pathologists, are the essential basis of surgical pathology diagnostics. Variously 

stained histology slices are routinely used by pathologists to assess tissue samples from 

various anatomical sites and determine tissue structure, the presence or extent of a disease, 

as well as the host reaction that describes the disease process. However, as the field 

continues to move forward, new technologies in imaging, protein, and nucleic acid analysis 

will enhance these traditional assessment techniques to allow more precise and actionable 

diagnoses [1]. This phenomenon has been dramatically exemplified by the integration of 

molecular features into diagnostic criteria. Similarly, rich data reflecting the biology 

underlying various pathologic processes are obtained by leveraging advances in imaging and 

machine learning in order to analyze histopathology slides to elucidate imaging features in a 

quantitative and reproducible manner. These structural correlates of biological processes, 

particularly in the context of molecular insight when available, may lead to improved ability 

to tailor therapy based on biological markers.

Non-rigid registration of consecutive 2D histologic slices with different stains is considered 

to be an important step in enabling more advanced computational analyses towards 

understanding tissue properties (biomechanical or architectural, cell subtyping, cellular 

networks). Furthermore, the use of thicker slices was found to improve the 2D registration 

by avoiding major distortions, thereby facilitating the combination of information from the 

slices to construct a meaningful picture for subsequent analyses [2].

Various approaches have been proposed for 2D non-rigid registration of histology slides of 

the same anatomical site, such as B-splines and common information extraction [3], or 

multiresolution supervised registration [4], on the basis of the elastix toolbox [5]. Both these 

examples [3,4] have reported relatively accurate results in a decent amount of time, but none 

of them were fully automatic and their evaluation datasets were very small, i.e., 8 pairs of 

lung histology slides with few different stains [3] and 10 histology slide pairs stained with 

hematoxylin and eosin (H&E) and anti-PD-L1 antibody (CD274) [4]. Borovec et al. [6] used 

a comparatively larger multi-stain 2D histologic dataset (Figure 1) to evaluate 11 image 

registration methods, including intensity-based (elastix [5], ANTs [7,8], NiftyReg [9], bUn-

warp [10], Multistep [11], DeepHistReg [12]), integral projection-based [13], homography-

based [14], feature-based (OpenCV [15], TrakEM2 [16]), hybrid of feature and intensity-

based (DROP [17], feature-based + Elastix [18], register virtual stack slices [10]), as well as 

segmentation-based (ASSAR [19], SegReg [20]) approaches. Some of these approaches 

were developed during the automatic non rigid histological image registration (ANHIR) 

challenge and some were developed after the challenge concluded. According to that 

evaluation study [6], the method with the optimal accuracy and robustness for elastic 
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registration was ANTs [7,8], but at the cost of a very long runtime. An unsupervised 

registration approach for H&E slides has also been developed on the basis of deep learning 

features [21–24], reporting relatively good performance with very low runtime. Although 

such approaches could be applied for computer-assisted interventions [25], they are limited 

by their need for very large datasets to be efficiently trained and their requirement for 

specialized hardware (i.e., a general-purpose graphical processing unit (GPGPU)) to achieve 

low runtime.

2. Materials and Methods

2.1. Data

To quantitatively evaluate the proposed method, this study used the publicly available data of 

the ANHIR challenge [6]. ANHIR describes a publicly available multi-institutional dataset 

[6,26–29] and a community benchmark to fairly evaluate and compare various non-rigid 

registration methods.

ANHIR makes available a set of 481 high-resolution (up to 40× magnification) whole-slide 

images (npublic = 230, nprivate = 251) from different anatomical sites with manually 

demarcated landmarks (Figure 2). Specifically, these anatomical sites comprise (i) mice lung 

lesion tissue samples from formalin-fixed paraffin-embedded (FFPE) sections, (ii) mice lung 

lobes corresponding to the same set of histologic samples as the lesion tissue, (iii) mammary 

glands, (iv) colon adenocarcinoma, (v) resected healthy mice kidneys that show high 

similarity to human kidneys, (vi) surgical material from patients with a histologically 

verified diagnosis of gastric adenocarcinoma, and (vii) FFPE sections of breast and (viii) 
kidney tissue. The original size of the provided images varied from 15 K × 15 K pixels, 

going up to 50 K × 50 K pixels. However, the images provided for the ANHIR challenge and 

therefore used to evaluate the performance of our approach represent a scaled version of the 

original images, of approximately 8 K × 8 K–16 K × 16 K pixels. More than 50 whole-slide 

histologic image sets were provided and were organized in sets of consecutive sections of 

the same tissue block of a distinct anatomical site, and each slice was stained with a different 

dye. The 10 different dyes used in the given dataset were hematoxylin and eosin (H&E), 

antigen KI-67 (MKI67), platelet endothelial cell adhesion molecule (PECAM1, also known 

as CD31), estrogen receptor (ESR), progesterone receptor (PGR), human epidermal growth 

factor receptor 2 (ERBB2), secretoglobin family 1A member 1 (SCGB1A1, CC10), 

propeptide of surfactant protein C (pro-SFTPC), cytokeratin, and NPHS2 (podocin).

2.2. Color Deconvolution

The mammary gland slides stained for ESR and ERBB2 include diaminobenzidine (DAB) 

stain, which has a brown-dominating appearance and oftentimes significant background 

staining that makes it very distinct from all other stained slides. Therefore, the hereby 

proposed approach applies color deconvolution [30,31] only to these slides to distinctly 

separate the color components of the original images into artificially reproduced DAB-, 
FastRed-, and FastBlue-stained slides. The intention of this deconvolution is to avoid 

potential mis-registrations and increase the ability to better assess the underlying tissue 
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structure by lowering the brown-dominating background artefactual appearances from the 

DAB stain.

An example of this process is shown in Figure 3, where this method was used to artificially 

reproduce and separate the individual contributions of the DAB, FastRed, and FastBlue 
stains from the original image. Specifically, the optical density (OD) of the DAB, FastRed, 

and FastBlue stains are decomposed in their red (R), green (G), and blue (B) channels. Each 

OD vector is then normalized by its total length, such that each stain forms a normalized 

RGB triplet. In our case, the OD matrix representing the set of triplets for FastRed, 

FastBlue, and DAB stains is represented as

R G B
 FastRed  0.2140 0.8517 0.4782
FastBlue 0.7489 0.6062 0.2673

DAB 0.2681 0.5703 0.7764

(1)

The color deconvolution matrix is the inverse of this OD matrix and, as detailed in [30], it 

expresses the mechanism to obtain the corrected contribution of each artificially reproduced 

stain to the overall image, as if the image was stained using all of them. Here, the color 

deconvolution matrix is calculated as

R G B
FastRed −1.3283 1.6219 0.2597
FastBlue 2.1280 −0.1584 −1.2561

DAB −1.1044 −0.4437 2.1210

(2)

Each row of this matrix represents the factor of the relevant channel/column in the original 

image that best approximates the contribution of the relevant artificially reproduced stain to 

the overall image. Negative signs denote information getting subdued and positive signs 

denote amplification. For example, to obtain the contribution of the FastBlue stain, we must 

subdue portions of the G and B channels by factors of −0.1584 and −1.2561, respectively, 

while amplifying the R channel by a factor of 2.1280.

As shown in the example results of Figure 3, we observed that the contributions of the 

artificially reproduced FastBlue stain (Figure 3C) retained all the tissue structure 

information while omitting the background brown-dominating artefact due to the DAB stain 

(Figure 3D). Therefore, we decided to keep the contribution of the FastBlue stain to estimate 

the transformation between the given consecutive slides.

2.3. Pre-Processing

As the method that was used for this study was originally designed for radiological 

(specifically, magnetic resonance) images, the histology images needed to be processed to 

make the characteristics like them. Firstly, taking into consideration the large size of the 

images used in the evaluation of the proposed approach, we resampled the images on the 

basis of a factor (f) of 1/25 (4%), resulting in image sizes where the minimum and maximum 
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size of each side was between 200 and 700 pixels, respectively, which made the size like that 

of radiological images, and also helped reduce computation time and memory requirement. 

To prevent potential aliasing caused due to the large resampling factor, we smoothed the 

images using a Gaussian kernel (σ = f/2) before resampling (Figure 4). The size of the 

Gaussian kernel was chosen using the Nyquist–Shannon sampling theorem [32], according 

to which if we want to preserve the invertibility of a transform, the sampling frequency 

needs to be at least twice the highest frequency of a signal, thereby ensuring that smoothing 

occurs without loss of structural information within the tissue region.

Furthermore, noting that the provided pairs of images were of varying sizes, we padded each 

image to ensure that (i) the size of paired images were the same (this step is not mandatory 

but simplifies the application of the transformation on landmarks) and (ii) the target tissue 

was in the image center. Once all image pairs were padded such that they were of the same 

size, we further padded them (4× the size of the similarity metric’s kernel, Equation (1)) to 

ensure that the apparent tissue was far enough from the image boundaries, and hence 

accommodated appropriate calculation of the deformation field after changes caused by the 

affine registration step. A binary mask, computed by excluding the padded portions of the 

image (size of the similarity metric kernel, Equation (1)) was also used during the affine 

registration process.

The mask defined the area that computations should be performed, which resulted in 

improved computational efficiency and no mismatches in terms of boundaries. The padded 

areas were filled with Gaussian noise matched to the distribution of image intensity in the 4 

corners (the size of the similarity metric kernel, Equation (1)) of the unpadded image, which 

lowered the response of the normalized cross-correlation (NCC) metric along the border 

between slide background and the padded area (Figure 5).

2.4. Registration

For registering the variously stained histologic images, the proposed method adapted 

“Greedy” (github.com/pyushkevich/greedy, hash: 1a871c1, Last accessed: 27 May 2020) 

[33], a central processing unit (CPU)-based C++ implementation of the greedy 

diffeomorphic registration algorithm [34]. Greedy is integrated into the ITK-SNAP 

(itksnap.org, version: 3.8.0, last accessed: 27 May 2020) segmentation software [35,36], as 

well as the Cancer Imaging Phenomics Toolkit (CaPTk—www.cbica.upenn.edu/captk, 

version: 1.8.1, last accessed: 11 February 2021) [37–39].

Greedy shares multiple concepts and implementation strategies within the SyN tool in the 

ANTs package [7,8] while focusing on computational efficiency by eschewing the 

symmetric property of SyN and utilizing highly optimized code for computation of image 

similarity metrics such as NCC, normalized mutual information (NMI), and sum of squared 

differences (SSD). For the NCC metric, an optimized implementation was used here on the 

basis of the sum-table algorithm [40]. In general, deformable registration does not do well 

with the NMI kernel since there are too many degrees of freedom to reduce the dissimilarity 

metric, i.e., the algorithm can reduce join entropy by non-realistic deformations. Since NCC 

uses patches, it is much more constrained to match corresponding anatomical locations, thus 
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allowing us to focus on using NCC with an adaptive kernel size scaled with respect to the 

fixed image size for both the proposed method:

 NCC Kernel Radius  = Size Ii
S (3)

where S is the scale by which the width of the fixed image Ii prior to padding is scaled, such 

that the NCC kernel can pick up enough information for a good registration. After cautious 

qualitative analysis using various value ranges for S: {10, 20, … , 60}, we decided to 

empirically choose S = 40 for both the affine and deformable registration, while optimizing 

for computational efficiency and accuracy. It is also worth noting that further 

experimentation with fixed kernels (i.e., 4 × 4 × 4, and 5 × 5 × 5 corresponding to the radius 

in different scales) resulted in comparable results.

All registrations were performed in a configuration of a multi-resolution pyramid comprising 

3 different scales. Specifically, initial registrations were performed on images subsampled by 

factors of 2k, and continuous refinements were conducted on images subsampled by factors 

of 2k−1, until the final registration occurred at the full resolution images (resolution 

subsampling factors of 4, 2, 1 were chosen). This process ensures that the most 

computationally expensive deformations happen at the coarsest resolutions, thereby reducing 

the overall time and memory requirements. In this paper, the following notation was used:

T i j* = R Ii Ij; θ (4)

where (Ti j* ) describes the transformation between fixed (Ii) and moving (Ij) image, and θ 

defines the registration parameters yielding transformation Ti j* . R defines a minimization 

process such that Equation (2) is unfolded as

T i j* = argmin
Ti j

μ Ii, Ij ∘ T i j + λρ T i j (5)

where μ is the similarity metric (SSD, NMI, or NCC, the latter with the kernel size, for 

instance, NCC[3 × 3]), λ is a scalar parameter, and ρ is an optional regularization term.

Initially, affine registration was performed between the image pairs, using an optimization of 

the dissimilarity metric based on a limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-

BFGS) algorithm [41], denoted by

Ai j = Raff Ii Ij; μ, A0 (6)

where A0 is the initial rigid transformation between the images. The initial transformation 

was obtained using a brute force search, where 4500 pairs of rigid transformations (which 

captured all possibly combinations of random rotations and translations for the specific 

dataset) were applied to the moving image and the combination, and the best NCC metric 

value was saved as A0. Specifically, a standard deviation of 180° for the angle (ensuring all 

rotations are sampled) and the standard deviation of the random displacement in each 

coordinate was equal to 10% of the input image width used, which was large enough to 
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showcase deformation but at the same time small enough to mitigate folding in the dataset 

due to extreme deformations. Figure 6 illustrates the error in the landmarks as a function of 

the number of random iterations for the given dataset. This brute force search, performed at 

the highest pyramid level and not requiring computation of metric gradients, had significant 

impact on robustness and was relatively fast, i.e., contributing only a few seconds to the total 

registration time. Figure 7 illustrates an example result from the application of these steps 

before the actual affine registration.

Following the affine registration, the diffeomorphic registration of slice j to i was applied:

φi j = Rdi f f Ii Ij; μ, σs, σt, N (7)

where σs and σt are the regularization parameters for the registration and N is the number of 

iterations required at each multi-resolution pyramid, e.g., N = {100,50,10} refers to 100 

iterations at 4×, 50 at 2×, and 10 at full resolution. Larger values of σs result in more 

smoothing, and larger values of σt amount to less overall deformation.

Furthermore, Greedy uses an optimized smoothing of the deformation fields on the basis of 

the ITK recursive Gaussian smoothing classes [42]. The actual registration was computed in 

an iterative manner using the update equations [43]:

ψγ = Id + εγ ⋅ GσS * Dφi jT μ Ii, Ijoφi j
γ

(8)

φi j
γ + 1 = Gσt * φi j

γ oψγ (9)

φi j0 = Id (10)

where γ is the current iteration, Dφi jT μ is the gradient of the metric with respect to φ, εγ is 

the step size, Gσ * φ denotes the convolution of φ with an isotropic Gaussian kernel with a 

standard deviation of σ, and Id is the identity transformation. For sufficiently smaller εγ and 

larger σs values, ψγ is smooth and has a positive Jacobian determinant for all x ∈ Ωi, 

thereby making the registration diffeomorphic in nature. As diffeomorphisms form a group 

under composition, φi j
T + 1 is also diffeomorphic in nature [34].

These registration steps result in 2 matrices describing the affine and deformable 

transformations, from target to source images. To apply these transformations in the ANHIR 

data, we first mapped the original manually demarcated landmarks into the down-sampled 

and padded image space, then we applied the computed inverse transformation, and finally 

we mapped the transformed landmarks back to the original resolution space.

2.5. Evaluation

The performance of our method was quantitatively evaluated on the basis of landmarks 

provided by the challenge organizers. Specifically, the quantitative performance evaluation 

framework reported here is consistent with the one used during the ANHIR 2019 challenge 
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(anhir.grand-challenge.org/Performance_Metrics/, last accessed: 13 May 2020) and it was 

based on the metrics of (a) the average of the median relative target registration error (rTRE) 

and (b) the robustness (R) criterion. Notably, the benchmarking framework to calculate these 

metrics is available in borda.github.io/BIRL, as provided by the ANHIR challenge 

organizers [6]. Since the challenge participants did not have access to neighboring slices, the 

challenge organizers had asked for pairwise registration and not the complete 3D 

reconstruction of the tissue to generate the aforementioned metrics.

rTRE represents the geometric accuracy between the target and warped landmarks in the 

target image frame. The motivation for using the median is to avoid penalization of few 

inaccurate landmarks, especially when the others are well-registered. Since only the 

challenge organizers had access to the testing dataset of the challenge for obvious reasons, in 

this study, results based on the rTRE achieved in the public data of the ANHIR challenge are 

reported. Specifically, TRE is defined as

TRE = de xl
T , xl

W (11)

where xl
T  and xl

W  are the coordinates of the landmarks “l” in the target and warped image, 

and de(.) defines the Euclidean distance. All TRE are then normalized by the diagonal of the 

image to define the rTRE:

rTRE = TRE
w2 + ℎ2 (12)

where w and h denote the image’s width and height, respectively.

The proposed approach was also evaluated according to the metric of robustness (R), which 

takes values in the range of 0 and 1. When R is equal to 1, the average distance of all the 

landmarks in the moving and fixed images is reduced after registration (defining the absolute 

algorithmic robustness), and 0 means that none of the distances are reduced. The 

mathematical formulation of R for the ith image of the dataset marked with Li landmarks is a 

defined as

Ri = 1
Li

∑
j ∈ Li

rTREj
regist < rTREj

init
(13)

where rTREj
init is the rTRE of the jth landmarks initially and rTREj

regist is the rTRE after 

registration. R is therefore a relative value of how many landmarks have an improved rTRE 
after registration.

It is worth noting that the ranking of the ANHIR challenge was not based on the absolute 

rTRE and R metrics, but on the relative performance considering all participating teams. 

This was obtained by averaging the ranked rTRE scores (unavailable for participants) across 

each pair of images.
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3. Results

The proposed approach used the public data alone to perform a grid search (i.e., perform an 

exhaustive search across the various parameter combinations using pre-defined steps to 

ascertain the optimum combination to lower the average error rate) for σs and σt in the range 

of [20,20] and found the optimal values to be 6 and 5 pixels, respectively (Figure 8). No 

parameter tuning was performed on the hold-out dataset.

The averages across all image pairs of the median rTRE for the affine and the deformable 

registration were equal to 0.00473 and 0.00279, respectively (Figure 9). Figure 9 indicates 

the improvements in the rTRE before applying any registration, after applying only affine 

registration, and after the proposed approach. Notably, when compared to the other 

participating methods, the proposed method’s (HistoReg) score of 0.00279 was the highest 

score achieved using the public data during the 2019 ANHIR challenge [38] (as indicated in 

the official challenge webpage: anhir.grand-challenge.org/Workshop-ISBI19/, last accessed: 

13 May 2020). It is further noted that the median robustness of the proposed method, as 

defined by the challenge, was equal to 1 and the average robustness was 0.9898. As shown 

in Table III of the ANHIR article [38], HistoReg’s overall rank during the challenge was 2, 

on the basis of the median of median rTRE values (our score was 0.0019). However, it was 

the best ranked method when the average or the median of average rTRE (score of 0.0029) 

values and average robustness (0.9898) were the evaluation criteria. Observed discrepancies 

between the ANHIR publication [38] and the ANHIR’s webpage were attributed to the fact 

that the challenge organizers allowed submissions to their testing system after the challenge 

was completed. The overall low rTRE values contributed towards proving the overall 

efficacy of the method, with the notable lowest values coming for Gastric tissue slices and 

the highest values coming from the breast tissue slides, with the median–median rTRE value 

going as low as 0.0007, and as high as 0.2, respectively (Figure 10). These results represent 

the best and worst results in the challenge, respectively. Registrations of consecutive 

differently stained images from two distinct anatomical sites are illustrated in Figures 11 and 

12.

It is also noted that depending on the metric used for the final challenge, ranking the 

methodological performance of the proposed approaches changed. Importantly, the approach 

presented in this manuscript remains stable for any ranking criterion [44] defined by the 

challenge organizers, as evidenced by the statistics presented in [44,45].

Finally, the average time needed to compute the registration for a pair of images was equal 

to 29 s on an Intel Xeon Gold 6130 using eight threads and 32 Gb of RAM. The 

computation time, which was normalized using the computation time of the evaluation 

scripts given by the challenge organizers, was equal to 1.45 min.

4. Discussion

The hereby study highlights an approach for performing non-rigid registration of variable-

stained histologic whole slide images, agnostic to the anatomical site that the slide is 

sectioned from. Quantitative evaluation on publicly available data of 10 different dyes 
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applied on tissue types from eight distinct anatomical sites, during a community benchmark, 

sets our proposed methodology in the top two best performing ones. Notably, the proposed 

approach is as effective on datasets consisting of sequential tissue sections, as it is on non-

sequential tissue sections, an important feature given that clinical cases often consist of non-

immediate-sequential sections. This can be considered as the first step in allowing 

downstream assessment of a 3D volume of digitized slides of clinical tissue specimens.

Current routine clinical histopathologic evaluation of disease is based on the microscopic 

assessment of 2D tissue sample representations. Although 3D tissue evaluation is accepted 

to offer more contextual information of the disease microenvironment (such as vessel 

tortuosity), enabling equipment remains part of research laboratories due to associated costs 

and specialized training. An acceptable schema for evaluating 3D anatomical structure in 

each dataset is to assess consecutive tissue sections across the z-axis (depth of tissue within 

a paraffin block of tissue). This process empowers the evaluation of the anatomic pathology 

and histology, as well as of characteristics of multiple markers (protein, RNA, and DNA 

targets) for a patient in a single tissue area across various sequential sections. It can further 

enable a pathologist to extract detailed contextual information about the entire section, and, 

in particular, enable a better understanding of the spatial arrangement and growth patterns of 

cells and matrix (vessels, stroma, and immune cells) as it relates to tissues and organs. An 

automated methodology allowing tissue assessment in 3D, while being able to deal with 

extreme appearance changes and significant background staining (e.g., DAB stain), without 

requiring any specialized training, but by virtue of associating consecutive routine clinically 

acquired whole-slide images, is appealing for richer clinical evaluation of anatomic 

pathology and histology, as well as of characteristics of multiple markers. Furthermore, such 

a methodology can contribute to the concepts of accountability, explainability, and 

transparency in computational systems [46,47], as it can assist a clinical pathologist to better 

understand the spatial arrangement and growth patterns of cells and matrix (vessels, stroma, 

and immune cells) but also offer a deeper insight for downstream research analysis of 

specific disease.

This study showed that a general-purpose tool originally developed for registration of 3D 

radiographic images, such as magnetic resonance imaging (MRI), can achieve excellent 

performance in the domain of histology registration. Greedy has previously been used for 

histology–MRI matching [43], and no major algorithmic developments were needed to adopt 

it to this task and challenge. The proposed approach does not require any specialized 

hardware (i.e., GPU) as it is CPU-based and achieves relatively low computation time by 

using highly optimized code for similarity metric computations. The code related to the 

package (including pre-processing) is available through our GitHub page at github.com/

CBICA/HistoReg (accessed: 11 February 2021).

Future work related to this study includes more exhaustive performance evaluation of the 

Greedy algorithm and its comparison with alternative approaches, e.g., those based on 

detection of salient points [48]. Although the scope of this study focused on the registration 

of consecutive whole-slide images, the overarching goal of this work was to contribute 

towards reconstruction the 3D anatomical tissue structure from 2D histology slices 

[43,49,50], irrespective of the staining applied to them, in order to give more context and 
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evaluate the association of anatomical structures in the microscopic scale with the molecular 

characterization of the associate tissue samples. Notably, this is of interest in cancer, where 

such associations are already evaluated in the macroscopic scale on the basis of radiographic 

representations [51–54]. Moreover, the proposed approach could complement databases, 

such as the one described by Yagi et al. [32], that consider differently stained whole-slide 

images, and integrating clinical, histologic, immunohistochemical, and genetic information 

to contribute towards multi-parametric research and aid in pathologic diagnosis by 

optimizing the effective viewing and evaluation of differently stained whole slide images.

This study has shown that registration of variably stained histology whole-slide images can 

be performed robustly across tissue types, agnostic to the anatomical site. Furthermore, 

maintaining computational efficiency without the need of any specialized hardware and 

ensuring cross-platform compatibility should relate to potentially easier clinical translation. 

To facilitate this, the implementation of this study has been released as an open-source 

paradigm, enabling its application in more diverse histological datasets.
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Figure 1. 
Example mammary gland digitized sequential differently stained histologic whole slide 

images, as provided by the automatic non-rigid histological image registration (ANHIR) 

challenge. Figure taken from anhir.grand-challenge.org, last accessed: 13 May 2020.
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Figure 2. 
Example histologic images from the various anatomical sites included in the ANHIR 

dataset, i.e., (A) lung lesion, (B) kidney, (C) colon adenocarcinoma, (D) gastric, (E) mice 

kidney, (F) lung lobes, (G) breast, and (H) mammary gland.
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Figure 3. 
Example results of the applied color deconvolution in a diaminobenzidine (DAB)-stained 

slide, illustrated in (A) color deconvolution artificially reproducing and separating the 

contributions of (B) FastRed, (C) DAB, and (D) FastBlue stains.
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Figure 4. 
Gastric image resampled before (A) and after (B) smoothing with a Gaussian kernel.
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Figure 5. 
Example results on the difference of the normalized cross-correlation (NCC) response maps 

after applying white padding (A) and our padding approach (B). In the top row, the yellow 

box is noted due to the gradient between the image’s gray background and the white added 

padding. Conversely, in the bottom row, where the intensities of the four image corners were 

used for padding, there were no square responses in the NCC. The background NCC 

responses (due to the added noise) were negligible.
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Figure 6. 
Landmark error over the number of random iterations for the initial transformation.
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Figure 7. 
Example results of our affine registration step. (A) The affine registration estimated and 

applied on the resampled and padded images; (B) application of the registration applied to 

the original full-scale images; (C) the NCC response map between source and target before 

and after affine registration.
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Figure 8. 
Heatmap showcasing the average error rate for different combinations of for σs and σt 

(lower is better).
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Figure 9. 
The overall median relative target registration error (rTRE) across all public data before any 

registration, after the affine step, and after both affine and diffeomorphic registration.
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Figure 10. 
rTRE values for various tissue types for the evaluation data using the approach proposed.
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Figure 11. 
(A) Four example consecutive differently stained images from a breast tissue case. Different 

stains include hematoxylin and eosin (H&E), estrogen receptor (ESR), progesterone receptor 

(PGR), and human epidermal growth factor receptor 2 (ERBB2). (B) Example registration 

results of the source image, registered to the target, resulting in the aligned source. The NCC 

response maps before and after registration are illustrated in the two right columns.
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Figure 12. 
(A) Four example consecutive differently stained images from a Gastric mucosa and gastric 

adenocarcinoma tissue, showing the different stains, namely, CD1A, CD4, CD8, and CD68. 

(B) Example registration results of the source image, registered to the target, resulting in the 

aligned source. The NCC response maps before and after registration are illustrated in the 

two right columns.

Venet et al. Page 26

Appl Sci (Basel). Author manuscript; available in PMC 2021 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Materials and Methods
	Data
	Color Deconvolution
	Pre-Processing
	Registration
	Evaluation

	Results
	Discussion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Figure 8.
	Figure 9.
	Figure 10.
	Figure 11.
	Figure 12.

