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An accurate olfactory system for recognizing semiochemicals and environmental
chemical signals plays crucial roles in survival and reproduction of insects. Among
all olfaction-related proteins, olfactory receptors (ORs) contribute to the conversion
of chemical stimuli to electric signals and thereby are vital in odorant recognition.
Olfactory receptor co-receptor (Orco), one of the most conserved ORs, is extremely
essential in recognizing odorants through forming a ligand-gated ion channel complex
with conventional ligand-binding odorant receptors. We have previously identified
aggregation pheromone in Protaetia brevitarsis (Coleoptera: Scarabaeidae), a native
agricultural and horticultural pest in East-Asia. However, to our best knowledge,
its olfaction recognition mechanisms are still veiled. To illustrate how P. brevitarsis
recognize aggregation pheromone and host plants, in the present study we cloned and
sequenced the full-length Orco gene from P. brevitarsis antennae (named PbreOrco) and
found that PbreOrco is highly conserved and similar to Orcos from other Coleoptera
insects. Our real-time quantitative PCR (qRT-PCR) results showed that PbreOrco is
mainly expressed in antenna. We also demonstrated that silencing PbreOrco using
RNA interference through injecting dsOrco fragment significantly inhibited PbreOrco
expression in comparison with injecting control dsGFP and subsequently revealed using
electroantennogram and behavioral bioassays that decreasing PbreOrco transcript
abundance significantly impaired the responses of P. brevitarsis to intraspecific
aggregation pheromone and prolonged the time of P. brevitarsis spending on food
seeking. Overall, our results demonstrated that PbreOrco is crucial in mediating odorant
perception in P. brevitarsis.
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INTRODUCTION

Having a precise olfactory system is of great benefit for
most insects in foraging, mating, locating oviposition sites and
avoiding adverse environments (Leal, 2013; Brito et al., 2016).
Olfactory recognition is a complicated and sophisticated process
involving numerous receptors and signaling pathways. The
odorant stimuli are firstly detected by the olfactory receptor
neurons (ORNs) in insect antennae and processed to bioelectric
signals, which are subsequently transmitted to the main nervous
system (e.g., brain), inducing various odor-evoked behaviors
(Leal, 2013; Fleischer et al., 2018). During the odorants processing
in ORNs, an acceptable hypothesis infers that odorants are
specifically transported by odorant binding proteins (OBPs)
and chemosensory proteins (CSPs) to the olfactory receptors
(ORs), which belong to a family of seven-transmembrane domain
proteins on the dendrite membrane of neurons and are conceived
to be essential in odorant recognition (Smart et al., 2008),
and thereby recognized and converted to electric signals and
subsequently degraded by odorant degrading enzymes (ODEs)
(Sato and Touhara, 2008; Zhou, 2010; Leal, 2013).

To recognize chemical signals, most insect ORNs express
two subclasses of ORs—a conventional odorant-specific olfactory
receptors and a highly conserved olfactory receptor co-
receptor (Orco) (Harini and Sowdhamini, 2012). Compared to
conventional ORs, Orco is more conserved (Missbach et al.,
2014; Lin et al., 2015) among a variety of arthropods including
Lepidoptera, Coleoptera, Hymenoptera, Orthoptera, Hemiptera
and Diptera (Krieger et al., 2003; Yang et al., 2012; Lin et al.,
2015; Li et al., 2016; Wang et al., 2018). During the process
of recognizing odorants, Orco couples with conventional ORs
to form an Orco-ORx complex, which functions as a ligand-
gated ion channel and determines the sensitivity and specificity
of the ORN where it is expressed (Breer et al., 2019). In this
complex, Orco is a key factor for the localization, stability and
correct protein folding of ORs (Larsson et al., 2004; Stengl and
Funk, 2013). Studies have shown that knockout or mutation of
Orco gene would lead to the disablement of odorant sensing in
insects (Larsson et al., 2004; Neuhaus et al., 2005). For examples,
Orco mutations in fruit flies, locusts, mosquitoes and moths lead
to loss of OR function, and impaired responses to odorants
such as food volatiles and sex pheromones (Asahina et al., 2008;
DeGennaro et al., 2013; Koutroumpa et al., 2016; Li et al.,
2016; Yang et al., 2016; Trible et al., 2017), silencing of Orco
through RNA interference (RNAi) in beetles (Tenebrio molitor,
Dendroctonus armandi, and Ophraella communa) impairs their
ability to locate hosts and mates (Liu et al., 2016; Zhang et al.,
2016; Ma et al., 2020). In addition, Orco is also involved in other
important physiological activities (such as wing differentiation,
metabolism regulation, stress resistance, number of glomeruli in
antennal lobes and life span extension), indicating they may also
participate in more physiological functions (Libert et al., 2007;
Fan et al., 2015; Trible et al., 2017).

The white-spotted flower chafer (WSFC), Protaetia brevitarsis
Leiws (Coleoptera: Scarabaeidae), is a native agricultural
and horticultural pest in East-Asia, including China, Korean
Peninsula, Japan, Thailand, Mongolia and Russia (Suo et al., 2015;

Liu et al., 2019). WSFC larvae, which feed on soil humus,
decaying plant residues, and even fermented animal manure, are
cultivated as a potential resource insect for converting herbaceous
and plant residues to organic fertilizer (Li et al., 2019; Wang et al.,
2019). However, WSFC adults are destructive to many important
crops, such as corn, wheat, apple, peach and various vegetables
(Zhao and Chen, 2008; Xu et al., 2009; Cai et al., 2020). To
environmentally-friendly control and monitor WSFC, we have
identified 4-methylanisole (4-MA) as an aggregation pheromone
for developing efficient lures (Zhang et al., 2019). Although
its candidate chemosensory receptors have been identified (Liu
et al., 2019), the molecular mechanisms underlying olfactory
recognition, including function of PbreORs, remain largely
unexplored. Previously, based on transcriptome analysis, we
identified a PbreOrco-related sequence encoding a 288aa peptide,
though the 5′ terminus was suspected to be missing.

To fully explore the functions of PbreOrco, in this study, we
firstly cloned the full-length sequence of PbreOrco through rapid
amplification of cDNA ends (RACE), analyzed its characteristics
and expression pattern. We then silenced PbreOrco gene using
RNAi and examined its pheromone- and food-seeking function.
Our results could further deepen our understanding on Orco
functions and benefit subsequent development of semiochemical-
based strategy to control this pest.

MATERIALS AND METHODS

Insect Rearing and Tissue Collection
White-spotted flower chafer larvae were reared on fermented
wheat straw in a constant environment with temperature of
25 ± 2◦C, relative humidity of 50 ± 2% and photoperiod of
14L:10D (Liu et al., 2019). Newly-emerged adults were sorted by
sex and fed with fresh peach. When unmated WSFCs reached
approximately 7 days old, their antennae, head without antennae,
thorax, abdomen, legs and wings were excised, immediately
frozen in liquid nitrogen, and stored at −80◦C for future
experiments.

Total RNA Extraction and cDNA
Synthesis
Total RNA was extracted from 50 WSFCs of each sex using
TRIzol reagent (TransGen, China) following the manufacturer’s
instructions. RNA quality was evaluated by 1.0% agarose gel
electrophoresis and Nanodrop 2000 (OD260/OD280 ranged from
1.80 to 2.10). The first-strand cDNA was synthesized from 1 µg
of total RNA using All-in-One First-Strand cDNA Synthesis
SuperMix (TransGen, China) according to the manufacturer’s
instructions. The synthesized cDNA was stored at −20◦C prior
to further analysis.

Rapid Amplification of cDNA Ends to
Obtain Full-Length PbreOrco Gene
According to the reported incomplete PbreOrco sequence
(MH324899), the 5′ end of mRNA was obtained using a 5′-
RACE Kit (Sangon, China) with the gene-specific primers
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(GSP1 and GSP2) listed in Supplementary Table 1 following
the manufacturer’s protocol. Briefly, the first strand cDNA
was synthesized by using specific reverse transcription primers
(5′ RACE-RT Primer, Supplementary Table 1) and reverse
transcriptase mix (RNase H-). Two rounds of touchdown PCR
was performed as follows: 94◦C for 1 min; 10 cycles of 94◦C
for 60 s, 70◦C (each cycle descends 1◦C) for 30 s and 72◦C for
60 s; 25 cycles of 94◦C for 60 s, 60◦C for 30 s, and 72◦C for
60 s; and a final incubation at 72◦C for 10 min. The first round
of PCR amplification was carried out with GSP1 as downstream
primer and the first strand of cDNA as template. Then, the 5′ end
cDNA of PbreOrco was amplified by using a universal 5′ RACE
outer primer containing partial splice sequence (Supplementary
Table 1) as the upstream primer and the GSP2 as the downstream
primer. The PCR product was purified, ligated into a pEASY-
Blunt vector (TransGen Biotech, China), and sequenced (Sangon
Biotech, China).

Sequence Analysis
The homology of PbreORCO protein was analyzed by Blastp
search in NCBI database1. Its transmembrane domains were
identified using the TMHMM Server v. 2.0 program2. Its topology
diagram was constructed using the TOPO2 Transmembrane
Protein Display3. Protein sequences alignment was performed
using ClustalX 1.83, and the results were presented by GeneDoc
2.7.0 software. Evolutionary analyses were conducted in MEGA7
using the Maximum Likelihood method with a bootstrap test
(1000 replicates, complete deletion, NN) (Kumar et al., 2016).
The evolutionary distances were computed using the Poisson
correction model (Zuckerkandl and Pauling, 1965). When the
number of common sites was < 100 or less than one fourth of
the total number of sites, the maximum parsimony method was
used; otherwise BIONJ method with MCL distance matrix was
used. Finally, phylogenetic trees were viewed and edited using
FigTree v.1.4.34. Identity calculation of Orcos in various insects
was analyzed using MegAlign (DNAStar Lasergene 12.1) with the
pair distances of Untitled ClustalW (slow/accurate, identity).

Tissue Expression Profiles of PbreOrco
The expression of PbreOrco in different tissues was analyzed
using real-time quantitative PCR (qRT-PCR) with an ABI 7500
Real-Time PCR System (Applied Biosystems, United States).
The primers for PbreOrco was designed by Primer 6.0
(Supplementary Table 1). GADPH2 was used as reference gene
according to our previous study (Liu et al., 2019). qRT-PCR
reactions were performed in 20 µL reaction mixtures, each
containing 10 µL TransStart Tips Green Mix (TransGen, China),
0.5 µL of each primer (10 µM), 1 µL of sample cDNA, and
8 µL of sterilized H2O. The thermocycling conditions were
as follows: 95◦C for 3 min; 40 cycles at 95◦C for 10 s; and
an annealing temperature of 60◦C for 30 s. Each test was
carried out three times as technical replicates. The amplification

1https://blast.ncbi.nlm.nih.gov/Blast.cgi
2http://www.cbs.dtu.dk/services/TMHMM/
3http://www.sacs.ucsf.edu/TOPO-run/wtopo.py
4http://tree.bio.ed.ac.uk/software/figtree/

efficiency of the primers was 92–98% according to standard
curve analysis. Relative expression of PbreOrco were analyzed
using the 2−11CT method (Livak and Schmittgen, 2001). Three
independent biological repeats were conducted, and each RNA
sample was extracted from 30 adults.

RNAi of PbreOrco Gene and qRT-PCR
Validation
The fragment of PbreOrco was amplified using specific primers
with T7 RNA polymerase promoter (Supplementary Table 1).
A double-stranded green fluorescent protein (dsGFP) fragment
amplified from the GFP gene (GenBank No. U50963) was
used as the negative control. Double-stranded RNA (dsRNA)
was synthesized using the T7 Ribomax Express RNAi System
(Promega, Madison, WI, United States). The quality and
concentration of dsRNA were determined by agarose gel
electrophoresis and Nanodrop 2000 (Thermo, United States).
The newly emerged WSFCs were separated and reared
individually before dsRNA injection. To each beetle, 3 µg
of dsOrco or dsGFP was injected into the conjunction between
the head and thorax using a microsyringe. The antennae
were collected at 1, 3, 5, 7, and 9 days of post-injection to
evaluate the expression of PbreOrco using qRT-PCR. Three
independent biological repeats were collected, and each repeat
contained 30 adults.

Electroantennography
The electrophysiological responses of injected WSFCs to
the aggregation pheromone 4-MA (99% purity, Aladdin
Reagent Co., Ltd., Shanghai China) were monitored on
an Electroantennography (EAG) apparatus (Syntech Ltd.,
Kirchzarten, Germany) following a reported method (Zhang
et al., 2020). Briefly, the antennae of WSFCs at 6–7 days of
post-injection prepared by cutting off the tips were affixed to the
recording electrode with electrically conductive gel and flowed
over by a constant humidified airstream (∼200 mL·min-1). After
that, a pulse airstream carrying volatiles from 20 µg of 4-MA in
20 µL paraffin oil was brought to the antennae through constant
airstream at 30 s intervals by an air stimulus controller (CS-55).
The electric signals generated by the responses of antennae were
recorded and analyzed using the Syntech EAG 2000 software
(Syntech, Kirchzarten, Germany). Paraffin oil was used as parallel
solvent control. The EAG responses to pheromone of each
treatment were calibrated by subtracting the EAG values to
solvent control. Five antennae were tested with five stimuli
for each antenna.

Insect Behavioral Bioassay
The responses of female and male WSFCs at 6–7 days of post-
injection to 4-MA were tested by a two-choice bioassay using a
glass Y-tube olfactometer (3.0 cm inner diameter) comprised of a
25-cm stem and two 20-cm branching arms at an angle of about
60◦ (Ikeura et al., 2012). During the assay, charcoal-filtered and
humidified air was pumped through the olfactometer at a rate of
100 ml·min-1 using an atmosphere sampling instrument (QC-1B,
Beijing Municipal Institute of Labor Protection, Beijing, China)
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and 20 µl of odor sources (0.1 µg/µL in paraffin) on strips of
filter paper (1 cm× 5 cm) were put into sample bottles connected
to the branching arms and an injected WSFC individual was
released into the stem (Yang et al., 2017). The 4-MA in paraffin
oil was placed into one arm of the Y-tube, while paraffin oil was
placed into the other arm as the negative control. Y-tube was
cleaned with ethanol after each test. Each experiment contained
30 injected adults and lasted for 20 min.

For food-seeking behavior, the injected WSFCs (pre-starved
for 24 h) were released into the four corners of a transparent
box. After the insects adapted to the environment (∼15 min),
half of a fresh peach was introduced into the center of the box.
The WSFCs were allowed to seek food for 20 min, during which
the number of WSFCs arrived food and their foraging time
were recorded. If an insect has failed in arriving the food within
20 min, it shall be judged unable to seek food (Liu et al., 2016).
Three independent biological repeats were conducted, and each
experiment contained 10 post-injected adults.

Statistical Analysis
To analyze the results of qRT-PCR, EAG tests, Y-tube tests and
food seeking behavior, one-way analysis of variance (ANOVA)
with Tukey’s test was used in SPSS 19.0 software. The least
significant significance was set at P < 0.05.

RESULTS

Identification of Full-Length PbreOrco
The full-length sequence of PbreOrco was obtained based on the
reported sequence (MH324899) using 5′-RACE and submitted
to GenBank (Access No: MW382164). The open reading frame
(ORF) of PbreOrco was 1,431 bp and encodes a protein
comprising 476 amino acids. The transmembrane prediction
results indicated that PbreOrco has seven transmembrane
domains with an intracellular N-terminus and an extracellular
C-terminus, indicating it is a typical Orco protein (Figure 1).

Sequence Analysis of PbreOrco
Increasing reports demonstrate that Orco receptors are highly
conserved during insect evolution. Sequence alignment
of PbreOrco with Orco from nine other Coleoptera
insects (Holotrichia parallela, H. oblita, H. plumbea,
Anomala corpulenta, Anoplophora glabripennis, Ambrostoma
quadriimpressum, Rhynchophorus ferrugineus, Sitophilus
oryzae, and Tenebrio molitor) revealed a relatively high
amino acid identity. PbreOrco was 91.19, 91.19, 91.39,
92.24, 80.71, 79.96, 80.28, 79.42, and 81.21%, respectively,
homologous with HoblOrco (H. oblita), HpluOrco (H. plumbea),
HparOrco (H. parallela), AcorOrco (A. corpulenta), AglaOrco
(A. glabripennis), AquaOrco (A. quadriimpressum), RferOrco
(R. ferrugineus), SoryOrco (S. oryzae), and TmolOrco (T. molitor).
In addition, the C-terminal sequences (TM5-TM7) were highly
conserved (Figure 1).

Thirty-seven Orco sequences from six insect orders were
used to construct a phylogenetic tree. The phylogenetic analysis
showed that Coleoptera, Lepidoptera, Diptera and Hymenoptera

were clustered together in a large branch, while Orthoptera and
Hemiptera were in another branch. Compared with other insect
Orcos, PbreOrco presented a close relationship with Orco of
Coleoptera (Figure 2).

Expression Profiles of PbreOrco
qRT-PCR was used to determine the relative expression of
PbreOrco in different adult tissues. The results showed that the
expressions of PbreOrco in the antennae of both male and female
WSFCs were significantly higher than those in other tissues.
Furthermore, there was no significant difference in the expression
of Orco between male and female antennae (Figure 3).

RNAi Efficiency
During our experiment, the injected WSFCs were all alive.
The qRT-PCR results showed that injecting dsRNA significantly
decreased the expression of PbreOrco. Compared to the dsGFP-
injected control WSFCs, the expression of PbreOrco was
significantly inhibited at 1–9 days of post-injection dsOrco
(Figure 4). The knockdown rates were 86.07 and 85.04% for male
and female at 5 days of post-injection, and maintained at > 85%
in the following several days (Figure 4). Consequently, WSFCs at
6–8 days of post-injection were selected for electrophysiological
and behavioral bioassays.

Silencing PbreOrco Impairs the
Response to Aggregation Pheromone
Electroantennography and olfactometer assays were performed
to compare the responses of dsGFP-injected and dsOrco-
injected WSFCs to aggregation pheromone. The average
response values of dsOrco-injected WSFCs nearly halved in
comparison with those of dsGFP-injected WSFCs (males:
2.80 mV± 0.22 vs 1.27 mV± 0.17 mV; females: 2.78 mV± 0.35
vs 1.45 mV ± 0.20 mV, respectively) (Figure 5A and
Supplementary Figure 1). The subsequent olfactometer assays
showed that the dsOrco-injected WSFCs showed no preference
to 4-MA or solvent control (Male: F1,4 = 0.500, P = 0.519;
Female: F1,4 = 1.997, P = 0.230), while non-injected (Male:
65.56 ± 5.09%; F1,4 = 32.00, P = 0.005; Female: 71.48 ± 5.70%;
F1,4 = 50.00, P = 0.002) and dsGFP-injected WSFCs (Male:
73.33 ± 5.77%; F1,4 = 98.00, P = 0.001; Female: 68.96 ± 8.91%;
F1,4 = 28.016, P = 0.006) significantly moved toward 4-MA
(Figure 5B), further confirming that RNAi-based silencing of
PbreOrco impaired the response of both female and male WSFCs
to aggregation pheromone.

Silencing PbreOrco Influnces Food
Seeking
To further verify the function of PbreOrco in insect feeding
behavior, we set up behavioral experiments to test the food-
seeking activity in response to fresh peaches. All the tested
WSFCs had been starved for 24 h prior to the bioassays. The
results showed that only 48.52% (male) and 46.67% (female)
insects successfully arrived food within 20 min, significantly
lower than dsGFP-injected (male: 76.67%; female: 79.63%)
(Supplementary Figure 2). Furthermore, compared with the
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FIGURE 1 | Sequence analysis of PbreOrco. (A) Amino acid sequence alignment of PbreOrco with orther Orcos from Coleoptera insects. Hpar, Holotrichia parallela;
Hobl, Holotrichia oblita; Hplu, Holotrichia plumbea; Acor, Anomala corpulenta; Agla, Anoplophora glabripennis; Aqua, Ambrostoma quadriimpressum; Rfer,
Rhynchophorus ferrugineus; Sory, Sitophilus oryzae; Tmol, Tenebrio molitor. The sequences used in this analysis listed in Supplementary Table 2.
(B) Seven-transmembrane topology of representative PbreOrco. The double line represents the membrane region with labeled extracellular and cytoplasmic sides.
TM: transmembrane. The conserved motif (383–389: TVLGYLI) was displayed in red.
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FIGURE 2 | Phylogenetic analysis of Orco orthologs from 37 insect species. The branch lengths were proportional to the percentage of sequence difference (scale:
0.05% difference). Bootstrap values expressed as percentages of 1,000 replications are shown at branch nodes. The PbreOrco sequence was shown in red. The
sequences used in this analysis are listed in Supplementary Table 2.

dsGFP-injected WSFCs, the dsOrco-injected took more time to
find food during the test time (male: 2.65 vs 1.43 min; female:
3.13 vs 1.46 min) (Figure 6 and Supplementary Video 1).

DISCUSSION

Odorant receptors (ORs), which transform volatile stimuli to
electrical signals in olfactory of insects, play important roles
in recognition of various odorants (Leal, 2013). Among all
ORs, Orco is the most particular and essential one: it assists
the specific-ORs to bind and recognize odorants by forming
a heteromeric OR-Orco complex rather than responding to
odorants directly (Stengl and Funk, 2013). Thus, identification
and functional study of insect Orco could provide further insights
into function of ORs. In this study, we successfully cloned the full-
length sequence of PbreOrco using the 5′RACE system from the

antennae of P. brevitarsis and demonstrated the crucial role of
PbreOrco in the olfactory mechanism of P. brevitarsis.

An abundance of reports have documented that insect
Orcos are highly conserved amongst species (Krieger et al.,
2003; Jones et al., 2005; Yang et al., 2012). As expected, the
alignment and homology analysis showed that the sequence of
PbreOrco is highly conserved with its orthologs in other beetles
(Figure 1A). Especially, its C-terminus showed extremely high
conservation among species. This region has been demonstrated
to play an indispensable role in the functional interaction
of the OR and Orco proteins (Hopf et al., 2015; Butterwick
et al., 2018). Furthermore, motif TVVGYLG (393–399) located
at the sixth predicted transmembrane helix of DmelOrco in
Drosophila melanogaster was thought to comprise a ligand-
gated selectivity filter with Val394 and Leu398 in the pores of
K+ channels (Wicher et al., 2008). In PbreOrco sequence, a
motif (383–389: TVLGYLI) (Figure 1), which is also located
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in the sixth transmembrane helix, is similar to the motif
TVVGYLG in DmelOrco, indicating PbreOrco might function
via the same mechanism. In addition, qRT-PCR determination
showed that PbreOrco was mainly expressed in antennae,
without significant difference in transcription level between
males and females (Figure 3). These results are consistent with
Orcos in Apolygus lucorum, Tenebrio molitor and Rhodnius
prolixus (Zhou et al., 2014; Franco et al., 2016; Liu et al.,
2016), strongly supporting that PbreOrco is essential for
insect chemosensation.

Silencing the expression of a targeted gene by RNAi
technology is considered as an effective method for functional
verification of genes in insects (Huvenne and Smagghe, 2010). To

FIGURE 3 | Expression profiles of PbreOrco in different tissues of male and
female. The head excluded antennae and maxillary palps. The relative
expression levels were normalized to the GADPH2 gene, with the expression
of male thorax as the calibrator. Different letters represent significant difference
(P < 0.05).

silence a gene through RNAi, direct microinjection and artificial
feeding of dsRNA are two frequently-applied approaches. Of
them, microinjection is more preferred because it could easily
control the precise amount of dsRNA, and induce RNAi more
effectively (Franco et al., 2016; Ma et al., 2020). In this study, we
also utilized direct injection of dsRNA to introduce RNAi and
further study the function of Orco in WSFCs. qRT-PCR results
showed that the transcription level of PbreOrco was reduced
86.07–90.94% in males and 85.04–87.96% in females after 5–
9 days of injection (Figure 4), suggesting that injecting dsRNA is
an ideal tool for studies on function of PbreOrco in vivo. Although
the efficiency of silencing PbreOrco was determined to be satisfied
within 9 days, the persistence of the silencing effect of other target
genes need to be further evaluated. In addition, our results were
consistent with that RNAi is a knockdown rather than a knockout
method. In WSFCs, however, 9 days was long enough for us to
complete the behavioral bioassays. Indeed, the results showed
that the silencing of PbreOrco sustained for at least 9 days with
an effective silencing rate. Furthermore, appropriately increasing
amounts of dsRNA injected to insects could potentially prolong
the silencing time (Huvenne and Smagghe, 2010; Miller et al.,
2012; Joga et al., 2016). In this study, compared with smaller
beetles in size (Liu et al., 2016; Zhang et al., 2016; Ma et al.,
2020), we injected a relatively higher amounts of dsRNA into
WSFCs (3 µg for each beetle) to ensure not only the longer
silencing time, but also the silencing efficiency for such a large
beetle.

Electrophysiological and behavioral bioassays are
conventional approaches to evaluate the potential influences
of gene silencing on injected insects (Rebijith et al., 2016;
Dong et al., 2017; Bolton et al., 2019). We also employed EAG
and Y-tube olfactometer to test the responses of WSFCs to

FIGURE 4 | Relative expression level of PbreOrco after dsRNA injection. (A–E) Relative expression of PrbeOrco in male. (F–J) Relative expression of PrbeOrco in
female. The relative expression levels were normalized to the GADPH2 gene. And the expression of the corresponding dsGFP-injected as the calibrator in each
image. Different letters represent significant difference (P < 0.05).
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FIGURE 5 | Responses of P. brevitarsis to aggregation pheromone, 4-methylanisole (4-MA). (A) Electroantennographic (EAG) responses of dsOrco- injected
dsGFP-injected and non-injected P. brevitarsis to 4-MA. (B) Behavioral response of P. brevitarsis to 4-MA in a Y-tube olfactometer. Different letters represent
significant difference (P < 0.05).

FIGURE 6 | Time required for food searching in dsGFP- and dsOrco-injected
P. brevitarsis. Different letters represent significant difference (P < 0.05).

the aggregation pheromone. Compared with dsGFP-injected
control, silencing PbreOrco almost halved the EAG responses of
both female and male WSFCs to 4-methylanisole (Figure 5A)
and significantly decreased the preference of WSFCs to 4-
methylanisole in Y-tube (Figure 5B). Considering that PbreOrco
expression was decreased by 90.94% (male) and 87.96% (female)
at 7 days of post-injection (Figure 4), it was concluded that
the impairment of response to the aggregation pheromone was
closely related to the decrease of PbreOrco transcript abundance.
This indicated that PbreOrco was involved in recognition of
aggregation pheromone in WSFCs. Furthermore, we carried
out cage assays to examine the influences of PbreOrco silencing
on food-seeking abilities. The results revealed that silencing
PbreOrco expression directly reduced the response rate and
prolonged the response time, indicating that PbreOrco silencing
significantly impaired olfactory signal-mediated host seeking
behavior (Figure 5).

Recent studies documented that silencing Orco
simultaneously deteriorated wing differentiation (Fan et al., 2015)

and viability (Yang et al., 2016). These unexpected results
generally occurred when dsRNA injection was performed at
developmental stage (e.g., eggs, larvae, and pupae). The reasons
for fewer side effects in injected WSFCs were presumably
attributed to the injection at adult stage. Besides affecting
olfactory-related behavior, silencing Orco at adult stage
potentially influences the number of eggs laid, as well as
oogenesis and embryogenesis (Libert et al., 2007; Trible et al.,
2017; Ma et al., 2020). We did not evaluate the fecundity of
injected WSFCs mainly because the life span and oviposition
period are too long (>100 days in experimental condition) (Kim
et al., 2018) to ensure the decrease of gene transcript abundance.

In summary, we identified the full-length sequence of
PbreOrco in WSFCs and demonstrated that silencing PbreOrco
would impair the abilities of WSFCs to detect pheromone and
locate food. These results echo the theory about the mechanism
of olfactory recognition and are beneficial to development of
olfactory-based pest control strategies.
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