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Abstract: Honeycomb materials have low density, high specific strength and stiffness, impact resis-
tance, and good sound insulation effect, and therefore are widely used in aerospace, automobile,
and ship field applications. In this paper, we study the in-plane impact response of a second-order
hierarchical honeycomb (SHH) material. Its main structure is a hexagonal honeycomb, and the
substructure is composed of an augmented double arrow honeycomb (ADAH) negative Poisson’s
ratio unit. Through a finite element simulation, the failure stress of an hierarchical honeycomb in
two directions of quasi-static crushing and dynamic crushing was analyzed; the failure stress of the
hierarchical honeycomb under different densities, different speeds, and different substructures was
discussed; and the theoretical failure stress was verified. The numerical analysis results show that
a second-order hierarchical honeycomb (SHH) has better collapse stress than a first-order regular
hexagonal honeycomb (FHH) and an augmented double arrow honeycomb (ADAH).

Keywords: hierarchical honeycomb; failure stress; impact; finite element

1. Introduction

Honeycomb materials have good mechanical properties and excellent thermal con-
ductivity, therefore, they are widely used in aerospace, construction, transportation, and
other fields [1–5]. Additionally, there are many multicellular cell structures in nature,
such as wood, bone, and the outer skin of plant cells that are light weight and have
good mechanical properties, and therefore they have been the focus of many bionic stud-
ies [6–9]. Honeycomb materials without classification are called first-order honeycomb
materials. First-order honeycomb materials have greater specific strength and specific
stiffness than traditional materials and have excellent application prospects in energy
absorption. First-order honeycomb materials mainly include square, diamond, hexagon,
triangle, and kagome shapes [3,10–13].

With the continuous development of honeycomb materials, a class of metamaterials
with negative Poisson’s ratio units has appeared. This class of metamaterials does not refer
to artificially manufactured materials; it is a physical property, not a material property and
it realizes the negative Poisson’s ratio effect through its own structural properties. This class
of metamaterial can shrink after being compressed and has high fracture toughness [14], as
well as excellent anti-explosion performance [15–17]. Its indentation hardness is also very
high [18]. Some studies have focused on double arrow honeycomb and concave hexagonal
honeycomb, and a series of related formulas have been deduced and verified [19–21].

With the development of industrial engineering, ordinary honeycomb materials do
not meet the requirements of specific stiffness and strength, and therefore hierarchical
honeycomb materials have emerged. The mechanical properties of hierarchical honeycomb
materials are better than those of single-level honeycomb materials. However, due to the
technical limitations of the manufacturing industry, most of the hierarchical honeycomb
materials only exist in theory, and the existing manmade materials can only achieve a few
hierarchical levels. In order to promote the engineering application of hierarchical honey-
comb materials, Jinxiu Qiao and Changqing Chen analyzed the hierarchical honeycomb
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formed by replacing hexagonal cell walls with equilateral triangular substructures. They
deduced the theoretical value of the failure stress from the deformation mode, verified
and analyzed it with a finite element, and analyzed the influence of both different impact
velocities and the number of substructures on the failure stress [22]. Additional studies
on hierarchical honeycombs have added substructures such as squares, hexagons, and
kagomes [23–28]. H. L. Tan et al. added triangular subunits into concave hexagons and
obtained excellent mechanical properties [29,30].

However, when these honeycomb structures [22–28] are subjected to quasi-static
impact, the strain corresponding to the linear elastic zone is relatively large and cannot
reach the platform zone quickly, therefore, the energy absorption effect is poor in the early
stage. In addition, when the structure is impacted, the stress–strain curve in the platform
area oscillates violently, which weakens the reliability of the theoretical and numerical
results. In order to solve these problems, in this study, we embed augmented double
arrow honeycomb (ADAH) with negative Poisson’s ratio effect as a substructure into a first-
order regular hexagonal honeycomb (FHH) to form a new type of hierarchical honeycomb,
which we call a second-order hierarchical honeycomb (SHH) Using a combined theory
and numerical method, we verify that the SHH has better collapse stress than either
the first-order regular hexagonal honeycomb (FHH) or the augmented double arrow
honeycomb (ADAH).

This paper is organized as follows: In the second section, we introduce the material
and structure of the layered honeycomb and the research methods used. In the third
section, we use the finite element method to study the collapse response of the layered
honeycomb structure in the x and z directions under quasi-static uniaxial compression (the
x and z directions are shown in Figure 1). The analytical expression of collapse stress is
derived based on the simulated deformation mode. We also study the dynamic impact
resistance of the layered honeycomb structure under impact, as well as analyze the error
between the finite element results and the formula fitting results of the dynamic impact
resistance of structures with different numbers of substructures. In the fourth section, we
state our conclusions.
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Figure 1. Schematic diagram of a second-order hierarchical honeycomb SHH and cells under impact load in the x direction.

2. Materials and Methods

Due to the development of industrial engineering, there are higher requirements for
modern materials, which are, first, to have excellent mechanical properties, and secondly,
to be economical. Aluminum has excellent mechanical properties and a low cost, and
therefore meets the requirements of modern industrial development. Therefore, we chose
aluminum for the modeling. When determining the mechanical model, it is important that
the selected mechanical model must conform to the actual situation of the material, because
only in this way can the calculation results reflect the real stress and stress state in the
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structure or structures. At the same time, the mathematical expressions of the mechanical
model should not be too complicated to avoid mathematical difficulties in solving problems.
We compared the stress–strain curve of aluminum and found that it was roughly the same
as the stress–strain curve of an ideal elastoplastic material. Therefore, in this study, we set
the aluminum material as an ideal elastoplastic material.

Indeed, all the materials used in this study were ideal plastic materials. We set the
density of the material as ρs = 2700 kg/m3, the modulus of elasticity as E = 70 GPa, the
yield stress as σs = 110 MPa, and the Poisson’s ratio as νs = 0.3. For a better illustration,
when analyzing the SHH, we established an x− z coordinate system, where the x and z
directions are shown in Figure 1.

2.1. Theoretical Method of Second-Order Hierarchical Honeycomb (SHH) Static Failure Stress
during Impact in the x and z Directions

According to the deformation pattern diagram, an analytical model of the SHH
structure collapse stress can be established. Here, we used the two-scale method to derive
the analysis results, that is, the failure analysis of the whole unit under the two scales of
macro-deformation failure and substructure failure, and then the theoretical equation was
obtained. This method uses the failure of the substructure to cause the instability of the
overall structure to deduce the collapse stress of the SHH structure.

2.2. Theoretical Method of SHH Dynamic Failure Stress during Impact in the x and z Directions

When studying the dynamic failure of the SHH, a certain velocity gradient was
established, and the impact model diagrams at different velocities were obtained, and
then the dynamic failure stress was obtained according to the law of conservation of
momentum [21]. Finally, the theoretical analysis of dynamic failure stress was verified
according to the results of finite element analysis.

3. Results and Discussion
3.1. Second-Order Hierarchical Honeycomb (SHH) and Finite Element Modeling

As described above, hierarchical honeycombs have better mechanical properties than
traditional honeycombs. Here, we systematically study the impact response of a second-
order hierarchical honeycomb (SHH). Figure 1 shows the schematic diagram of the uniaxial
compression of SHH. One end of the SHH is fixed on a rigid plate, and the other end
is impacted by another rigid plate. The stress at the impact end is denoted by σ1 and
the stress at the distal end is denoted by σ2. The cell wall of SHH is composed of a
standard augmented double arrow honeycomb (ADAH). The structure of ADAH is shown
in Figure 2, where l shows the length of BD in ADAH element, N × l shows the length
of the macrostructure edge, and H shows the length of the macrostructure structure. The
thickness of the SHH cell wall is h, and the out-of-plane width is b. Assuming that the
cell wall of the honeycomb structure is equally distributed, then, the relative density of
the SHH is (In this paper, θ1 and θ2 are constants unless otherwise specified. We set θ1 of
ADAH structure to π/3 and the θ2 to π/6) as follows:

ρ =

(
1 +
√

3
)
(8N − 4)

√
3N2

h
l

(1)

We used Abaqus/CAE 6.14-4 software to perform the numerical simulation of the
SHH, the finite element (FE) model adopts a structure of four macro elements in the z
direction and six macro elements in the x direction. The cell wall is simulated by shell
elements with five integration points. The unit type is set to S4R which is a universal shell
element type in Abaqus that has the following properties: a four-node curved shell element
that can be used to model thin or thick shell structures, a reduced integration method that
includes hourglass mode control and allows limited membrane strain. For the SHH model,
we set l = 0.01 m and b = 0.02 m.
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Figure 2. Schematic diagram of the augmented double arrow honeycomb (ADAH) structure.

In order to ensure the accuracy of the simulation, we conducted a convergence test on
the SHH and determined the appropriate mesh element size of the finite element model. As
shown in the figure, we simulated and compared the energy absorption (EA)-displacement
curves under different element sizes. It can be seen in Figure 3 that when the shell element
size is reduced to 1.7 mm, the EA gradually converges. Therefore, the unit size of 1.7 mm
is suitable for modeling these structures. This size is used in the following modeling grid
unless otherwise specified. The general contact assumption can be used for the entire
model. There is no friction in the tangential direction of the model, and the normal contact
behavior is a “hard” contact.
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Figure 3. Convergence analysis of element size.

3.2. Quasi-Static Collapse
3.2.1. Uniaxial Compression in the x Direction

In this section, we analyze the uniaxial compression of the SHH unit in the x direction.
The experiment proves that speed 1 m/s is sufficient to cause a quasi-static collapse,
ρ = 5%. The results of the numerical simulation are shown by the blue line segment
in Figure 4. There is an obvious oscillation zone in the SHH because the structure is a
membrane-oriented deformation mode, similar to that in the study by X.M. Qiu et al. [10].
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In order to form a comparison, we also performed the finite element modeling of
the SHH cell wall unit ADAH and the traditional honeycomb FHH. When simulating the
ADAH unit, we set the unit structure 9× 8 (that is, there are nine elements in the x direction
and eight elements in the z direction). For the FHH, we use the structure model of 6× 4
(that is, there are nine elements in the x direction and eight elements in the z direction).
The number of integrals along the cell wall and the number of out-of-plane integrals are
the same as those of SHH. For the ADAH and FHH, the unit size is set to 1.7 mm to ensure
the accuracy of the value, which is same as the unit size of the SHH. The out-of-plane
displacements of all the honeycomb structures are fixed. The contact mode of the FHH
and ADAH is the same as that of the SHH. The result is shown in Figure 4. The red line
represents the ADAH and the black line represents the FHH. It can be clearly seen from
Figure 4 that the honeycomb unit stress–strain diagram can be divided into three stages,
namely the linear elastic zone, the platform zone, and the densification zone. We define
the average stress of the platform zone as the collapse stress, which is an important index
of energy absorption performance. It can be seen from Figure 4 that the collapse stress of
SHH is significantly higher than that of FHH and ADAH. The images of SHH and ADAH
have obvious oscillations, while the images of FHH are very smooth. This is because both
SHH and ADAH are deformation dominated by film, and FHH is deformation dominated
by bending. ADAH entered the densification zone earlier than FHH and SHH. It can be
seen that the SHH has greater collapse stress than that of the FHH and ADAH, therefore,
SHH has better energy absorption effect, that is, SHH has better performance than that of
FHH and ADAH.

It is not an easy task to obtain εd of the platform area. Under ideal conditions, the
compressive strain εd in quasi-static crushing equals 1− ρ, but in fact, there are many
deviations. As an empirical equation, we use the equation εd = 0.8(1− ρ) adopted by
Jinxiu Qiao and Changqing Chen [22]. Densification strain εd is an important index for the
final study of dynamic failure stress, which is introduced in the following sections.

3.2.2. Collapse Model of SHH

Figure 5 is a series of deformation diagrams of compression in the x direction of
the SHH.



Materials 2021, 14, 1917 6 of 19

Materials 2021, 14, x FOR PEER REVIEW 6 of 19 
 

 

Jinxiu Qiao and Changqing Chen [23]. Densification strain d  is an important index for 

the final study of dynamic failure stress, which is introduced in the following sections. 

3.2.2. Collapse Model of SHH 

Figure 5 is a series of deformation diagrams of compression in the x  direction of 

the SHH. 

In Figure 5 a , when the crushing strain   reaches about 12%, local deformation 

characteristics of “X” begin to form. This is because the macroscopic regular hexagon in 

the middle is symmetrically compressed when the deformation starts, and the hexagon 

elements on both sides begin to slip, which leads to the deformation feature of “X” formed 

locally. A continuation of compression, as shown in Figure 5 b , begins to compact the 

upper end of the SHH, and when the crushing strain   reaches 24%, the “X” structure 

begins to transform into a “V” structure. The SHH continues to deform, as shown in Fig-

ure 5 c , and when the crushing strain reaches 42%, the first stage of deformation begins to 

finish. In Figure 5 d , the second stage of deformation starts when the crushing strain   

reaches 50%. 

  

(a) (b) 

 
 

(c) (d) 

Figure 5. FE prediction of quasi-static compression in the x  direction, N 5=  and 5% = . (a) 12% = ; (b) 24% = ; (c) 

42% = ; (d) 50% = . 

3.2.3. Augmented Double Arrow Honeycomb’s (ADAH’s) FE Model 

Before proceeding to the next section, we must first derive the failure stress of the 

ADAH under uniaxial compression in the z  direction (the derivation result is Equation 

(8)). 

The augmented double arrow honeycomb (ADAH) is shown in Figure 6, which can 

be expressed by five parameters: 1 , which is the angle between the short side AB and 

axis x ; 2 , which is the angle between the long side BD and axis x ; the length of the 

long side BD which is l ; the thickness of the beam which is h ; and the out-of-plane 

width which is b . In this study, let 1  be / 3  and 2  be / 6 . According to the ge-

ometric structure, the relative density of ADAH can be derived as follows: 

Figure 5. FE prediction of quasi-static compression in the x direction, N = 5 and ρ = 5%. (a) ε = 12%;
(b) ε = 24%; (c) ε = 42%; (d) ε = 50%.

In Figure 5a, when the crushing strain ε reaches about 12%, local deformation char-
acteristics of “X” begin to form. This is because the macroscopic regular hexagon in the
middle is symmetrically compressed when the deformation starts, and the hexagon ele-
ments on both sides begin to slip, which leads to the deformation feature of “X” formed
locally. A continuation of compression, as shown in Figure 5b, begins to compact the upper
end of the SHH, and when the crushing strain ε reaches 24%, the “X” structure begins to
transform into a “V” structure. The SHH continues to deform, as shown in Figure 5c, and
when the crushing strain reaches 42%, the first stage of deformation begins to finish. In
Figure 5d, the second stage of deformation starts when the crushing strain ε reaches 50%.
Please refer to the supplementary materials for the specific deformation mode. Please refer
to the supplementary materials for the specific deformation mode.

3.2.3. Augmented Double Arrow Honeycomb’s (ADAH’s) FE Model

Before proceeding to the next section, we must first derive the failure stress of the
ADAH under uniaxial compression in the z direction (the derivation result is Equation (8)).

The augmented double arrow honeycomb (ADAH) is shown in Figure 6, which can be
expressed by five parameters: θ1, which is the angle between the short side AB and axis x;
θ2, which is the angle between the long side BD and axis x; the length of the long side BD
which is l; the thickness of the beam which is h; and the out-of-plane width which is b. In
this study, let θ1 be π/3 and θ2 be π/6. According to the geometric structure, the relative
density of ADAH can be derived as follows:

ρADAH =
ρADAH

ρs
=

(4
√

3 + 6)√
3

h
l

(2)

where ρs is the density of the base material and the structure size, material, mesh, and
contact are the same as that in the finite element simulation in Section 3.1.
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Figure 6. Schematic diagram of the ADAH and cells under impact load in the z direction.

3.2.4. Theoretical Model of the ADAH

Figure 7 shows the deformation characteristics of the ADAH under the impact of a
rigid plate. As shown in Figure 7a,d, at time t0, the distance between point B and point C is
K1. As the rigid plate moves, first, it touches the edge point C, and then the midpoint of
DC begins to bend, and the other half of ADAH’s speed is still zero. At time t1, as shown
in Figure 7b,e, point F and point E coincide (point E is the midpoint of the DC side), and
the DE side is perpendicular to the EC side. At this time, the distance between point B
and point C is K2. The rigid board continues to move, and then the speed of the triangle
ABD reaches the impact speed. Due to the action of the next unit, the H and G points
begin to bend. At the moment of t2, as shown in Figure 7c,f, the point H coincides with
the point M, and the BG side is perpendicular to the DG side. At this time, the distance
between point B and point C is K3, the deformation of the entire unit ends, and the next
unit deformation cycle begins. According to the deformation principle, the effective height
of the representative unit between time t0 and t2 can be expressed as follows:

∆K =2L sin θ2 −
L sin θ2

sin θ1
(3)

The total rotating hinge of the hinge formed by eight plastic hinges is as follows:

∆θ = 2π + 2θ2 (4)

The total work done by the external force is as follows:

W =
sin(θ1 − θ2) sin θ2Lbσ0

sin θ1 sin θ2
(5)

According to the plastic dissipation theory, the plastic loss of the work done by the
external force at the hinge is as follows:

W = 2∆θMp (6)

where Mp, which is the plastic bending moment, can be calculated as follows:

Mp =
bh2

4
σys (7)

Therefore, the quasi-static failure stress σ0 can be obtained as:

σ0 =
(π + θ2) sin θ1

2

sin(θ1 − θ2)(2 sin θ1 sin θ2 − sin θ2)

(
h
l

)2
σys (8)
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3.2.5. Comparison of Theoretical Analysis of the ADAH with the Finite
Element Simulation

In order to verify the results from Section 3.2.4, we substituted the parameters we
obtained into the finite element and we set ρ = 2.5%, ρ = 5%, and ρ = 10%. Figure 8 shows
the theoretical values and the results of the finite element analysis. The results show that
the collapse response is effectively predicted by Equation (8) in Section 3.2.4.
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Figure 8. FE predicting ADAH quasi-static (V = 1 m/s). (a) ρ = 2.5%; (b) ρ = 5%; (c) ρ = 10%.

3.2.6. The Failure Stress of the SHH Structure

According to the deformation pattern diagram, an analytical model of the collapse
stress of the SHH structure can be established. Figure 5 shows the deformation charac-
teristics of the honeycomb structure. We enlarge Figure 5 to obtain Figure 9a. Here, we
followed the two-scale method to derive the analysis. In this method, the collapse stress
of the SHH structure is derived from the instability of the whole structure caused by the
failure of the substructure. This is the reason why we analyzed the damage structure of the
ADAH unit in the previous section. Because this method has a wide range of application
and high accuracy, it is adopted by a large number of researchers.

As shown in Figure 9b, first, we consider the macroscopic deformation. In the hexagon,
the red line segment is bent and deformed due to the impact stress of the steel plate. We
only consider the green dashed square frame. It can be seen from Figure 9b that the red line
segment rotates and compresses due to two plastic hinges (black dots are plastic hinges).
When the red line segment is deformed to the level, the deformation of this stage ends. The
distance of the work done by the external force is ∆x =

√
3Nl/2. Wex is used to represent

the work done by the external force, therefore,

Wex =
3Nlb

2
∆xσx =

3
√

3N2l2b
4

σx (9)
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where σx represents the uniform stress at the distal end.
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Then, consider the rotation of the red line segment. As shown in Figure 9b, the plastic
dissipation energy generated by the rotation of the two plastic hinges in the green dashed
frame is Wh = 2MP∆θ. The plastic dissipation torque of the macrostructure structure is
Mp = 3bl2σ0/4. Then, the plastic dissipation energy can be obtained as follows:

Wh =
πl2b

2
σ0 (10)

where σ0 is the static failure stress of the ADAH, as shown in Equation (8). Therefore, we
must first derive the static failure stress of the ADAH element.

It can be seen from Figure 9b that the red line segment rotates and also shortens,
therefore, we also need to calculate the plastic dissipation energy of compression, to obtain
the plastic dissipation energy in compression as follows:

Wd =

√
3Nl2b

2
σ0 (11)

According to work and energy conversion, we obtain Wex = Wh + Wd and, finally, we
can deduce the quasi-static crushing stress of SHH in the x direction as:

σx =
2
(

π +
√

3N
)

3
√

3N2
σ0 =

2
(

π +
√

3N
)
(π + θ2) sin2 θ1

3
√

3N2 sin(θ1 − θ2)(2 sin θ1 sin θ2 − sin θ2)

(
h
l

)2
σys (12)

Figure 10 shows the comparison between the FE prediction and the result calculated
by Equation (12). θ1 = π/3 and θ2 = π/6 in Equation (12).
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Figure 10. FE prediction of the quasi-static failure stress of SHH structure in the x direction, N = 5. (a) ρ = 2.5%; (b) ρ = 5%;
(c) ρ = 7.5%; (d) ρ = 10%.

3.3. Uniaxial Compression in the z Direction

In the previous section, we analyzed the static failure stress of the SHH in the x
direction. In this section, we study the static failure stress of the SHH in the z direction.
When the SHH is impacted in the x direction, first, the failure zone assumes an “X” shape,
then, transforms into a “V” shape, and finally completes the first stage of deformation
and enters the second stage. Unlike in the x direction, the SHH presents a layer-by-layer
deformation mode when compressed in the z direction, as shown in Figure 11. In order to
facilitate the analysis, we enlarge part of Figure 11a, and the result is shown in Figure 12a.
Following the analysis in the previous section, we use a regular hexagon to represent the
macro structure of the SHH. We only study the structure in the green box. When the rigid
plate contacts the SHH, the blue line segment begins to deform due to the impact, and then
begins to rotate and compress. After the blue line segment reaches the horizontal position,
the red line segment begins to be compressed, and finally, is fully compressed. The red
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line segment also rotates while being compressed. On further loading, there is a similar
deformation in the next stage.

Materials 2021, 14, x FOR PEER REVIEW 12 of 19 
 

 

by-layer deformation mode when compressed in the z  direction, as shown in Figure 11. 

In order to facilitate the analysis, we enlarge part of Figure 11a, and the result is shown in 

Figure 12a. Following the analysis in the previous section, we use a regular hexagon to 

represent the macro structure of the SHH. We only study the structure in the green box. 

When the rigid plate contacts the SHH, the blue line segment begins to deform due to the 

impact, and then begins to rotate and compress. After the blue line segment reaches the 

horizontal position, the red line segment begins to be compressed, and finally, is fully 

compressed. The red line segment also rotates while being compressed. On further load-

ing, there is a similar deformation in the next stage. 

  

(a) (b) 

 
 

(c) (d) 

Figure 11. FE predicting quasi-static compression in the z  direction, 5=N  and 2 5%. = . (a) 5% = ; (b) 10% =

; (c) 20% = ; (d) 40% = . 

 

(a) 

Figure 11. FE predicting quasi-static compression in the z direction, N = 5, and ρ = 2.5%. (a) ε = 5%;
(b) ε = 10%; (c) ε = 20%; (d) ε = 40%.

Materials 2021, 14, x FOR PEER REVIEW 12 of 19 
 

 

by-layer deformation mode when compressed in the z  direction, as shown in Figure 11. 

In order to facilitate the analysis, we enlarge part of Figure 11a, and the result is shown in 

Figure 12a. Following the analysis in the previous section, we use a regular hexagon to 

represent the macro structure of the SHH. We only study the structure in the green box. 

When the rigid plate contacts the SHH, the blue line segment begins to deform due to the 

impact, and then begins to rotate and compress. After the blue line segment reaches the 

horizontal position, the red line segment begins to be compressed, and finally, is fully 

compressed. The red line segment also rotates while being compressed. On further load-

ing, there is a similar deformation in the next stage. 

  

(a) (b) 

 
 

(c) (d) 

Figure 11. FE predicting quasi-static compression in the z  direction, 5=N  and 2 5%. = . (a) 5% = ; (b) 10% =

; (c) 20% = ; (d) 40% = . 

 

(a) 

Materials 2021, 14, x FOR PEER REVIEW 13 of 19 
 

 

 

(b) 

Figure 12. (a) Enlarged SHH deformation diagram, 5=N , 10% = , and 2 5%. = ; (b) diagram of macrostructure 

deformation, impact in the z  direction. 

According to the deformation principle in Figure 12 b , we can derive an analytical 

model of the collapse stress of the SHH structure in the z  direction. The derivation 

method is the same as that of the SHH in the x  direction. First, the work done by the 

external force is as follows: 

2 23 3

2
=ex z

N l b
W σ  (13) 

where zσ  represents the uniform stress applied, in the z  direction, at the distal end. 

It can be seen from Figure 12 b  that the plastic dissipation energy generated by the 

six plastic hinges is as follows: 

2

0

7

8


=h

l b
W σ  (14) 

In addition, the plastic compression energy needed in the compression of the red line 

segment and the blue line segment is as follows: 

( ) 2

03 3 3= −dW Nl bσ  (15) 

According to Equations (13)–(15), the static failure stress of SHH on shaft z  can be 

obtained as: 

( ) ( ) ( )

( )( )

2 2
2 1

02 2

1 2 1 2 2

7 24 3 1 sin7 24 3 1

12 3 12 3 sin 2sin sin sin

   

    

 + − ++ −   = =  
− −  

y ys

NN h
σ σ σ

lN N
 (16) 

From Figure 13 we can see the comparison result of Equation (16) and the FE. We 

carried out four groups of experiments with relative densities of 2.5%, 5%, 7.5%, and 10%, 

respectively. 
1 3/ =  and 

2 6/ =  in Equation (16). The results show that when the 

relative density is relatively small, Equation (16) has a better simulation effect. 

Figure 12. (a) Enlarged SHH deformation diagram, N = 5, ε = 10%, and ρ = 2.5%; (b) diagram of
macrostructure deformation, impact in the z direction.



Materials 2021, 14, 1917 13 of 19

According to the deformation principle in Figure 12b, we can derive an analytical
model of the collapse stress of the SHH structure in the z direction. The derivation method
is the same as that of the SHH in the x direction. First, the work done by the external force
is as follows:

Wex =
3
√

3N2l2b
2

σz (13)

where σz represents the uniform stress applied, in the z direction, at the distal end.
It can be seen from Figure 12b that the plastic dissipation energy generated by the six

plastic hinges is as follows:

Wh =
7πl2b

8
σ0 (14)

In addition, the plastic compression energy needed in the compression of the red line
segment and the blue line segment is as follows:

Wd =
√

3
(

3−
√

3
)

Nl2bσ0 (15)

According to Equations (13)–(15), the static failure stress of SHH on shaft z can be
obtained as:

σy =
7π + 24N

(√
3− 1

)
12
√

3N2
σ0 =

[
7π + 24N

(√
3− 1

)]
(π + θ2) sin2 θ1

12
√

3N2 sin(θ1 − θ2)(2 sin θ1 sin θ2 − sin θ2)

(
h
l

)2
σys

(16)
From Figure 13 we can see the comparison result of Equation (16) and the FE. We

carried out four groups of experiments with relative densities of 2.5%, 5%, 7.5%, and 10%,
respectively. θ1 = π/3 and θ2 = π/6 in Equation (16). The results show that when the
relative density is relatively small, Equation (16) has a better simulation effect.

3.4. Dynamic Damage Response

In this section, we study the dynamic damage response of the SHH. Unlike the static
response, in both directions, the dynamic response has a deformation mode that destroys
layer-by-layer. First, we study the dynamic damage response of SHH in the x direction.
The quasi-static failure and deformation of SHH in the x direction, first, shows an “X”
shaped structure. As the compression continues, when the fracture strain ε reaches 24%,
the “X” structure begins to transform into a “V” shaped structure. The dynamic damage
response is shown Figure 14a,b. It shows that when the speed is 50 m/s, the failure and
deformation appear as a layer-by-layer mode. As the speed increases (as shown in Figure
14c,d, the impact speed is 200 m/s), this layer-by-layer destruction becomes more obvious.
The corresponding form of the dynamic damage of SHH in the z direction is similar to that
of the static, and the faster the speed the more obvious the deformation mode becomes. We
can obtain the dynamic failure stress through the law of conservation of momentum [21].
For impulse we obtain the following:

I = A
∫ t

0
(σd − σ2) dt (17)

where A is cross-sectional area of the element, σd is the dynamic failure stress, σ2 is the
uniform stress at the distal end (quasi-static failure stress), and t = εd H/V is the time it
takes for the element to collapse to densification.
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Figure 13. FE prediction of the static failure stress of SHH structure in the z direction, N = 5. (a) ρ = 2.5%; (b) ρ = 5%; (c)
ρ = 7.5%; (d) ρ = 10%.

Here, we can obtain the expression of dense strain. The experiments show that when
the speed increases to 200 m/s, the expression of compact strain is closer to 1− ρ, and
therefore we obtain the following equation [22]:

εd =

{
(0.8 + 0.2V/V0)(1− ρ), V ≤ V0

(1− ρ), V > V0
(18)

where V0 is a parameter that changes according to size and, in this study, V0 = 200 m/s.
The momentum change of the unit can be expressed as:

∆P = AHρρsV (19)

According to the law of conservation of momentum:

I = ∆P (20)
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Therefore, according to Equations (17)–(20), we obtain the following:

σd = σx + ρsρ
V2

εd
(21)

For the impact compression in the z direction, just change x to z.
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where 0V  is a parameter that changes according to size and, in this study, 0 200 m / s=V  

. 

The momentum change of the unit can be expressed as: 

  = sP AH V  (19) 

According to the law of conservation of momentum: 

= I P  (20) 

Therefore, according to Equations (17)–(20), we obtain the following: 

2

 


= +d x s

d

V
σ σ  (21) 

For the impact compression in the z  direction, just change x  to z . 

Figure 14. FE prediction of the SHH dynamic damage impact, the impact direction is x, N = 5, and
ρ = 5%. (a) ε = 10%, V = 50 m/s; (b) ε = 17%, V = 50 m/s; (c) ε = 10%,V = 200 m/s; (d) ε = 17%,
V = 200 m/s.

According to Equation (21), we can carry out the finite element simulation and com-
parison. We set the impact velocity gradient from 10 to 100 m/s. θ1 = π/3 and θ2 = π/6.
The simulation result is shown in Figure 15, and the error between the experimental data
and the fitting result of Equation (21) is within the acceptable range. To facilitate the
comparison, we show the simulation diagram when the speed is 50 m/s. From Figure 16,
it can be seen that whether or not it is an impact in the x or z directions, the shock and
fluctuation of the SHH crushing stress are both large due to inertia. This is because in the
case of quasi-static crushing and low-speed impact, the substructure plays a leading role in
the slip stress, while in high-speed loading, the inertia effect dominates.
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Figure 15. Dynamic failure stress of SHH at different speeds, ρ = 5% and N = 5. (a) Impact in the x direction; (b) impact in
the z direction.
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Figure 16. Dynamic failure stress of SHH, V = 50 m/s, ρ = 5%, and N = 5. (a) Impact in the x direction; (b) impact in the
z direction.

3.5. The Influence of the Number of Substructures on the SHH Failure Stress

For the derivation of the previous Equation (12) and Equation (16), we only compare
the experimental data when N = 5. In this section, we change N and set the length to 5
and the interval to 1. The values of θ1 and θ2 are consistent with those of θ1 and θ2 when
N = 5. We explore Equation (12) and Equation (16) and compare the finite element analysis
results when N = 2 ∼ 6. Figure 17 is a schematic diagram of the SHH substructure when
N = 2 ∼ 6. We set the relative density ρ = 7.5% and study the static failure stress of the
SHH in the x and z directions. The various settings of the finite element are the same as
when N = 5, and the comparison of the results is shown in Figure 18. From the results, the
theoretical result of Equation (21) demonstrates that, for both directions of applied impact,
the resulting static failure stress increases as N increases. According to the finite element
analysis, due to different microstructures, the results are slightly different, but the error
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is within the acceptable range. We can see from Figure 18a that the data fit well. This is
because when N changes, the deformation mode in the x direction is still roughly the same,
so the fitting is ideal. For the data fitting in the z direction, due to the slight difference in the
deformation mode, the data also have slight differences but are also within the acceptable
range. For the numerical prediction results of the collapse stress in the x and z directions of
the model with N = 2 ∼ 6, there are local optimal results when N = 5 and 6. The predicted
collapse stress increases monotonically with N. However, a nearly monotonic increase in
N is shown, which is due to the fact that they are based upon simplified failure modes.
Nevertheless, the overall agreement between numerical forecasts and analytical forecasts
is acceptable.
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Figure 17. Schematic diagram of ADAH structure when N = 2 ∼ 6
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Figure 18. The quasi-static failure stress of SHH under uniaxial compression, N = 2 ∼ 6 and ρ = 7.5%. (a) Impact in the x
direction; (b) impact in the z direction.

4. Conclusions

In this study, we conducted a numerical analysis of the static and dynamic failure
of an SHH structure. When N = 5, the static and dynamic equation derivations of the
SHH under uniaxial compression in both x and z directions are explored and are compared
with the finite element method. The SHH performance is superior to the FHH and ADAH
during compression, and as N increases, the performance superiority of the SHH becomes
more obvious.

During the static failure analysis of the SHH, we found that in quasi-static crushing,
the layered design of the SHH significantly improved the collapse stress of the FHH and
ADAH. When the impact direction was x, the deformation mode changed from “X” shaped
to “V” shaped, and then proceeded to the next stage of deformation. When the impact
direction was z, it showed a layer-by-layer destruction. When the SHH was subjected to
dynamic failure impact, the fitting results of Equation (21) at different speeds showed that
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as the speed increased, the dynamic damage stress also increased, and in both directions
the impact always had a layer-by-layer damage effect. The greater the speed, the more
obvious the layer-by-layer destruction effect. This is because, in the case of quasi-static
crushing and low-speed impact, the substructure plays a leading role in the slip stress,
while in high-speed loading, the inertial effect dominates and the influence of structural
design can be ignored. Finally, by studying the influence of different N values on the
SHH structure, we conclude that the error between theoretical analysis and numerical
calculation fitting is within an acceptable range.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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