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Abstract

Assay of Transposase Accessible Chromatin sequencing (ATAC-seq) is widely used in studying chromatin biology,
but a comprehensive review of the analysis tools has not been completed yet. Here, we discuss the major steps in
ATAC-seq data analysis, including pre-analysis (quality check and alignment), core analysis (peak calling), and advanced
analysis (peak differential analysis and annotation, motif enrichment, footprinting, and nucleosome position analysis). We also
review the reconstruction of transcriptional regulatory networks with multiomics data and highlight the current challenges of
each step. Finally, we describe the potential of single-cell ATAC-seq and highlight the necessity of developing ATAC-seq
specific analysis tools to obtain biologically meaningful insights.

Introduction
Mammalian DNA is highly condensed through three major
hierarchical scales; the first is the nucleosome which then
wraps into chromatin leading to the third hierarchy, the
chromosome [1–6]. Chromatin can dynamically switch be-
tween transcriptionally active euchromatin and inactive het-
erochromatin [7, 8]. All three scales of DNA condensation
and their interplay contribute to gene regulation.
Recent gene regulation studies have focused on epi-

genetics, and through the advances of high-throughput
sequencing technologies, various assays have been devel-
oped to decipher the epigenetic landscape. These include
Assay of Transposase Accessible Chromatin sequencing
(ATAC-seq) [9, 10], DNase I hypersensitive sites sequen-
cing (DNase-seq) [11–13] and Formaldehyde-Assisted
Isolation of Regulatory Elements sequencing (FAIRE-
seq) [14], all of which interrogate chromatin accessibility;
Chromatin Immuno-Precipitation sequencing (ChIP-
seq) which measures transcription factor (TF) binding
[15–17] and histone modifications [18, 19]; and Micro-
coccal Nuclease sequencing (MNase-seq) which detects
nucleosome positioning and occupancy [20, 21]. Detailed
procedures of these assays are out of scope of this review
and discussed in detail elsewhere [22].

Among assays designed for detecting chromatin accessi-
bility, ATAC-seq has gained particular popularity since
first described in 2013. An exponential increase of curated
ATAC-seq datasets and publications indicates its value in
a wide spectrum of biological questions (Fig. 1a), such as
depicting enhancer landscapes in healthy mammalian tis-
sue and cell types [23–25], studying accessibility changes
between normal hematopoiesis and leukemia [26, 27], as
well as the chromatin state within schizophrenia patients
and the Cancer Genome Atlas (TCGA) pan-cancer cohort
[28, 29]. A schematic diagram of this cutting-edge tech-
nology in fundamental and translational research is shown
in Fig. 3a. Briefly, ATAC-seq incorporates a genetically
engineered hyperactive Tn5 transposase that simultan-
eously cuts open chromatin leaving a 9-bp staggered nick
and ligates high-throughput sequencing adapters to these
regions. During this process, the nick is repaired, leaving a
9-bp duplication [30, 31]. Paired-end sequencing is then
performed to facilitate higher unique alignment rates of
these open regions [32].
The hyperactivity of Tn5 transposase makes the ATAC-

seq protocol a simple, time-efficient method that requires
500–50,000 cells [9]. The sensitivity and specificity are
comparable to DNase-seq but superior to FAIRE-seq
where both methods require millions of cells as input ma-
terial [9]. Because ATAC-seq does not involve rigorous
size selection during library preparation, it can also iden-
tify nucleosome positions using fragments representing
nucleosome monomer and multi-mers [9]. Recently,
single-cell ATAC-seq (scATAC-seq) has been described,
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using fluorescence-activated cell sorting (FACS), microfluidic,
and nano-well-based approaches [33–35]. ScATAC-seq can
be applied in multiple situations including clinical specimens
and developmental biology to study the heterogenous cell
populations at single-cell resolution [23, 29].
Despite the simplicity and robustness of ATAC-seq, a

major impediment exists as there are few bioinformatic
analysis tools developed specifically for ATAC-seq data
[32, 36]. Analysis tools used in ChIP-seq and DNase-seq
have been applied to ATAC-seq assuming similar data
characteristics [37]. However, this assumption has not
been evaluated systematically.
The major focus of this review is to discuss current re-

sources for ATAC-seq analysis. We aim to provide an an-
notated guide for ATAC-seq data analysis instead of an
exhaustive collection of tools. Previous reviews regarding
ATAC-seq data analysis have focused mainly on peak cal-
lers and modeling regulatory networks [37, 38], but a

systematic review covering major parts of ATAC-seq data
analysis is urgently needed. This review will cover the four
most important steps listed in the flowchart (Fig. 2). These
include (1) pre-analysis (quality control (QC) and align-
ment), (2) core analysis (peak calling), (3) advanced ana-
lysis at the level of peaks, motifs, nucleosomes, and TF
footprints, and (4) integration with multiomics data to re-
construct regulatory networks. These steps will allow re-
searchers to conduct robust analysis on ATAC-seq data
and generate more biological meaningful results. Finally,
we will present the challenges and opportunities of
ATAC-seq analysis and scATAC-seq.

Pre-analysis: quality control and alignment
The first step of ATAC-seq analysis involves pre-
alignment QC, read alignment to a reference genome,
and post-alignment QC and processing (Fig. 2a) [32].

Fig. 1 Overview of ATAC-seq datasets increase and sample output for pre-analysis and advanced analysis. a The number of ATAC-seq datasets,
ATAC-seq publications, DNase-seq datasets, FAIRE-seq datasets, and MNase-seq datasets in PubMed from 1 Jan 2013 to 1 Oct 2019. b Typical
fragment size distribution plot shows enrichment around 100 and 200 bp, indicating nucleosome-free and mono-nucleosome-bound fragments.
c Typical TSS enrichment plot shows that nucleosome-free fragments are enriched at TSS, while mono-nucleosome fragments are depleted at
TSS but enriched at flanking regions. d Typical peak annotation pie chart shows that more than half of the peaks fall into enhancer
regions (distal intergenic and intronic regions), and only around 25% of the peaks are in promoter regions. TSS: transcription start site
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Pre-alignment quality control
The pre-alignment QC and read alignment steps are
standard for most high-throughput sequencing technolo-
gies. For example, FastQC [39] can be used to visualize
base quality scores, GC content, sequence length distribu-
tion, sequence duplication levels, k-mer overrepresenta-
tion and contamination of primers and adapters in the
sequencing data. An overall high base quality score with a
slight drop towards the 3′ end of sequencing reads is ac-
ceptable. No obvious deviation from expected GC content
and sequence read length should be observed. Moreover,
the metrics should be homogeneous among all samples
from the same experimental batch and sequencing run.
Currently, due to the ubiquitous use of Illumina’s Nex-

tera library for ATAC-seq, overrepresentation of Nextera
sequencing adapters is often observed and should be
removed for accurate read alignment. Most adapter re-
moval tools employ different variations of dynamic pro-
gramming, such as cutadapt [40], AdapterRemoval v2

[41], Skewer [42], and trimmomatic [43] all requiring in-
put of known adapter sequences. For example, using
trimmomatic with built-in adapter sequences for Nex-
tera and TruSeq library would be a straightforward step.
Low-quality bases can also be eliminated using these
tools. From our experience, read trimming tools are gen-
erally comparable in performance of efficient removal of
low-quality and contaminating adapter sequences.

Alignment
After read trimming, FastQC can be performed again to
check the successful removal of adapter and low-quality
bases. Trimmed reads are then mapped to a reference
genome. BWA-MEM [44] and Bowtie2 [45] aligners are
memory-efficient and fast for short paired-end reads.
The soft-clip strategy from both aligners allows the over-
hang of bases on both ends of reads which can further
increase unique mapping rates [46]. We suggest that a
unique mapping rate over 80% is typical for a successful

Fig. 2 Roadmap of a typical ATAC-seq analysis. Four major steps are listed, including pre-analysis, core analysis, advanced analysis, and integration
with multiomics data. Pre-analyses include pre-alignment QC, alignment and post-alignment processing, and QC. Core analysis includes peak
calling. Advanced analyses include peak, motif, footprint, and nucleosome analysis. Multiomics data integration includes integration with ChIP-seq
and RNA-seq data and regulatory network reconstruction. Text in each box emphasizes the important considerations in each analysis step. We
suggest researchers start with FastQC, trimmomatic, and BWA-MEM for pre-analysis, MACS2 for peak calling, csaw for peak differential analysis,
ChIPseeker for annotation and visualization, MEME suite for motif detection and enrichment, HMMRATAC for nucleosome detection, HINT-ATAC
for footprint analysis, and PCEA for regulatory network reconstruction with RNA-seq. QC: quality check; TSS: transcription start site; TF: transcription
factor; DEG: differentially expressed gene
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ATAC-seq experiment. For mammalian species, the sug-
gested minimum number of mapped reads is 50 million
for open chromatin detection and differential analysis,
and 200 million for TF footprinting based on empirical
and computational estimations [10, 12, 47–49].

Post-alignment processing and quality control
After sequence alignment, as in most DNA sequencing data,
basic metrics of the aligned BAM file, such as unique map-
ping reads/rates, duplicated read percentages, and fragment
size distribution can be collected using Picard [50] and SAM-
tools [51]. Additionally, reads should be removed if they are
improperly paired or of low mapping quality. The mitochon-
drial genome, which is more accessible due to the lack of
chromatin packaging [52], and the ENCODE blacklisted re-
gions [53, 54] often have extremely high read coverage, and
should also be discarded [33]. Duplicated reads, which are
likely to have arisen as PCR artifacts, should also be removed
to significantly improve biological reproducibility [48]. These
steps will together improve the power of open chromatin de-
tection and produce fewer false positives.
There are additional ATAC-seq-specific quality metrics

that need to be evaluated. Typically, a successful ATAC-seq
experiment should generate a fragment size distribution plot
with decreasing and periodical peaks corresponding to the
nucleosome-free regions (NFR) (< 100 bp) and mono-, di-,
and tri-nucleosomes (~ 200, 400, 600 bp, respectively)
(Fig. 1b) [9, 55]. Fragments from the NFR are expected to be
enriched around the transcription start site (TSS) of genes,
while fragments from nucleosome-bound regions are ex-
pected to be depleted at TSS with a slight enrichment of
flanking regions around TSS (Fig. 1c) [55]. These can be
evaluated with the tool ATACseqQC [55]. Lastly, reads
should be shifted + 4 bp and − 5 bp for positive and negative
strand respectively, to account for the 9-bp duplication cre-
ated by DNA repair of the nick by Tn5 transposase and
achieve base-pair resolution of TF footprint and motif-
related analyses [9, 33, 56]. Most aforementioned QC and
analysis reports can be integrated using MultiQC [57] for an
aggregated, user-friendly, and interactive presentation.
A major consideration for the appropriate tools to choose

here is often time to result. Read trimming and alignment
can be time consuming, and there is always a trade-off be-
tween speed and accuracy. In our experience, the following
pipeline performs reasonably well: FastQC➔ trimmoma-
tic➔BWA-MEM➔ATACseqQC, and we would suggest this
as a good starting point for processing of ATAC-seq data.

Core analysis: peak calling
The second major step of ATAC-seq data analysis is to
identify accessible regions (also referred to as peaks) and
is the basis for advanced analysis. A similar process has
been comprehensively reviewed for ChIP-seq [58, 59]
and DNase-seq [60]. Currently, MACS2 is the default

peak caller of the ENCODE ATAC-seq pipeline. To the
best of our knowledge, only one peak caller is specifically
developed for ATAC-seq [61]. All others are adopted
from ChIP-seq and DNase-seq with the assumption that
ATAC-seq peak patterns share the same properties.
Thus, we will focus on tools that are currently used in
ATAC-seq and provide an overview of potential alterna-
tives (Fig. 4a).
Unlike in ChIP-seq, input controls for ATAC-seq, in

which Tn5 transposase randomly cleaves protein-free
DNA, are often unavailable due to high sequencing costs
to obtain comparable coverage. Thus, peak callers which
require input controls are impractical for ATAC-seq.
Moreover, the direct pile-up of paired-end fragments
from ATAC-seq represents both nucleosome-free and
nucleosome-bound regions (Fig. 3a). Open chromatin
can be detected by piling up short fragments from NFRs
or using a shift-extend approach, which tries to count
the cutting events smoothed by the extension size
(Fig. 3b, right box) [61, 62]. This approach is more gen-
eric, as it can be applied to almost all ChIP-seq peak cal-
lers and is not affected by the fragment size of data.
Popular peak callers for ATAC-seq can be divided into

two major categories: count-based or shaped-based. The
count-based peak callers employ different statistical
methods to compare read distribution shape in a candi-
date region to a random background. MACS2 [63],
HOMER [64], and SICER/epic2 [65–67] assume Poisson
distribution, while ZINBA [68] assumes zero-inflated
negative binomial distribution. F-seq [69] and PeakDEck
[70] use kernel density estimation to profile fragment
distribution. SPP [71] has no assumption on fragment
distribution, but uses a sliding window to calculate
scores based on fragment counts from up- and down-
stream flanking windows. One should keep in mind that
some tools, such as F-seq and ZINBA, are not actively
maintained and should therefore be used with caution.
When applying mixture model clustering to biological
replicates, JAMM can determine peak width and bound-
aries more accurately [72]. In general, count-based
methods are easier to interpret and widely used.
Shape-based peak callers are not currently used in

ATAC-seq, but they utilize read density profile informa-
tion directly or indirectly and are believed to improve
peak calling in ChIP-seq [73]. PICS [74] models frag-
ment positions other than counts and calculate enrich-
ment score for each candidate region. PolyaPeak [75]
ranks peaks using statistics describing peak shape. CLC
[76] learns a Gaussian filter for peak shape from positive
and negative peaks.
Currently, HMMRATAC is the only peak caller that is

exclusive for ATAC-seq [61]. It employs a three-state
semi-supervised hidden Markov model (HMM) to sim-
ultaneously segment the genome into open chromatin
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regions with high signal, nucleosomal regions with mod-
erate signals, and background regions with low signals,
respectively. Although HMMRATAC is computationally
more intensive, it performs better than MACS2 and F-
seq and provides additional nucleosome position infor-
mation at the same time.
Other considerations should include whether the peak

caller accounts for Tn5 cleavage bias and how it deals
with biological replicates. Similar to DNase-seq, the en-
zymatic cut by Tn5 will introduce bias due to binding
preference [30, 31, 77], which is associated with GC con-
tent and should be adjusted when calling peaks [22, 56].
Biological replicates can improve reproducibility and

reduce false positive peaks. Most tools can be extended
to replicates by either pooling raw reads or combining
peak sets from individual samples. Replicates can also be
integrated using mixture models [72].
Peak tracks generated by these tools can be visualized in

Fig. 3b. Count-based tools behave similarly but are quite
different from shape-based tools. Furthermore, the under-
lying sequence features of these peaks were extracted using
neural networks and were shown to recapitulate known TF
motifs. This confirmed that TFs play an important role in
gene regulation through open, accessible chromatin [78,
79]. Fine tuning of parameters is essential for all aforemen-
tioned tools [9, 33], as the width of open chromatin varies

Fig. 3 Schematic and real ATAC-seq data from core and advanced analyses. a In an ATAC-seq experiment, Tn5 binds and cuts open chromatin
and simultaneously ligates adapters. The fragments are sequenced to identify open chromatin regions (black) and footprints (blue). NFR fragments represent
the open chromatin, while nucleosome-bound fragments reflect nucleosome positions (gray shaded tracks). b Real ATAC-seq data. Signal tracks are generated
from BAM file (Raw) and bias corrected by HINT-ATAC (Bias corrected). Peak sets are generated from three types of peak callers, count-based (red), shape-based
(blue), and HMM based (black). For MACS2, two strategies (paired-end and shift-extend) are used. For HMMRATAC, the extended ranges at both sides indicate
the nucleosomes. The HINT-ATAC track is footprints detected by HINT-ATAC, while the RUNX1 motif track is the footprints matching RUNX1 motif from JASPAR
database. The K562 ChIP-seq track is the RUNX1 ChIP-seq from ENCODE, indicating the footprint detection can recapitulate the real TF binding. The right box
illustrates the shift-extend approach. First, it shifts both ends s-bp towards outside, and then extend 2s-bp towards inside. c Illustration of network reconstruction
by ATAC-seq data. The presence of TF can be represented by motifs or footprints detected by aforementioned methods. NFR: nucleosome-free region;
TF: transcription factor; HMM: hidden Markov model
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[32]. Tools that stitch nearby narrow peaks to form broad
peaks such as MACS2, HOMER, and SICER/epic2 are also
thought to provide more meaningful results. However, to
date, there is no comprehensive benchmark study on peak
callers for ATAC-seq, and we suggest using actively sup-
ported tools, such as MACS2 and HOMER for peak calling,
and if computational resources are sufficient, HMMRA-
TAC could be used for ATAC-seq peak calling.

Advanced analysis
Peaks
Because by its nature ATAC-seq reveals multiple aspects
of transcriptional regulation, the third major step involves
interpretation at four different levels: peak, motif, nucleo-
some, and TF footprint. However, only a few tools are de-
signed specifically for ATAC-seq.

Peak differential analysis
Currently, no differential peak analysis tools have been
specifically developed for ATAC-seq data analysis. A
straightforward approach would be to find the candidate
regions (consensus peaks or binned genome), normalize,
and count the fragments in these regions and compare
with other conditions statistically [80]. This could be
achieved manually or using automated tools, such as con-
sensus peak or the sliding window-based tools (Fig. 4b).
Among the consensus peak-based tools, HOMER, DBChIP

[81], and DiffBind [82] rely on RNA-seq differential

expression (DE) analysis packages, such as edgeR [83],
DESeq [84], or DESeq2 [85]. Thus, they all assume a negative
binomial (NB) distribution and require biological replicates
to estimate dispersion. It has been suggested to call consen-
sus peaks by pooling all samples to reduce false positive dif-
ferential peaks which is the default behavior for HOMER
[86]; however, DBChIP and DiffBind generate consensus
peaks by intersection or union operations. Nevertheless, an
intersection operation ignores sample or condition specific
peaks, and a union operation often shows lower P values and
more false positives [86].
Sliding window approaches do not require pre-generated

peak sets. Instead, they evaluate all windows along the
binned genome and tend to yield more false positives and re-
quire stringent filtering and false discovery rate (FDR) con-
trol. PePr [87] and DiffReps [88] use NB test, G-test, or chi-
square test, depending on the availability of replicates. For
broader peaks, ChIPDiff [89, 90] employs an HMM to ac-
count for correlation between adjacent windows. These three
tools are independent of RNA-seq DE analysis packages. In
contrast, csaw was developed by extending edgeR framework
to binned genomes [91]. The sliding window approach is
thought to give more unbiased estimates of read count across
the genome but requires rigorous FDR control to properly
merge adjacent windows.
Currently, most studies assume that ATAC-seq reads

in peak regions follow a NB distribution, as is the case
for RNA-seq data. However, no shape-based differential

Fig. 4 Summary of peak calling and peak differential analysis tools. a Peak callers can be divided into count-based, shape-based, and Markov
model approaches. They can be further divided by the statistical methods or models used. b Peak differential analysis tools can be divided into
peak set-based and sliding window approaches. Peak set-based methods are divided based on the usage of external peak caller and RNA-seq DE
packages. Sliding window methods are divided based on statistical methods or models used. ZINB: zero-inflated negative binomial; HMM: hidden
Markov model; DE: differential expression; NB: negative binomial
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analysis tools exist for ATAC-seq data. The peaks con-
tain not only read count information, but also the distri-
bution shape profile. It is especially important for broad
peaks, as broad peaks can contain multiple local max-
ima, and those shifts can indicate biologically relevant
perturbations, which could be detected in sliding win-
dow or shape-based methods. Although not systematic-
ally studied, we believe incorporating shape information
will improve differential peak analysis. Nevertheless,
considering replicate handling, external peak caller de-
pendency and backend statistical methods, csaw is worth
a first try due to its easily explainable edgeR framework.

Peak annotation
After obtaining peak sets, annotation of peaks can asso-
ciate chromatin accessibility with gene regulation. Nor-
mally, peaks are annotated by the nearest genes or
regulatory elements. HOMER, ChIPseeker [92], and
ChIPpeakAnno [93] are widely used to assign peaks to
nearest or overlapping gene, exon, intron, promoter, 5′
untranslated region (UTR), 3′ UTR, and other genomic
features. ChIPseeker and ChIPpeakAnno also have abun-
dant visualization functions for interpreting annotation
results, such as a pie chart of annotated genomic fea-
tures (example in Fig. 1d). Typically, peaks from ATAC-
seq will represent a mixture of different cis-regulatory el-
ements including enhancers and promoters [12]. After
obtaining the list of genomic features such as the nearest
genes, functional enrichment analysis can also be per-
formed using databases such as Gene Ontology (GO)
[94], KEGG [95], and Reactome [96]. In general, peak
annotation generates biological and functionally mean-
ingful results for further investigation.

Motifs
Although peak annotation provides functional interpret-
ation, it does not directly explain the underlying mech-
anism. Open chromatin can affect transcription through
TFs, which facilitate transcription by recognizing and
binding to specific sequences on DNA. This sequence is
known as a motif and the binding positions are called
TF binding sites (TFBS). There are approximately 1600
TFs in human, and more than half have motifs obtained
experimentally or computationally [97]. Most TFs re-
quire chromatin to be accessible for binding, while cer-
tain pioneer TFs can bind to less accessible nucleosomal
DNA [98, 99]. TFs regulate transcription through com-
petition with histone or non-histone proteins [100, 101]
and cooperation with co-factors [102]. These chromatin
accessibility remodeling processes have been reviewed in
detail by Klemm, Shipony, and Greenleaf et al. in a re-
cent publication [103]. Thus, understanding motif usage
or activity change may help to decipher the underlying
regulatory networks, as well as identify key regulators

[104]. There are two types of motif or TF-based analysis
methods: sequence-based prediction for motif frequency
or activity, and footprinting for TF occupancy (discussed
in next section).

Motif database and scan
In order to exploit motif information, great efforts have
been made to compile databases of motif sequences from
either experimental methods or computational predic-
tions. Popular databases such as JASPAR [105] contain
multiple species and can be easily retrieved using applica-
tion programming interfaces (APIs) or Bioconductor
packages [106, 107]. To name a few databases, CIS-BP
[108] and TRANSFAC [109] contain eukaryotic TF motifs,
HOCOMOCO [110] focuses on human and mouse, and
RegulonDB [111] is specifically for E. coli. However, there
is no central database, which contains comprehensive and
consistent motif information, and the discrepancies can
arise from differences of original ChIP-seq experiments
and the software used to perform de novo motif discovery.
The motif information is mainly stored in text format,

for example, as a position weight matrix (PWM). HOMER
and Bioconductor packages TFBSTools [112] and motif-
matchr [113] are able to search given nucleotide se-
quences for putative TFBSs using PWM. PWMScan [114]
provides a web server for fast motif scanning using a Bow-
tie indexed genome. Another widely used tool is MEME
suite [115, 116], which includes FIMO [117] to search for
individual motifs, MAST [118] for aggregating search re-
sults from multiple motifs, and MCAST [119] to infer
regulatory modules formed by multiple motifs. These
tools generate a list of putative TFBSs based on statistical
matching. Among them, MEME suite and PWMScan are
more accessible owing to their web application interfaces.

Motif enrichment and activity analysis
Based on aforementioned motif search tools, the pos-
ition and frequency of motifs in each peak region can be
obtained and compared to a random background or an-
other condition. HOMER uses the hypergeometric test,
while MEME-AME [120] uses the rank-sum test to com-
pare motif frequencies within peaks. MEME-CentriMo
[121] further identifies motifs enriched near peak cen-
ters. DAStk [62] generates a MD score (motif displace-
ment score) [122]. This is achieved by calculating the
ratio of motif occurrence within a small window (150
bp) to a large radius (1500 bp) from each peak center.
The MD score can also be compared across different
conditions with a Z-test. These methods employ differ-
ent statistical tests to compare the motif frequency in
peaks and the background regions.
Apart from an overrepresentation test, accessibility at

each putative TFBS is assumed to associate with TF
activity and can be measured by fragment counts.
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ChromVAR [56] calculates accessibility deviation across
multiple conditions for each motif using a Z-score and is
adjusted for known technical bias (GC bias, average ac-
cessibility and fraction of reads in peaks). It is specifically
designed for scATAC-seq data with a large number of
cells that could be considered as replicates. However, its
performance in bulk ATAC-seq has not been evaluated
yet. DiffTF generates a distribution of accessibility fold
changes for all TFBSs, adjusted for GC content for each
motif and is then compared to a permutated null back-
ground to evaluate significance [123, 124]. In summary,
MEME-CentriMo is a widely used web application that
produces a visual report, while chromVAR can be an al-
ternative in scATAC-seq.
All tools mentioned so far predict putative TFBSs indir-

ectly from sequences found within peak regions. Such
TFBSs can contain a significant fraction of false positives
and are likely to be incomplete and confounded. This is
because not all TFs have identified motifs and TFs from
the same family can share very similar motifs [125]. More-
over, the predicted enrichment or activity change could
have negligible biological meaning which hampers the in-
terpretation of the sequence-based motif analysis results.

Footprints
Another way to decipher the TF regulation is to use
footprints. A footprint in ATAC-seq refers to a pattern
where an active TF binds to DNA and prevents Tn5
cleavage within the binding site. This leaves a relative
depletion within the open chromatin region (Fig. 3a)
[47, 126, 127]. Thus, footprints of actively bound TFs
can be used to reconstruct a regulatory network specific-
ally for certain samples.
However, there are hurdles for ATAC-seq footprinting

analysis. First, it is important to shift the raw reads in
the pre-processing step to account for the 9-bp duplica-
tion for accurate footprint detection [9, 33]. Second, due
to binding preference of Tn5 [32, 128] and the weak sig-
nal of transient TF binding [129], footprint detection is
both experimentally and computationally difficult [130].
Great efforts have been made in DNase-seq footprinting,
which faces similar challenges except for the difference
in enzymatic bias. However, only a few footprinting tools
have been tested on ATAC-seq and no systematic evalu-
ation has been performed [48, 131, 132].
Footprinting analysis tools mainly fall into two cat-

egories: de novo and motif-centric methods. De novo
methods predict all footprint sites across peaks, accord-
ing to features of a typical footprint pattern (peak-dip-
peak). Then these putative footprint sites are used to
match known motifs or identify novel motifs. Instead,
motif-centric methods require the input of a priori
TFBSs and discriminate these sites as bound or unbound
using supervised or unsupervised methods (Table 1).

De novo tools
For de novo methods, it is important to mathematically
define what is a footprint and denoise the footprint pat-
tern from Tn5 cleavage bias [128, 134]. Boyle et al. [135]
proposed an HMM using normalized and smoothed
fragment counts at each base to detect different states
such as footprint, flanking, and background. HINT,
HINT-BC (bias correction for DNase-seq), and recent
HINT-ATAC also employ HMM, but only HINT-ATAC
corrects for strand-specific Tn5 cleavage bias (Fig. 3b)
[130, 133, 134]. An example was shown in Fig. 3b, where
footprints detected by HINT-ATAC in a leukemia sam-
ple were also validated in a K562 cell line with RUNX1
ChIP-seq. Because these HMM-based methods require
supervised training using manually annotated genomic
regions, their generalizability in larger datasets needs to
be further evaluated. Wellington and Wellington-
bootstrap [136, 137] compare the number of Tn5 cuts in
flanking and candidate footprint region to find the local
minima. Bias correction is not considered by Neph’s
method, Boyle’s method, HINT, and Wellington, while
DNase2TF and HINT-BC do account for bias correction
for DNase-seq [47, 129]. Parameter tuning is a critical
consideration and will affect the resultant calls. An opti-
mized pipeline using HINT and Wellington has been de-
scribed, which evaluates results using area under curve
(AUC) analysis considering ChIP-seq binding sites as
true positive [48]. In summary, only HINT-ATAC cur-
rently handles ATAC-seq-specific bias.

Motif-centric tools
Motif-centric methods focus on a priori TFBSs and con-
sider TF-specific footprint profiles compared to de novo
methods. The challenge is to avoid ascertainment bias
where TFs with high-quality motifs are enriched.
The unsupervised motif-centric methods classify puta-

tive TFBSs as bound or unbound, based on features ex-
tracted from genomic regions, e.g., distance to TSS,
PWM match score, and sequence conservation score
[145, 146], as well as from sequencing reads, e.g., read
number and shape distribution around the putative
TFBSs [139–141, 147]. Among them, CENTIPEDE
models read distribution with a multinomial model, and
its performance is sensitive to parameters in a TF and
cell-type-specific way [133, 139, 143], whereas msCenti-
pede and Romulus account for these heterogeneous
footprint profiles [140, 141]. Additionally, msCentipde
can model Tn5 bias and Romulus improves performance
for low depth data and low-quality motifs. PIQ [147]
uses a Gaussian process to model read distribution and
can further increase robustness when replicates are pro-
vided. The accuracy of unsupervised tools relies heavily
on feature selection and construction, thus feature en-
gineering and selection techniques, such as one-hot

Yan et al. Genome Biology           (2020) 21:22 Page 8 of 16



encoding, binning, and clustering, can be attempted to
further improve performance.
In contrast, supervised motif-centric tools require

high-quality ChIP-seq to annotate true TFBSs as training
data. MILLIPEDE and BinDNase both use logistic re-
gression [142, 143], while DeFCoM uses support vector
machine (SVM) and BPAC uses a random forest classi-
fier [131, 144]. Specifically, BinDNase trains a model for
each TF separately to account for the TF-specific foot-
print pattern. The SVM approach used in DeFCoM is
more robust to outliers compared to logistic regression
[131]. Additionally, DeFCoM was tested on ATAC-seq
data and showed slightly decreased performance com-
pared to in DNase-seq with twice the read number. For
all supervised tools, performance decreases in cross-TF/
cell-type validation, due to variable footprint patterns
[142]. This could hamper their application in rare cell
populations or heterogeneous cancer samples. An en-
semble of larger and more diverse training data was
shown to improve footprinting performance [144], and

we would also expect ensemble learning to be beneficial,
where multiple learners are trained to predict collect-
ively. Moreover, all these tools are trained using DNase-
seq data, thus they should be retrained using ATAC-seq
data to account for intrinsic bias of different data. In
general, modeling TF and cell-type-specific footprint
patterns remains difficult due to their substantial
variability.
If global TF footprint pattern changes between conditions

is of interest, BaGFoot [132] can be employed. It calculates
footprint depth and flanking accessibility for all TFs after se-
quence depth normalization and bias correction. This
method is robust to assay type (DNase-seq or ATAC-seq),
peak caller, and bias correction methods [132].

Comments on footprinting analysis
There are several caveats for footprinting analysis. First,
supervised motif-centric footprinting tools generally out-
perform unsupervised counterparts and de novo
methods, with the trade-off of less generalizability [130,

Table 1 Summary of footprinting tools, including software category, programming language, algorithm or statistical method, bias
correction for DNase-seq or ATAC-seq, and output statistics. In addition, the second last column exemplifies the application of tools
in ATAC-seq data

Tool Category Language Algorithm Bias correction? Statistics Used for ATAC
in literature?

Reference

Neph De novo C++ Slide window N Footprint occupancy score (FOS) N [47]

HINT Python HMM N Probability N [133]

HINT-BC Python HMM Y (DNase-seq) Probability Y [48] [130]

HINT-ATAC Python HMM Y (ATAC-seq) Probability Y [134] [134]

Boyle NA HMM N Probability N [135]

Wellington Python Binomial test N (visualize bias) P value, FDR Y [48] [136]

Wellington-
bootstrap

Python Bootstrap DE analysis N (visualize bias) P value, FDR Y [48] [137]

DNase2TF R Binomial test, iteratively
merge

Y (DNase-seq) FDR Y [134] [129]

CENTIPEDE Motif-centric R Bayesian mixture model,
unsupervised

N Posterior probability Y [138] [139]

msCentipede Python and
Cython

Bayesian multiscale
model, unsupervised

Y (can extend to
ATAC-seq)

Posterior probability Y [140] [140]

Romulus R Bayesian mixture model,
unsupervised

N Posterior probability N [141]

PIQ R Gaussian process model,
unsupervised

N Probability of binding times local
chromatin accessibility

Y [134] [147]

BinDNase R Logistic regression,
supervised

N Probability N [142]

MILLIPEDE R Logistic regression,
supervised

N (robust to
bias)

Probability N [143]

DeFCoM Python SVM, supervised N Ranking Y [131, 134] [131]

BPAC Python Random forest,
supervised

N Probability N [144]

BaGFoot R Differential motif activity Y P value Y [132] [132]

FDR false discovery rate, HMM hidden Markov model, SVM support vector machine
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131]. They have been trained using ChIP-seq and
DNase-seq data from specific TFs in specific cell types.
Therefore, their context may not be generalizable and
applicable to ATAC-seq. Moreover, training data is not
always available from the sample of interest, and cross-
TF/cell-type prediction should be conducted with cau-
tion [131, 144]. Generalizability of these tools to ATAC-
seq still requires extensive evaluation. Second, bias cor-
rection is important in both DNase-seq and ATAC-seq
footprint detection. Recently, the Tn5 preferential motif
has been identified and shown to confound some C2H2
zinc finger TFs [128]. Third, there is not a general guide-
line for minimal ATAC-seq sequencing depth in order
to achieve effective footprinting. Although more than
200 million reads per sample are recommended, DeF-
CoM has been described to work comparably well with
fewer sequencing reads [10, 48, 131]. With increasing
depth, the improvement of footprinting varies between
TFs and cell types due to different binding affinity and
turnover [131]. However, saturation analysis is needed to
provide reasonable suggestion for experimental design
regarding sequencing depth per sample. Fourth, de novo
methods still have the advantage for low-quality and
novel motifs. Although the evaluation of footprint
methods is inconsistent across different studies because
of the analysis tools chosen, parameter setting, and
evaluation metrics, we believe that HINT-ATAC can be
a decent option due to its ATAC-seq-specific bias cor-
rection [130, 131]. Additionally, researchers could com-
bine the results from multiple tools to obtain highly
reliable footprints. Nevertheless, footprinting analysis in
ATAC-seq is useful to understand TF regulation and
further reconstruct cell-specific regulatory networks, and
therefore requires extensive benchmarking for software
comparison and development within specific contexts.

Nucleosome positioning
The nucleosome consists of a histone octamer complexed
with approximately 147 bp of DNA (Fig. 3a) and affects
TF binding by altering chromatin accessibility [2, 103,
148]. In a standard ATAC-seq library, longer fragments
correspond to nucleosome-associated regions (Fig. 3a) [9].
There are analysis tools developed to detect regions where
these nucleosomal fragments are enriched. However,
Schep et al. showed that nucleosome detection in ATAC-
seq was more difficult than in MNase-seq data, due to the
deceased read coverage beyond the open chromatin re-
gions [149].
Software developed for MNase-seq, such as DANPOS2,

PuFFIN, iNPS, and NucTools, can be applied to ATAC-
seq data after filtering for nucleosome-associated frag-
ments [149–153], while NucleoATAC and HMMRATAC
are developed specifically for ATAC-seq. NucleoATAC
outperformed DANPOS2 by devising a signal score for

each base by cross-correlating positional signals with V-
plots. A V-plot is a dot-plot to visualize fragment size and
midpoint position and is conserved across species [149,
154, 155]. The signal score is normalized and smoothed,
and local maxima are found by log-likelihood. HMMRA-
TAC can simultaneously detect open chromatin and
nucleosome-associated regions as discussed before
(Fig. 3b) [61]. Moreover, DANPOS2 and NucTools can
detect the nucleosome occupancy change and position
shift between conditions [150, 151]. INPS incorporates a
wavelet denoising method while PuFFIN sums up nucleo-
somal fragment distributions weighted by fragment sizes
to identify nucleosomes [152, 153, 156].
However, all these tools suffer from the same under-

lying drawbacks of a typical ATAC-seq experiment,
which is low coverage beyond open chromatin. In the
future, new experimental protocols coupled with bio-
informatic methods for ATAC-seq will be required to
more efficiently and precisely capture nucleosome occu-
pancy. Here, we believe HMMRATAC and NucleoA-
TAC are two useful and specific tools for ATAC-seq
nucleosome detection.

Integration with multiomics data to reconstruct
regulatory networks
Along with the specified requirements for ATAC-seq
data analysis we have articulated so far, the integration
of ATAC-seq with other high-throughput sequencing
technologies such as RNA-seq and ChIP-seq is gaining
increasing interest to understand gene regulation.

Integration with ChIP-seq
Because open chromatin is the pre-requisite for most
TFs to bind, ATAC-seq peaks generally overlap with TF
ChIP-seq peaks but are often broader. Thus, TF ChIP-
seq and ATAC-seq can mutually validate the quality and
reliability of each other within the same experimental
system [157]. Unique peaks in TF ChIP-seq could indi-
cate pioneer TFs that bind to closed chromatin, which
then recruit chromatin remodellers or other TFs and ini-
tiate transcription [98, 103]. Analysis based on putative
TFBS, such as motif enrichment and footprint detection,
can be further improved by incorporating true TF ChIP-
seq peaks to reduce false positives [54]. ATAC-seq can
also be integrated with histone marker ChIP-seq and is
found to positively correlate with active chromatin
makers (H3K4me3, H3K4me1, H3K27ac, etc.) and nega-
tively correlate with inactive chromatin markers
(H3K27me3) [9, 157, 158]. In conclusion, integrating
ChIP-seq and ATAC-seq helps to understand TF and
histone facilitated chromatin accessibility changes. We
foresee ATAC-seq to be a pioneer assay before specific
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TF ChIP-seq, due to the ease of the protocol and less
sample requirement.

Integration with RNA-seq
Researchers are also interested in qualitatively or quanti-
tatively associating changes in chromatin accessibility
with changes in gene expression by RNA-seq. Intuitively,
researchers can discover whether DE genes also have
significantly differential chromatin accessibility sur-
rounding the respective TSS [159]. Moreover, DE genes
can be inferred to be regulated by TF associated with
specific motifs or footprints in open chromatin. At the
single cell level, Litzenburger et al. attempted to com-
bine scRNA-seq and scATAC-seq to identify the target
genes whose expression varies when GATA binding site
accessibility changes [160]. Cao et al. used a LASSO re-
gression model to identify distal peaks which account
for the target gene expression change [161]. Coupled
clustering combining scATAC-seq and scRNA-seq was
shown to improve accuracy in subpopulation detection
[162]. Integration of ATAC-seq with RNA-seq aids to
decipher gene regulation and cellular heterogeneity.

Reconstruction of regulatory networks
While ATAC-seq can simultaneously detect hundreds of
TF motif occurrences or footprints, it is possible to recon-
struct cell-specific regulatory networks by linking foot-
prints/motifs with downstream genes. Similar approaches
have been demonstrated in DNase-seq (Fig. 3c) [104, 163].
However, previous attempts in DNase-seq have been re-
stricted to promoter regions and only investigate TF-TF
regulation [104]. Peaks within promoters only constitute a
small proportion of all ATAC-seq peaks, while the majority
are found in distal enhancers reducing the power to infer
regulatory networks [9]. Enhancers can be very distant in a
linear genome but spatially proximal (in 3D) to their target
genes. This leads to the difficulty of predicting direct target
genes of enhancers. Many studies have considered distal
peaks as enhancers and linked them to the closest gene
akin to a promoter analysis [164–166]. With scATAC-seq,
Pliner et al. proposed Cicero, which accurately recapitulates
co-accessible peaks and links enhancers and promoters to
the same target gene. This method has been validated by
orthogonal methods [167]. While it has been demonstrated
to work in scATAC-seq, it is unclear if this method is ap-
plicable to bulk ATAC-seq with much smaller sample sizes.
Nevertheless, Cicero is a forerunner in connecting distal
enhancers to gene regulation using ATAC-seq.
Although it is possible to reconstruct undirected TF-

gene regulatory networks with ATAC-seq alone, the direc-
tional regulation can be further inferred as activation or
repression when RNA-seq is integrated. Duren et al. pro-
posed a model with paired gene expression and chromatin
accessibility (PECA) data to predict the target gene

expression as a function of TF expression, chromatin re-
modeller expression and chromatin accessibility [168].
Miraldi et al. used ATAC-seq-derived binary TF-gene in-
teractions as prior networks, to further refine regulatory
networks inferred from RNA-seq data [166]. Berest et al.
classified TFs to be activators or repressors based on cor-
relation of TF expression and accessibility at TFBSs across
the whole genome [124] with the assumption that accessi-
bility, similar to histone markers, positively correlates with
TF expression for activators and negatively for repressors
[124, 169]. This method only allows classification in a glo-
bal manner.
In order to further improve network reconstruction,

publicly available ChIP-seq datasets can be integrated to
improve the accuracy of footprinting. Incorporating
known enhancer-promoter interactions from chromatin
conformation data would also be helpful. With the surge
of deep learning, it would require more work on feature
construction and selection in order to build effective al-
gorithms to predict transcriptional regulatory networks.
In summary, integrating ATAC-seq with multiomics
data yields biologically meaningful results, which can un-
cover underlying mechanisms of gene regulation.

Pipelines for ATAC-seq data
There is growing need for integrated pipelines to process
ATAC-seq data. Several have been developed but have
different focus for downstream analysis by stitching to-
gether previously discussed tools.
To name a few, esATAC [170] and CIPHER [171] focus

on peak annotation, while GUAVA [172], a graphic user
interface (GUI) tool, focuses on differential peak detection
as well as functional annotation. ATAC2GRN [48] is an-
other pipeline specifically optimized for footprinting.
These pipelines will provide a helpful and convenient

entry for researchers with minimal programming skills
to explore ATAC-seq data. However, a general problem
for these pipelines is the lack of flexibility for parameter
tuning. Most parameters are hard coded empirically be-
cause the combination of them increases exponentially
with the number of tools, which makes pipelines difficult
to modify for any given context. Overall, a pipeline with
visualization and user interface will be more appropriate
for nonprogrammers to explore the data.

Single-cell ATAC-seq
Enabled by microfluidic, nano-well, and combinatorial
indexing technologies, scATAC-seq is now able to meas-
ure the chromatin accessibility for thousands of cells with
easy protocol at a low cost [33–35]. The chromatin acces-
sibility at each base will be binary and the scATAC-seq
data will be sparse because in diploid organisms, there are
only two copies of DNA. This is a challenge in analyzing
scATAC-seq data. Despite the analyses listed for bulk
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ATAC-seq, another important analysis for single-cell is
clustering. A recent benchmarking study from Chen et al.
about clustering methods in scATAC-seq showed that
SnapATAC, Cusanovich2018 and cisTopic outperformed
other methods [23, 173–175]. These three methods are
featured by workflows combining window-based genome
binning, binarization of the accessibility, coverage bias
correction, and dimension reduction using principle com-
ponent analysis, which specifically handle the sparse
scATAC-seq data [175]. This study provides a useful
insight for future scATAC-seq software development.
New techniques such as scNMT-seq, sci-CAR, and Pi-

ATAC were recently developed to measure chromatin ac-
cessibility, transcriptome, and proteome simultaneously
from exactly the same cell [161, 176, 177]. Data from these
experiments could help to deduce the complex interplay
between the epigenome, transcriptome, and proteome and
help us to understand why different cells behave distinct-
ively. With the advantages of single-cell analysis are clear,
there are challenges. Cost and time-efficient single-cell
techniques as well as bioinformatic tools remain an area
of active research and development.

Future perspectives and concluding remarks
ATAC-seq has developed rapidly over recent years and
has become a method of choice to investigate chromatin
accessibility. There are now optimized protocols that work
with single cells, blood samples, and frozen tissue with im-
proved signal-to-noise ratio [26, 33–35, 178]. Despite the
progress in protocols, the advancement in bioinformatics
analysis tools is slow, with no comprehensive analytical
pipeline defined. This imposes a current and ongoing hur-
dle in the interpretation of ATAC-seq results.
In this review, we have systematically discussed all major

steps in an ATAC-seq analysis pipeline for the reader to
consider, starting with raw sequencing reads to the end-
point of biological meaningful interpretation. Here, we
offer a guide of available tools and suggested steps of ana-
lysis to consider to facilitate proper biological interpret-
ation of ATAC-seq data. The alignment and QC steps are
similar to RNA-seq and ChIP-seq. As for the peak calling,
most ChIP-seq derived tools are compatible with ATAC-
seq data. However, a comprehensive benchmarking would
help to select appropriate tools and to guide future devel-
opment of ATAC-seq-specific peak callers. There is grow-
ing evidence that improvement or parametrization of
current tools can be applied to fit ATAC-seq data.
For downstream interpretation, differential peak ana-

lysis can give an overview of the changes of chromatin
accessibility. Nevertheless, these changes can arise from
both read numbers and the shapes of peaks and can be
detected by count-based or sliding window approaches.
The performance of these two approaches still requires
further evaluation in ATAC-seq and could be specific to

particular contexts. In order to infer biological function
and related TFs, peak annotation and motif enrichment
analysis is a good first pass analysis for initial insight.
Motifs and footprints are direct and indirect indicators of

regulatory events respectively. The difficulty in detecting
footprints comes from both enzymatic cutting bias and
weak signals from transient TFs. Instead of defining foot-
prints with a mathematical formula, recent publications
made a good first attempt to embrace the fast development
of machine learning algorithms with supervised learning
[131, 144]. Moreover, nucleosome detection remains diffi-
cult due to an intrinsic weakness of ATAC-seq data where
low read coverage beyond peaks is typical. NucleoATAC
and HMMRATAC have attempted this; however, large
gaps in methods of detection remain in this area.
Another consideration for analysis is on reconstruct-

ing gene regulatory networks from ATAC-seq data
alone or integrating with multiomics data. This is par-
ticularly tempting because ATAC-seq can work with
as low as 500 cells and allow the study of well-defined
subpopulations especially in developmental biology
and clinical samples. ScATAC-seq provides another
option to study chromatin biology in heterogeneous
cell populations.
In summary, ATAC-seq, an information rich assay, is

in great demand for specific bioinformatic analysis tools
for further exploitation in analyzing chromatin state, TF
footprint, nucleosome position, and regulatory network
reconstruction. As a starting point, we suggest re-
searchers can build an effective workflow, by combining
FastQC, trimmomatic, and BWA-MEM for pre-analysis,
and MACS2 for peak calling. For advanced analysis, we
suggest csaw for differential peak analysis, MEME suite
for motif detection and enrichment, ChIPseeker for
annotation and visualization, HMMRATAC for nucleo-
some detection, and HINT-ATAC for footprint analysis.
If RNA-seq data is available, regulatory networks can be
reconstructed using PECA method. However, re-
searchers can always refer to this review for alternative
tools for each step and we recommend selecting the tool
based on the context of the experimental system and the
data collected.
We envisage that this review will encourage re-

searchers to appreciate the complexity and current
major hurdles in ATAC-seq data analysis. New ATAC-
seq-specific tools and comprehensive benchmarking
studies would enable the answering of more biological
questions with ATAC-seq in the near future.
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