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Simple Summary: Poly-adenosine diphosphate ribose polymerase (PARP) inhibitors (PARPi) are
effective against tumors with mutations in DNA repair genes, most commonly in the BRCA1 and
BRCA2 genes. Because these tumors are unable to repair their DNA, PARPi have been used to target
DNA repair pathways and are useful in the treatment of breast cancers with some of these alterations.
There are two FDA-approved PARPi for patients with breast cancer—olaparib and talazoparib. The
data on olaparib and talazoparib in the treatment of breast cancer are summarized in this review, and
we also explore potential future applications of PARPi beyond inherited BRCA mutations.

Abstract: Poly-adenosine diphosphate ribose polymerase (PARP) inhibitors (PARPi) are approved
for BRCA1/2 carriers with HER2-negative breast cancer in the adjuvant setting with a high risk of
recurrence as well as the metastatic setting. However, the indications for PARPi are broader for
patients with other cancer types (e.g., prostate and ovarian cancer), involving additional biomarkers
(e.g., ATM, PALB2, and CHEK) and genomic instability scores. Herein, we summarize the data on
PARPi and breast cancer and discuss their use beyond BRCA carriers.
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1. Introduction

Poly-adenosine diphosphate ribose polymerase (PARP) inhibitors (PARPi) are effective
against tumors with an impaired ability to repair double-strand DNA breaks, such as those
with homologous recombination repair (HRR) deficiency (HRD) [1,2]. PARP enzymes play
a role in a range of cellular activities. PARP1 and PARP2 are essential for the repair of single-
strand breaks in DNA. When PARP enzymes are suppressed, DNA single-strand breaks
accumulate and lead to DNA double-strand breaks at replication forks. When the processes
for repairing double-strand breaks are inadequate, such as in tumor cells with HRD, there
is a threat to cell survival. PARPi and HRD represent a lethal combination, which is the
basis of the concept of synthetic lethality, though neither is lethal alone (Figure 1) [1–3].
In addition to the catalytic inhibition of PARP enzymes, PARPi trap PARP1 and PARP2 at
damaged DNA sites, preventing the recruitment of additional DNA repair proteins and
ultimately leading to cell death [4]. Trapped PARP–DNA complexes have been shown
to be more cytotoxic than the single-strand breaks generated by PARP inactivation [4].
Differences in PARP trapping potential are not correlated with the inhibition of PARP
catalytic activity [4].

PARPi have been extensively studied in cancers where HRD is prevalent, including
breast cancer (BC). The development of BC is linked to germline and somatic pathogenic
mutations in DNA-repair genes. Approximately 10% of BC cases are familial, and half of
these are due to an inherited deleterious BRCA1/2 mutation [5,6]. Familial BCs are over-
represented among women with triple-negative BC (TNBC): nearly 14% have pathogenic
germline variants, and approximately 50% consist of BRCA1/2 mutations [6]. While BRCA1
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and BRCA2 pathogenic variants are associated with a high risk of BC, PALB2 pathogenic
variants are associated with a moderate risk of BC [7,8]. Variants in other DNA-repair genes
are linked to a higher risk of estrogen-receptor-positive BC (CHEK2, ATM, and CDH1) as
well as TNBC (BARD1, RAD51C, and RAD51D) [7,8]. The estimated odds ratios of BC
linked with various DNA-repair mutations are shown in Table 1 [8].
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double-strand breaks found in HRR-deficient cells renders them sensitive to PARP inhibition. 
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For BRCA1/2 carriers with human epidermal growth factor receptor two (HER2)-
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recurrence [10] and in the metastatic setting [11,12]. There are twelve other FDA-approved 
indications for PARPi in a variety of cancers, as summarized in Table 2 [11–29]. 

  

Figure 1. A synthetic lethality therapeutic approach: poly(ADP) ribose polymerase inhibitors (PARPi)
for the treatment of cancers with a deficient homologous recombination repair (HRR) pathway.
Neither PARPi nor HRR deficiency (HRD) alone is lethal, but the inadequate repair of double-strand
breaks found in HRR-deficient cells renders them sensitive to PARP inhibition.

Table 1. Associations between pathogenic variants in established breast-cancer-predisposition genes
and risk of breast cancer.

Pathogenic Variant Odds Ratio (95% CI) p-Value

BRCA1 7.62 (5.33–11.27) <0.001
BRCA2 5.23 (4.09–6.77) <0.001
PALB2 3.83 (2.68–5.63) <0.001
ATM 1.82 (1.46–2.27) <0.001

CHEK2 2.47 (2.02–3.05) <0.001
Adapted from reference [8], with loss-of-function variants and variants identified as “pathogenic” or “likely
pathogenic” in the ClinVar [9] database.

For BRCA1/2 carriers with human epidermal growth factor receptor two (HER2)-
negative BC, PARPi can be beneficial in the adjuvant setting for patients at high risk of
recurrence [10] and in the metastatic setting [11,12]. There are twelve other FDA-approved
indications for PARPi in a variety of cancers, as summarized in Table 2 [11–29].

Currently, there are four FDA-approved PARPi: olaparib, rucaparib, niraparib, and
talazoparib [14–17]. Olaparib and talazoparib are approved for BC patients [11,12]. In
a phase II trial of rucaparib in BRCA carriers with advanced BC, there was no response
among the 23 patients treated [30]. Olaparib and rucaparib have similar potencies for
trapping PARP–DNA complexes [31], and all PARPi are pharmacologically similar in terms
of inhibiting PARP catalytic activity. However, talazoparib is 100 times more effective at
trapping PARP–DNA complexes and is more cytotoxic as a single agent than olaparib [31].
The varying initial doses of each PARPi drug reflect this relative variance in potency. The
typical starting doses are 300 mg B.I.D. for olaparib; 200 or 300 mg daily for niraparib, de-
pending on the patient’s baseline weight and/or platelet count; 600 mg B.I.D. for rucaparib;
and 1 mg daily for talazoparib [14–17].
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Table 2. FDA indications for poly-adenosine diphosphate ribose polymerase inhibitors (PARPi) in a
variety of cancers.

Drug Indications [14–17] Biomarker Main Trial

Olaparib

Advanced epithelial ovarian * BRCA1/2 SOLO-1 [13] (2018)
Advanced epithelial ovarian * BRCA1/2, or GIS PAOLA-1 [18] (2020)
Recurrent epithelial ovarian * X SOLO-2 [19] (2017), Study 19 [20] (2017)

Advanced ovarian gBRCA1/2 NCT01078662 [21] (2014)
Metastatic breast: HER2-negative gBRCA1/2 OlympiAD [12] (2018)

Metastatic pancreatic adenocarcinoma gBRCA1/2 POLO [22] (2019)

Metastatic prostate
ATM, BRCA1/2, BARD1, BRIP1,

CDK12, CHEK1/2, FANCL, PALB2,
RAD51, RAD54L

PROfound [23] (2020)

Rucaparib
Recurrent epithelial ovarian * X ARIEL3 [24] (2018)

Epithelial ovarian * BRCA1/2 Study 10 and ARIEL2 [25] (2016)
Metastatic prostate BRCA1/2 TRITON2 [26] (2020)

Niraparib
Advanced epithelial ovarian * X PRIMA [27] (2020)
Recurrent epithelial ovarian * X NOVA [28] (2017)

Advanced ovarian * BRCA1/2 or GIS QUADRA [29] (2019)

Talazoparib Metastatic/advanced breast:
HER2-negative gBRCA1/2 EMBRACA [11] (2018)

* Additionally, fallopian tube or primary peritoneal; gBRCAm: germline BRCA mutation; HER2: human epidermal
growth factor receptor 2; GIS: genomic instability score. Indications for use in breast cancer patients are bolded.

The present article reviews the key clinical trial data for the PARPi currently approved
for BC—olaparib and talazoparib. We also discuss the role of PARPi in patient populations
with BC harboring HRD mutations beyond BRCA.

2. Methods

We searched PubMed on 29 April 2022, for clinical studies exploring the use of PARPi
in patients with BC using the following search terms: “breast” AND “Olaparib OR AZD2281
OR Talazoparib OR BMN 673”. The references of the included articles were also screened for
eligible papers (Figure 2). Seventy-three trials were included and divided into the following
groups: (Section 3) OLAPARIB, (Section 3.1) early-phase studies, (Section 3.2) locally
advanced or metastatic BC, (Section 3.3) early-stage BC, and (Section 3.4) combination trials;
(Section 4) TALAZOPARIB, (Section 4.1) early-phase studies, (Section 4.2) locally advanced
or metastatic BC, (Section 4.3) early-stage BC.
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Figure 2. Search strategy. On 29 April 2022, the following PubMed search was performed: “breast”
AND “Olaparib OR AZD2281 OR Talazoparib OR BMN673”. The references were also scanned for
eligible studies. There were 177 results. Among them, 106 studies were excluded, as 91 cited the
word breast in the body of the text but were not about breast cancer, 6 were not experimental studies,
five were subanalyses of included studies, 3 were duplicated studies, and 1 was an experiment that
included neither olaparib nor talazoparib. Accordingly, 71 studies were included, with two additional
studies from the references.
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3. Olaparib
3.1. Early-Phase Studies

Olaparib belongs to the N-acylpiperazine class and is made via the formal condensa-
tion of the free amino group of N-(cyclpropylcarbonyl)piperazine with the carboxy group
of 2-fluoro-5-[(4-oxo-3,4-dihydrophthalazin-1-yl)methyl]benzoic acid [32]. It is a PARPi
that targets PARP1, PARP2, and PARP3 [14]. Increased cytotoxicity and anti-tumor activity
were observed in cell lines and mice tumor models with defects in BRCA1/2, ATM, or
other genes involved in DNA repair after treatment with olaparib, and this was linked
with platinum responsiveness [19,20]. In terms of monotherapy, phase I trials identified
the maximum tolerated dose of olaparib capsules to be 400 mg B.I.D [33,34]. The mean
maximal PARP inhibition in human peripheral blood mononuclear cells and tumor tissue
is 50.6% and 70.0%, respectively [35]. Based on pharmacokinetics, tolerability, and efficacy
measured by tumor shrinkage, the recommended olaparib monotherapy tablet dose is
300 mg B.I.D [36,37]. Olaparib was originally available in tablets and capsules. These
dosage forms are not bioequivalent and thus are not interchangeable [37]. In the United
States, capsule formulation was discontinued as of 2018. Olaparib absorption is delayed
with high-fat meals, but the extent of absorption is not significantly altered [38,39]. Thus,
olaparib can be administered with or without food, although administration with a meal
may help prevent gastrointestinal adverse events (AEs) such as nausea or vomiting [38,39].
Olaparib is a major substrate of CYP3A4 and is primarily hepatically metabolized through
oxidation [40]. Concomitant administration with strong inducers and inhibitors of CYP3A4
should be avoided [41]. If administration with a strong CYP3A4 inhibitor cannot be avoided,
the olaparib tablet dose should be reduced to 100 mg B.I.D [14,41]. Olaparib is the only
PARPi that does not cause transaminitis [42]. Olaparib has the most extensive hepatic
metabolism and should be avoided when used with other agents that affect or undergo
hepatic metabolism [40,43]. Pharmacokinetic studies showed that the mean area under
the receiver operating characteristic curve (AUC) and peak serum concentration (Cmax)
of olaparib were increased by 15% and 13%, respectively, in patients with mild hepatic
impairment [43]. However, dose adjustment for mild or moderate hepatic impairment
is not necessary [40]. Approximately, 44% of olaparib is excreted in the urine, mostly as
metabolites. Exposure to olaparib was shown to be increased in renal impairment. In
those with mild impairment (creatinine clearance (CrCl) 51 to 80 mL/min) AUC and Cmax
increased by 24% and 15%, respectively) [44]. Drug exposure increased to a higher extent
(AUC and Cmax increase by 44% and 26%, respectively) with moderate impairment (CrCl
31 to 50 mL/min), which required adjusting the olaparib dose (tablets) to 200 mg B.I.D [44].
An increase in serum creatinine was also observed with olaparib (up to 99%) [45,46]. It is
believed that elevations in serum creatinine might not reflect a true decline in the glomeru-
lar filtration rate or kidney insufficiency, and monitoring alternative markers, such as
Cystatin C, that are not impacted by transporters of creatinine should be considered to
avoid an unnecessary dose reduction of olaparib and other PARPi [42,45,46]. Secondary
hematological malignancy has rarely been reported in patients treated with olaparib [47].
The median duration of therapy prior to the development of the secondary cancers was
two years (range: six months to >ten years) [14].

The most common AEs with olaparib include fatigue (67%), nausea (45% to 77%;
grades 3/4: ≤3%), abdominal pain (34% to 45%), anemia (23% to 44%; grades 3/4: 7%
to 21%), and neutropenia (5% to 19%; grades 3/4: 4% to 6%), with rashes (5 to 15%) and
pneumonitis (<1%) being less common AEs [14]. Olaparib has no clinically significant effect
on the QT interval [48]. Prolonged hematologic toxicity should prompt olaparib treatment
interruption and the weekly monitoring of blood counts until recovery [14]. If counts do
not recover to ≤ grade 1 after four weeks, further evaluation including bone marrow and
cytogenetic analyses is necessary [14].

In combination therapy studies, olaparib has been studied with bevacizumab [49],
cediranib [50–52], paclitaxel [53–55], carboplatin [56–59], a carboplatin/paclitaxel com-
bination [60–62], cyclophosphamide [63], liposomal doxorubicin [64], cisplatin [65], lur-
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binectedin [66], durvalumab [51,52,67], dacarbazine [68], eribulin [69], ceralasertib [70],
onalespib [71], prexasertib [72], gemcitabine [73], a cisplatin/gemcitabine combination [74],
topotecan [75], and radiation therapy [76]. Olaparib was also studied in combination
with phosphatidylinositol 3-kinase (PI3K) inhibitors (PI3Ki). While combination therapy
required a dose attenuation of the pan-PI3Ki BKM120 in one study [77], the combination of
olaparib with the PI3Ki alpelisib was shown to be safe and effective [78]. Similarly, olaparib
combination appeared to be safe with the protein kinase B inhibitor capivasertib [79,80].
Additionally, there were no clinically relevant interactions between olaparib and endocrine
therapy including anastrozole, letrozole, or tamoxifen [81].

3.2. Locally Advanced or Metastatic Breast Cancer

Phase II trials demonstrated the efficacy of PARPi in patients with BC. In patients that
had a median of three prior treatments with chemotherapy, Tutt et al. demonstrated an
objective response rate (ORR) of 41% and 22% in BRCA carriers who received olaparib at
the doses of 400 mg B.I.D. and 100 mg B.I.D., respectively [82]. Kaufman et al. reported
an ORR of 12.9% in 62 BC patients who received olaparib 400 mg B.I.D. with germline
BRCA mutation (gBRCA) and three or more previous lines of therapy [21]. Conversely,
Gelmon et al. investigated olaparib in advanced solid tumors, and no objective responses
were reported in the 26 patients with BC (16 patients with TNBC and ten patients with
BRCA-mutated BC). The median of previous therapies was also three [83].

In the phase III trial OlympiAD, patients with advanced HER2-negative BC and
confirmed or suspected deleterious gBRCAm who had received no more than two pre-
vious chemotherapy regimens for metastatic disease and at least one endocrine therapy
for hormone-receptor-positive disease were assigned to either olaparib monotherapy or
standard-of-care chemotherapy. Patients were given olaparib tablets (300 mg B.I.D.) or
standard therapy with a single-agent chemotherapy of their doctor’s choice in a 2:1 ra-
tio (capecitabine, eribulin, or vinorelbine in 21-day cycles). Olaparib increased median
progression-free survival (PFS) by nearly three months (7.0 months vs. 4.2 months; hazard
ratio (HR) for disease progression or death, 0.58; 95% confidence interval (CI), 0.43–0.80;
p < 0.001). With olaparib, the ORR was 59.9%, and with chemotherapy, it was 28.8%. The
rate of grade 3 or higher AEs was 36.6% in the olaparib group and 50.5% in the conventional
therapy group. Treatment discontinuation due to toxicity occurred in 4.9% and 7.7% of
patients, respectively. There were no reports of myelodysplastic syndrome (MDS), acute
myeloid leukemia (AML), or other secondary malignancies [12,84,85]. The FDA approved
olaparib for the treatment of patients with gBRCAm and HER2-negative metastatic BC who
have been treated with chemotherapy in the neoadjuvant, adjuvant, or metastatic setting,
based on the findings of this study. Patients with hormone-receptor-positive disease should
have received and progressed on a prior endocrine therapy [14]. The results of a recent
phase IIIb trial were consistent with previous findings and reported an ORR of 50% in a
similar patient population [86].

3.3. Early-Stage Breast Cancer

In the phase II PETREMAC trial, olaparib monotherapy demonstrated an ORR of 56.3%
(18 out of 32) in patients who received olaparib for up to ten weeks before chemotherapy.
Patients had previously untreated stage II/III TNBC with a tumor size of more than two
cm (the median pretreatment tumor size was six cm) [87].

In the adjuvant setting, results from the OlympiA trial led to the FDA approval of ola-
parib for patients with gBRCAm in the curative intent setting. OlympiA was a randomized,
double-blind, phase III trial that compared olaparib to a placebo in the adjuvant context for
BRCA carriers with HER2-negative BC who had a high risk of recurrence. Patients who had
received neoadjuvant chemotherapy were not allowed to receive additional chemotherapy
following surgery. Patients with TNBC who received neoadjuvant chemotherapy had
to have residual disease, while those who received adjuvant chemotherapy had to have
positive axillary lymph node involvement or a primary tumor measuring at least two cm.
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Patients with a hormone-receptor-positive tumor who received adjuvant chemotherapy
were required to have at least four positive lymph nodes, and those who received neoadju-
vant chemotherapy were required to have not achieved a pathological complete response
(pCR), with a clinical and pathological stage plus estrogen receptor status and histological
grade (CPS + EG) score of at least three. The CPS + EG is a validated staging system for
disease-specific survival that provides a prognosis assessment of patients with early-stage
BC after treatment with neoadjuvant chemotherapy. The CPS + EG score estimates the
probability of disease relapse based on pretreatment clinical stage and post-neoadjuvant
CPS as well as the status of the estrogen receptor and histological grade. Scores range from
zero to six, with higher scores indicating a worse prognosis [88].

At the three-year mark, in comparison to placebo, patients who received olaparib had
higher rates of invasive disease-free survival (85.9% vs. 77.1%; HR, 0.58, 99.5% CI 0.41–0.82;
p < 0.001) and distant disease-free survival (87.5% vs. 80.4%; HR, 0.57, 99.5% CI 0.39–0.83;
p < 0.001) [10]. Grade 3 or higher AEs that occurred in the olaparib arm included anemia
(8.7%), decreased neutrophil count (4.8%), decreased white-cell count (3.0%), fatigue (1.8%),
and lymphopenia (1.2%). In the olaparib arm, 25% of patients had a dose reduction,
compared with 5.2% in the placebo arm. The rate of MDS or AML was 0.2% (two patients)
in olaparib arm versus 0.3% (three patients) in the placebo arm [10]. At a median follow up
of 3.5 years, adjuvant olaparib significantly improved overall survival (OS), with a HR of
0.68 (98.5% CI 0.47–0.97; p < 0.01). The 4-year OS rate was 89.8% with olaparib vs. 86.4%
with the placebo. Improvements in distant (HR 0.61; 95% CI 0.48–0.77) and invasive (HR
0.63; 95% CI 0.50–0.78) disease-free survival were sustained. There were no emergent AEs
and no new cases of MDS or AML reported [89]. Based on these results, the treatment
guidelines recommend one year of adjuvant olaparib for patients with HER2-negative,
early-stage BC and gBRCAm who meet the criteria for high recurrence risk as defined in
the OlympiA trial enrollment criteria discussed above [90].

3.4. Combination Trials
3.4.1. Olaparib and Eribulin

Yonemori et al. published a phase I/II study in advanced or metastatic TNBC that
considered the combination of olaparib (tablets) with eribulin. The recommended phase
II dose for olaparib was determined to be 300 mg B.I.D. and 1.4 mg/m2 for eribulin. The
median number of treatments given to the 24 patients in the phase II group was 5.5 (range:
1–28). Neutropenia (83.3%), leucopenia (83.3%), anemia (41.7%), febrile neutropenia (33.3%),
and thrombosis were among the grade 3 AEs (8.3%). The response rate was 29.2% (7/24;
90% Cl 14.6–47.9). Despite the anticancer effect of the combination therapy, substantial rates
of febrile neutropenia limited its use in clinical practice [69]. The median PFS and OS were
4.2 months (95% CI, 3.0–7.4) and 14.5 (95% CI, 4.8–22.0), respectively. Responders were
enriched for tumors with homozygous BRCA1-promoter methylation, which may improve
the accuracy of identifying TNBC patients who will benefit from the olaparib/eribulin
combination therapy [91].

3.4.2. Olaparib and Paclitaxel

In a randomized phase II trial, Fasching et al. compared the efficacy of paclitaxel
and olaparib to paclitaxel/carboplatin followed by epirubicin/cyclophosphamide as a
neoadjuvant treatment in patients with HER2-negative early BC and HRD (60.4% of patients
were BRCA carriers, and the rest had a high HRD score based on the Myriad MyChoice
HRD results). With paclitaxel/olaparib, the pCR rate was 55.1% (90% CI 44.5–65.3%), while
with paclitaxel/carboplatin, it was 48.6% (90% CI 34.3–63.2%) [92].

3.4.3. Olaparib and Durvalumab

A phase I/II trial of durvalumab with olaparib in solid tumors was published by
Domchek et al. in 2020. Patients with gBRCAm and metastatic, HER2-negative, progressing
BC were included in the study. The use of up to two previous lines of chemotherapy for



Cancers 2022, 14, 4332 7 of 18

metastatic BC was permitted. Olaparib (tablet) at 300 mg B.I.D. was administered for four
weeks, followed by an intravenous infusion of olaparib 300 mg B.I.D. and durvalumab 1.5 g
every four weeks until disease progression. Thirty-four patients were enrolled, and 11 (32%)
of them had grade 3 or worse AEs, with anemia (four—12%), neutropenia (three—9%),
and pancreatitis (two—6%) being the most common. Three patients (9%) stopped taking
the medication due to side effects, while four patients (12%) had major side effects. Major
side effects included dyspnea (one event), pancreatitis (two events), and immune-mediated
events at the discretion of the investigator (one event). There were no deaths due to the
treatment. Among the 30 patients eligible for efficacy analysis, the ORR at week 12 was
63.3% (90% CI 48.9–80.1%), and 24/30 (80%; 90% CI 64.3–90.9%) had disease control at
12 weeks [67].

3.4.4. Olaparib, Durvalumab, and Paclitaxel

Pusztai et al. published the results of one arm of their phase II I-SPY2 adaptive plat-
form study in 2021, which considered the combination of durvalumab and olaparib with
weekly paclitaxel for the neoadjuvant treatment of stage II/III, HER2-negative BC. Weekly
paclitaxel was administered with olaparib 100 mg B.I.D. on weeks one through eleven and
intravenous durvalumab 1500 mg every four weeks. Weekly paclitaxel was followed by dox-
orubicin with cyclophosphamide in the control arm. The durvalumab/olaparib/paclitaxel
arm contained 73 patients, while the standard-of-care paclitaxel control arm contained
299 patients. In all HER2-negative (20–37%), TNBC (27–47%), and hormone-receptor-
positive/HER2-negative (14–28%) patients, durvalumab/olaparib/paclitaxel was linked
to a higher pCR rate. In the durvalumab/olaparib/paclitaxel arm, 12.3% of patients had
immune-related grade 3 AEs, compared to 1.3% in the control arm [55].

4. Talazoparib
4.1. Early-Phase Studies

Talazoparib is a heterocyclic compound with one ring that belongs to the class of ph-
thalazines, with the molecular formula C19H14F2N6O [93]. Talazoparib is a potent PARPi,
demonstrating both the strong catalytic inhibition of PARP1 and PARP2 and significant
PARP trapping potential [31]. The maximum tolerated dose of talazoparib was determined
to be one mg daily, but sustained PARP inhibition was reported at dosages as low as
0.60 mg/day [94,95]. Talazoparib is largely eliminated by the kidneys after limited hep-
atic metabolization [96,97]. Combination trials have included carboplatin, which caused
significant hematologic toxicity [98]; temozolomide [99]; and irinotecan [100].

Talazoparib is only available in capsules, which can be administered with or with-
out food [17]. Talazoparib is a major substrate of p glycoprotein/ABCB1, which is an
ATP-dependent efflux pump [17]. Certain medications may inhibit or increase the serum
concentration of p-glycoprotein, and screening for interactions is necessary [17]. Tala-
zoparib undergoes minimal hepatic metabolism [96,97]. Renal excretion accounts for 69%
of the drug clearance, and up to 54.6% of the drug is excreted unchanged in the urine [96,97].
Talazoparib exposure is increased by 12%, 43%, and 163%, and Cmax is increased by 11%,
32%, and 89% with mild (eGFR 60 to 89 mL/minute/1.73 m2), moderate (eGFR 30 to
59 mL/minute/1.73 m2), and severe (eGFR 15 to 29 mL/minute/1.73 m2) renal impair-
ment, respectively [96,97]. As a result, talazoparib requires a renal dose adjustment to
0.75 mg daily for moderate renal impairment (CrCl 30 to 59 mL/min) and 0.5 mg daily for
severe renal impairment (CrCl 15 to 29 mL/min) [96,97]. Common AEs include decreased
hemoglobin (90%; grade 3: 39%), anemia (53%; grade 3: 38%), neutropenia (35%; grade 3:
18%), thrombocytopenia (27%; grade 3: 11%), fatigue (62%), nausea (49%), headache (33%),
and transaminitis (37%) [17]. A higher talazoparib concentration is linked to an increased
risk of anemia and thrombocytopenia [101]. Alopecia was reported in 25% of patients
treated with talazoparib [17]; however, this was classed as grade 1 (<50% hair loss that is
not obvious from a distance) and was considered hair thinning. Grade 2 alopecia (>50%
hair loss that is apparent from a distance) was reported in only 2.4% of patients [102,103].
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Serum creatinine elevation has not been reported with talazoparib [17]. Talazoparib has
less emetogenic potential (minimal to low) than olaparib, niraparib, and rucaparib, which
are associated with a moderate to high emetic risk [104]. The reported rate of MDS/AML
with talazoparib is less than one percent [17]. The duration of talazoparib therapy prior to
the development of MDS/AML ranges from four months to five years [17].

4.2. Locally Advanced or Metastatic Breast Cancer

The ABRAZO trial examined whether talazoparib could help BRCA carriers with
locally advanced or metastatic cancer who had previously been exposed to platinum treat-
ment. Those who had previously received platinum-based chemotherapy had an ORR of
21%, while patients who had received at least three non-platinum-based regimens had an
ORR of 37% [105,106]. Litton et al. published the results of the EMBRACA trial in 2018,
which was a randomized, open-label, phase III trial with advanced gBRCAm BC patients
who had received three or fewer cycles of chemotherapy for metastatic disease. Two hun-
dred and eighty-seven patients were given talazoparib (one mg per day) and 144 patients
were given standard single-agent chemotherapy (capecitabine, eribulin, gemcitabine, or
vinorelbine). Patients who had previously undergone platinum treatment were eligible
if they had a disease-free interval of at least six months and no signs of progression on
previous platinum therapy. The talazoparib group had a significantly longer PFS than
the conventional therapy group (8.6 months vs. 5.6 months; HR 0.54; 95% CI, 0.41–0.71;
p < 0.001) [11]. Based on the results of this study, the FDA approved talazoparib for the
treatment of patients with gBRCAm and HER2-negative locally advanced or metastatic
BC [17].

4.3. Early-Stage Breast Cancer

In a pilot study of talazoparib for early-stage BC, following two months of talazoparib
preoperative monotherapy, all thirteen BRCA carriers included showed a decreased tumor
volume. The average decrease in volume was 78% (range 30–98%). Talazoparib was well-
tolerated, with no grade 4 side effects reported, and only one patient’s dose had to be
reduced due to grade 3 neutropenia [107]. Litton et al. reported in 2020 that neoadjuvant
talazoparib treatment for six months resulted in a pCR of 53% in patients with gBRCAm
and operable stage I to III BC [108].

5. Biomarkers of Response to PARPi

To date, conflicting results for different proposed HRD biomarkers based on copy-
number variations have been published. Telli et al. reported that a combined HRD score—
unweighted sum of loss of heterozygosity (LOH), telomeric–allelic imbalance, and large-
scale state transition scores—predicted responses in three neoadjuvant TNBC trials of
platinum-containing therapy [109]. In contrast, TBCRC-030 [110] showed that the Myriad
MyChoice HRD results were not predictive of pathologic responses to platinum agents.
Additionally, Blum et al. [111] showed that BRCA LOH status, DNA damage response and
repair gene mutational burden, and genome-wide LOH were not associated with responses
to talazoparib in BRCA carriers enrolled in the EMBRACA trial.

Batalini et al. showed that mutational signature 3 (Sig3) and the genomic instability
score (GIS) were associated with responses to olaparib and that Sig3 demonstrated overall
better performance than GIS for identifying responders [112]. The Spanish NOBROLA trial
is currently enrolling non-BRCA patients that have a high genome-wide LOH (Clinical-
Trials.gov identifier: NCT03367689). The PETREMAC trials evaluated several potential
biomarkers of response to PARPi: BRCAness, PAM50 gene expression, RAD51 foci, tumor-
infiltrating lymphocytes, and programmed cell death ligand one analyses were performed
on pretreatment samples. Somatic or germline mutations affecting HRR pathway genes
were observed in 10/18 responders (55.6%, 95% CI 33.7–75.4), in contrast to the 1/14 in
non-responders. Among tumors without HRR pathway mutations, 6/8 responders vs.
3/13 non-responders revealed BRCA1 hypermethylation (p < 0.04). Thus, 16/18 responders
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(88.9%, 95% CI 67.2–96.9), in contrast to 4/14 non-responders (28.6%, 95% CI 11.7–54.7;
p < 0.001), carried HRR pathway mutations and/or BRCA1 methylation [87].

In 2021, Patsouris et al. published a phase II trial that included 42 patients, 40 of whom
received at least one dose of rucaparib [113]. The study assessed the efficacy of rucaparib
in HER2-negative metastatic BC with either a high genome-wide LOH score or somatic
BRCA mutation [113]. The study was powered to detect a 20% clinical benefit rate [113].
The primary endpoint was not reached, with a clinical benefit rate of 13.5% [113]. Two
high-LOH patients, without somatic BRCA mutation, presented a complete and durable
response (the duration of response was 12 and 28.5 months in each patient) [113]. Whole-
genome analysis was performed on 24 samples, including five patients who presented a
clinical benefit from rucaparib [113]. HRDetect was associated with response to rucaparib,
although without reaching statistical significance (median HRDetect responders vs. non-
responders: 0.465 vs. 0.040, p > 0.2) [113]. Another phase II trial investigating rucaparib in
untreated TNBC demonstrated that only 12% of patients had decreased Ki67 with treatment
(primary endpoint) [114]. In secondary endpoint analyses, HRD was identified in 69%
of TNBC patients with the mutational-signature-based HRDetect assay and confirmed
by impaired RAD51 foci formation [114]. Following rucaparib treatment, there was no
association between HRDetect and a Ki67 change, but circulating tumor DNA was more
suppressed in patients with the HRDetect signature [114]. This data suggest that a small
subset of patients with high genome-wide LOH scores and without gBRCAm could derive
benefit from PARPi [113,114].

6. Discussion

PARPi have revolutionized the therapeutic landscape of BRCA-related BC. Many
PARPi are still being investigated. In addition to the FDA-approved drugs olaparib and ta-
lazoparib, niraparib has shown some activity in BRCA carriers with BC on the BRAVO study
and is being studied in different combinations [115]. However, the efficacy of olaparib and
talazoparib have not been replicated by other contenders. Phase I clinical trials have demon-
strated olaparib and talazoparib to be well-tolerated with a relatively similar side-effect
profile. Olaparib is administered twice daily, while talazoparib is administered once daily.
Anemia of any grade is one of the most common AEs reported with both olaparib and tala-
zoparib. While olaparib is more commonly associated with nausea, vomiting, and fatigue,
talazoparib has higher rates of cytopenia. For BRCA carriers with advanced HER2-negative
BC, phase III clinical trials have demonstrated improved tolerability and superior efficacy
of PARPi monotherapy in comparison to standard chemotherapy [11,12]. For BRCA carriers
with early HER2-negative BC at high risk for recurrence, adjuvant olaparib was shown to
significantly improve the invasive disease-free survival and OS [10,89,116]. Clinical benefits
were demonstrated in all BRCA carrier patients with TNBC, those with hormone-receptor-
positive disease, and patients who received previous platinum-based chemotherapy.

Selecting an adjuvant regimen for BRCA carriers with TNBC who do not achieve
pCR and are therefore at high risk for relapse, remains a current clinical challenge. The
results of three clinical trials (i.e., CREATE-X, OlympiA, and KEYNOTE-522) need to be
considered [10,117,118]. The CREATE-X trial assigned HER2-negative BC patients with
residual illness after neoadjuvant therapy (roughly one-third of whom had TNBC) to
either eight cycles of adjuvant capecitabine or no additional chemotherapy. The five-year
disease-free survival (74% vs. 68%; HR 0.70, 95% CI 0.53–0.92; p < 0.02) and OS (89% vs.
84%; HR for death 0.59, 95% CI 0.39–0.90; p < 0.02) were greater in capecitabine patients.
Capecitabine’s improvement in disease-free survival was attributed to better outcomes
among TNBC patients, according to subgroup analyses (70% vs. 56%; HR 0.58, 95% CI
0.39–0.87) [118]. Patients with stage II or III TNBC receiving neoadjuvant therapy were
randomized to receive pembrolizumab or placebo every three weeks during neoadjuvant
chemotherapy and for another nine cycles (27 weeks) after surgery in the KEYNOTE-522
trial. Pembrolizumab increased the pCR rate from 51% to 65%, regardless of the presence
or absence of PD-L1 expression [117]. Finally, the OlympiA trial found that adjuvant
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olaparib improved three-year disease-free survival from 77% to 86% in BRCA carriers with
early-stage, high-risk HER2-negative BC compared to placebo, and led to a significant
improvement in OS (HR, 0.68; 98.5% CI 0.47–0.97; p < 0.01) [10].

The clinical benefits of sequencing or combining olaparib with other treatments
such as pembrolizumab or capecitabine for the adjuvant therapy of patients with TNBC
and gBRCAm is uncertain. Olaparib has been evaluated in combination with the check-
point inhibitor durvalumab, and concurrent therapy was found to be safe and effec-
tive. However, safety data on the use of olaparib concurrently with other drugs such
as temozolomide, pembrolizumab, and capecitabine are limited. Ongoing clinical tri-
als will evaluate the combination therapy of olaparib/pembrolizumab (NCT04191135,
NCT05174832, NCT03025035, NCT05203445, NCT04683679, and NCT05033756) and ola-
parib/temozolomide (NCT05128734) in patients with BC. The combination of olaparib/
capecitabine is yet to be investigated.

Conversely, other PARPi were studied in combination with either pembrolizumab or
temozolomide. Niraparib and pembrolizumab were examined in 55 patients with advanced
TNBC, regardless of BRCAm status or PD-L1 expression, by Vinayak et al. An objective
response was observed in ten patients (18% (five complete responses and five partial re-
sponses)). Anemia (ten—18%), thrombocytopenia (eight—15%), and fatigue (four— 7%)
were the most common treatment-related AEs of grade 3 or above. Immune-related AEs
were reported in eight individuals (15%), two of whom had grade 3 AEs (4%). There
were no new safety signals identified [119]. For temozolomide, two studies had shown
that the combination of a veliparib with temozolomide is safe without excessive toxic-
ity [120,121]. Due to the varied potencies of different PARPi and varying myelosuppressive
potential, safety results on veliparib combined with chemotherapy cannot be generalized
to other PARPi.

A few clinical trials have now demonstrated the potential efficacy of PARPi beyond
BRCA carriers. While the study by Gelmon et al. did not show responses in heavily
pretreated patients in the metastatic setting [83], Eikesdal et al. showed a high response
rate in treatment-naïve and unselected TNBC patients to olaparib monotherapy in the
neoadjuvant setting [87]. In the phase II trial TBCRC-048, Tung et al. demonstrated high
rates of response in patients with somatic BRCA mutation (ORR 50%) and germline PALB2
mutations (ORR 82%) [122]. Confirmatory expansion cohorts of this study are currently
enrolling patients, and results are awaited. Future analyses of data from TBCRC-048 may
shed light on the biomarkers of PARPi response [122]. No responses were observed with
ATM or CHEK2 mutations alone [122]. Additionally, Batalini et al. showed that alpelisib and
olaparib can lead to meaningful responses in heavily pre-treated patient populations [78],
hence confirming the results of preclinical data that PI3Ki can render tumors sensitive to
PARPi [123].

During treatment with PARPi, including olaparib and talazoparib, the complete blood
count should be monitored with differential at baseline and monthly thereafter, or as
clinically indicated with increasing frequency to weekly until recovery for prolonged
hematologic toxicity [14,17]. Talazoparib and olaparib package inserts also require the
monitoring of renal function without specifying the frequency of monitoring [14,17]. Since
the dose modification of olaparib and talazoparib for renal function is required, the baseline
assessment of renal function is necessary. There are no specific requirements for monitoring
complete metabolic panel for either PARPi agents; however, a baseline assessment should
be considered at minimum with an increase in monitoring during therapy if indicated,
especially with PARPi agents that are associated with transaminitis.

As a biomarker, Sig3 is advantageous to other proposed HRD biomarkers because
it leverages clinical sequencing that is already routine—gene panel sequencing—without
the need for an additional assay or sequencing technology [112,124]. Sig3 captures the
different mechanisms associated with underlying HRD in BC, including the biallelic in-
activation of BRCA1/2, germline nonsense and frameshift variants in PALB2, missense
BRCA1/2 variants known to impair HRR pathway, and the epigenetic silencing of RAD51C
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and BRCA1 by promoter methylation [125]. Accordingly, Batalini et al. demonstrated
that Sig3 had an overall better performance than GIS for identify olaparib responders
among BC patients [112]. However, prospective data are necessary to validate Sig3 as a
useful biomarker.

7. Conclusions

PARPi monotherapy—olaparib and talazoparib—are approved for BRCA carriers
with advanced or metastatic HER2-negative BC. Olaparib is approved in the adjuvant
setting for BRCA carriers at a high risk of relapse [10]. While BRCA carriers constitute a
minority of patients with BC, there is mounting evidence that PARPi could also benefit
more patients [78,87,122]. The identification of a biomarker of response to PARPi remains a
critical goal.
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Abbreviations

AEs adverse events
AML acute myeloid leukemia
AUC area under the receiver operating characteristic curve
BC breast cancer
CI confidence interval
Cmax peak serum concentration
CPS + EG clinical and pathological stage + estrogen receptor status and histological grade
CrCl creatinine clearance
gBRCAm germline BRCA mutation
GIS genomic instability score
HER2 human epidermal growth factor receptor 2
HR hazard ratio
HRD homologous recombination repair deficiency
HRR homologous recombination repair
LOH loss of heterozygosity
MDS myelodysplastic syndrome
ORR objective response rate
OS overall survival
PARP poly(adenosine diphosphate (ADP)–ribose) polymerase
PARPi poly(adenosine diphosphate (ADP)–ribose) polymerase inhibitors
pCR pathological complete response
PFS progression-free survival
PI3K phosphatidylinositol 3-kinase
PI3Ki phosphatidylinositol 3-kinase inhibitors
Sig3 mutational signature 3
TNBC triple-negative breast cancer
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