
ll
OPEN ACCESS
iScience

Article
CellO: comprehensive and hierarchical cell type
classification of human cells with the Cell Ontology
Matthew N.

Bernstein,

Zhongjie Ma,

Michael Gleicher,

Colin N. Dewey

colin.dewey@wisc.edu

HIGHLIGHTS
CellO hierarchically

annotates single-cell

RNA-seq data using the

Cell Ontology

CellO is pre-trained on a

comprehensive data set

comprising diverse cell

types

CellO achieves superior or

comparable performance

with existing methods

The CellO Viewer is a

novel web application for

exploring CellO’s trained

models

Bernstein et al., iScience 24,
101913
January 22, 2021 ª 2020 The
Authors.

https://doi.org/10.1016/

j.isci.2020.101913

mailto:colin.dewey@wisc.edu
https://doi.org/10.1016/j.isci.2020.101913
https://doi.org/10.1016/j.isci.2020.101913
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2020.101913&domain=pdf

ll
OPEN ACCESS
iScience
Article
CellO: comprehensive and hierarchical
cell type classification of human
cells with the Cell Ontology

Matthew N. Bernstein,1 Zhongjie Ma,2 Michael Gleicher,2,4 and Colin N. Dewey2,3,4,5,*
1Morgridge Institute for
Research, Madison, WI
53715, USA

2Department of Computer
Sciences, University of
Wisconsin - Madison,
Madison, WI 53706, USA

3Department of Biostatistics
and Medical Informatics,
University of Wisconsin -
Madison, Madison, WI 53792,
USA

4Senior author

5Lead contact

*Correspondence:
colin.dewey@wisc.edu

https://doi.org/10.1016/j.isci.
2020.101913
SUMMARY

Cell type annotation is a fundamental task in the analysis of single-cell RNA-
sequencing data. In this work, we present CellO, a machine learning-based tool
for annotating human RNA-seq data with the Cell Ontology. CellO enables accu-
rate and standardized cell type classification of cell clusters by considering the
rich hierarchical structure of known cell types. Furthermore, CellO comes pre-
trained on a comprehensive data set of human, healthy, untreated primary sam-
ples in the Sequence Read Archive. CellO’s comprehensive training set enables it
to run out of the box on diverse cell types and achieves competitive or even su-
perior performance when compared to existing state-of-the-art methods. Lastly,
CellO’s linear models are easily interpreted, thereby enabling exploration of cell-
type-specific expression signatures across the ontology. To this end, we also pre-
sent the CellO Viewer: a web application for exploring CellO’s models across the
ontology.

INTRODUCTION

Cell type annotation is a fundamental task in the analysis of single-cell RNA-sequencing (scRNA-seq) data.

Recently, a number of computational tools have been developed for automating the cell type annotation

task. Nonetheless, many of these tools suffer from certain disadvantages that inhibit their use. First, many

existing methods require the user to provide either a set of marker genes associated with each cell type

(Zhang et al., 2019a; Pliner et al. 2019) or a suitable training data set with cells already annotated with

cell type labels (Ma and Pellegrini 2020; Alquicira-Hernandez et al., 2019; Tan and Cahan 2019). Marker

gene-based approaches are challenged by the fact that there is not a canonical set of marker genes for

most cell types (Zhang et al., 2019b). Furthermore, finding an appropriate and labeled training set that con-

tains all of the cell types in the target data set can be challenging, especially considering that existing ap-

proaches are sensitive to the chosen training set (Abdelaal et al., 2019).

Second, many existingmethods use flat classification. Flat classification suffers from the possibility that pre-

dictions are logically inconsistent with the hierarchy of cell types. Specifically, for a given query, a flat clas-

sifier may output a probability for a cell type that is larger than the classifier’s output for its parent cell type

in the hierarchy (Obozinski et al., 2008). Such incoherent outputs reduce the scientific usefulness of the clas-

sifier. We assert that framing the cell type classification task as that of hierarchical classification against the

Cell Ontology (Bard et al. 2005) poses a number of advantages over flat classification. The Cell Ontology

provides a comprehensive hierarchy of animal cell types encoded as a directed acyclic graph (DAG). This

DAG provides a rich source of prior knowledge to the cell type classification task that remains un-utilized in

flat classification. In addition, if the algorithm is uncertain about which specific cell type the cell may be, the

use of a hierarchy allows the algorithm to place a cell internally within the graph rather than at a leaf node.

Thus, for cells whose specific cell types are absent from the training set, a classifier that uses a hierarchy is

capable of providing more informative output than simply claiming that the cell is ‘‘uncertain’’ as is imple-

mented by some flat classifiers such as ACTINN (Ma and Pellegrini 2020).

Finally, those methods that do perform hierarchical classification do not make use of the rich hierarchical

relationships between known cell types encoded by the Cell Ontology. For example, CHETAH (de Kanter

et al., 2019) classifies cells against a hierarchy; however, CHETAH infers this hierarchy from the data rather

than utilizing the existing hierarchy encoded by the Cell Ontology. Garnett (Pliner et al. 2019) utilizes a
iScience 24, 101913, January 22, 2021 ª 2020 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

mailto:colin.dewey@wisc.edu
https://doi.org/10.1016/j.isci.2020.101913
https://doi.org/10.1016/j.isci.2020.101913
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2020.101913&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

A B

C

Figure 1. Overview of CellO

(A) A schematic overview of CellO’s hierarchical classification approach. CellO performs hierarchical classification with the

Cell Ontology. Given a gene expression profile, CellO annotates the cell with a set of cell types (gray nodes) that are

consistent with the hierarchical structure of the Cell Ontology.

(B) We compare CellO to eight recent cell type annotation methods regarding the criteria we surmise are desirable in a

cell type classification approach: whether the method (1) arrives pre-trained and can run out of the box, (2) incorporates a

hierarchy of cell types, (3) specifically uses the Cell Ontology as its hierarchy, (4) requires cell-type-specific marker genes,

(5) uses a model that can be interrogated to better understand how it arrived at its decision, and (6) whether the method

operates on clusters or single cells. We compare CellO to scMatch (Hou et al. 2019), SingleR (Aran et al., 2019), scCatch

(Shao et al., 2020), CHETAH (de Kanter et al., 2019), Garnett (Pliner et al. 2019), CellAssign (Zhang et al., 2019a), ACTINN

(Ma and Pellegrini 2020), scPred (Alquicira-Hernandez et al., 2019), CaSTLe (Lieberman et al. 2018), and SingleCellNet

(Tan and Cahan 2019). CellO meets more desirable criteria than existing methods.

(C) Euler diagrams of the cell types within the bulk RNA-seq expression profiles used to train CellO. This training set

comprises most primary cell bulk RNA-seq samples within the SRA and consists of diverse cell types spanning various

tissues, developmental stages, and stages of differentiation. These diagrams were created with nVenn (Pérez-Silva et al.

2018).

ll
OPEN ACCESS

iScience
Article
hierarchy of cell types; however, these hierarchies must be pre-specified by the user. Furthermore, Garnett

requires that each cell within the hierarchy be associated with a set of marker genes. To the best of our

knowledge, the only method that utilizes the graph structure of an ontology for the task at hand is URSA

(Lee et al., 2013), which classifies gene expression profiles against the BRENDA Tissue Ontology (Gremse

et al., 2011).

In this work, we present Cell Ontology-based Classification (CellO), a tool for annotating cells against the

graph-structured Cell Ontology (Figure 1A). CellO is a discriminative, supervised machine learning

approach for classifying clusters of cells in scRNA-seq data. CellO comes pre-trained on a comprehensive

data set comprising the majority human primary samples in the Sequence Read Archive (SRA; Leinonen
2 iScience 24, 101913, January 22, 2021

A

B

Figure 2. Overview of analyses and CellO’s algorithm

(A) A schematic illustration of the data sets and analyses performed in this study. Initial candidate bulk RNA-seq samples were selected from the SRA via the

MetaSRA, filtered for errors, and quantified using the kallisto algorithm (Bray et al., 2016), which resulted in a comprehensive bulk RNA-seq training set

consisting of healthy, human primary cells. This training set was split into a pre-training and validation set for tuning the parameters of the binary classifiers,

as well as for evaluating the graph correction methods (Transparent Methods). The full bulk RNA-seq data set was then used to train the final models that

ll
OPEN ACCESS

iScience 24, 101913, January 22, 2021 3

iScience
Article

Figure 2. Continued

were then evaluated on three sets of scRNA-seq data. The first set consisted of an aggregation of diverse non-droplet-based data sets from the SRA.

The second data set consisted of FAC-sorted PBMCs from Zheng et al. (2017). The third set consisted of primary lung tumor cells from Laughney et al.

(2020).

(B) A schematic illustration of CellO’s classification procedure. First, for a given sample, the raw classifier probabilities are corrected with the cell ontology

using IR (if CLR is used, this step is not necessary). We illustrate one edge of the graph whose incident nodes have probabilities that are logically inconsistent

with the hierarchy and thus require correction because the child node has a higher probability than the parent. Once corrected, cell types whose raw

probabilities meet their respective decision threshold are selected. Among these, the most specific cell types (i.e., lowest in the ontology) are examined and

the cell type with the highest output probability is selected. CellO outputs this final selected cell type along with all ancestor terms.

ll
OPEN ACCESS

iScience
Article
et al., 2011) and therefore arrives ready to run on diverse scRNA-seq data sets. CellO offers a complemen-

tary approach to marker gene-based methods for scenarios in which the test set contains cell types with

poorly characterized marker genes.

Lastly, CellO makes extensive use of linear models, which are particularly amenable to interpretation. To

enable their interpretation, we present a web-based tool, the CellO Viewer, for exploring the cell type

expression signals uncovered by the model (https://uwgraphics.github.io/CellOViewer/). We bench-

marked CellO on a collection of diverse single-cell data sets and found CellO capable of accurately anno-

tating data sets that existing state-of-the-art and ready-to-run (i.e. come pre-trained) annotation methods

were unable to accurately annotate, thus highlighting CellO’s ability to annotate diverse data sets out of

the box. Through its use of the Cell Ontology, its comprehensive training set, and the interpretability of

its models, CellO is a practical tool for scRNA-seq cell type annotation (Figure 1B).

RESULTS

A comprehensive curated RNA-seq data set of human primary cells

In order to capture robust cell type signals, we sought a data set of bulk RNA-seq samples comprising only

healthy primary cells that originate from cells that have been isolated based on phenotypic characteristics

downstream of gene expression itself (such as cell surface proteins). We thus avoid the circularity in using

ground truth cell type labels determined by gene expression (via the expression of cell-type-specific

marker genes) as are often provided in scRNA-seq data sets. We did not wish to include cells that under-

went multiple passages, were diseased, or underwent other treatments, such as in vitro differentiation

because these conditions alter gene expression. We therefore curated a data set from the SRA consisting

of healthy, untreated, primary cells. To do so efficiently, we leveraged the annotations provided by the

MetaSRA project (Bernstein et al. 2017), which includes sample-specific information including cell type, dis-

ease state, and sample type. We then manually curated the samples selected via the MetaSRA by both

annotating technical variables and refining cell type annotations (Transparent Methods).

This curation effort resulted in a data set comprising 4,293 bulk RNA-seq samples from 264 studies.

These samples were labeled with 310 cell type terms, of which 113 were the most specific cell types

in our data set (i.e., no sample in our data was labeled with a descendant cell type term). These cell types

were diverse, spanning multiple stages of development and differentiation (Figure 1C). We uniformly

quantified and normalized (via log transcripts per million) gene expression from the raw RNA-seq data

for these samples (Figure 2A, Transparent Methods). To the best of our knowledge, this data set is

the largest and most diverse set of bulk RNA-seq samples derived from only primary cells. Prior to

this work, the most comprehensive bulk primary cell transcriptomic data set was compiled by (Aran

et al. 2017), which contains data for 64 cell types from 6 studies. Although our data set consists of

only RNA-seq data, this prior data set included samples assayed with several other technologies, such

as microarrays. Another comprehensive set of primary cell expression data was collected by Mabbott

et al. (2013), which contain primary cell data from 745 samples from 105 studies; however, these data

are exclusively from microarrays.

Applications of hierarchical classification methods

We frame the cell type classification task as hierarchical classification against the Cell Ontology’s DAG. The

hierarchical classification task is inherently a multi-label classification task where each input sample (i.e.,

cell) is mapped to a ‘‘set’’ of output labels (i.e., cell types). Hierarchical classification extends multi-label

classification by further requiring that the output labels are ‘‘consistent’’ with the labels’ DAG. That is,

for each label in a given output set of labels, the label’s parent labels are also in the output set (Figure 1A).

Moreover, when training a hierarchical classifier, samples that are annotated with specific labels (i.e., terms
4 iScience 24, 101913, January 22, 2021

https://uwgraphics.github.io/CellOViewer/

ll
OPEN ACCESS

iScience
Article
that are lower in the DAG) can be aggregated in order to train the classifier to recognize more general,

ancestral labels in the DAG.

We implemented two strategies for performing hierarchical classification against the Cell Ontology’s DAG

that both come packaged with CellO. First, we implemented cascaded logistic regression (CLR; Obozinski

et al., 2008), which entails classifying a sample in a top-down fashion from the root of the ontology down-

ward via a collection of binary classifiers. Specifically, each binary classifier is associated with a cell type and

is trained to classify a sample conditioned on the sample belonging to all of the cell type’s parents in the

ontology.

Next, we implemented a collection of one-vs-rest binary classifiers for each cell type in the DAG. We will

refer to this as the ‘‘independent classifiers’’ approach. This approach suffers from the possibility that

the classifiers’ outputs will be inconsistent with the hierarchical structure of the ontology. An inconsistency

occurs when the output probability for a given cell type exceeds that of one of its parent cell types in the

ontology (Figure 2B). We tested the use of independent logistic regression classifiers and found inconsis-

tencies to be a frequent source of errors. Specifically, we performed leave-study-out cross-validation on the

full set of bulk RNA-seq data and examined the consistency of all edges that were adjacent to at least one

cell type whose classifier produced a non-negligible probability (>0.01) of the sample originating from that

cell type. Of these edges, 12.1% were inconsistent (Figure S1). Nearly all samples (>99%) contained at least

one inconsistent edge and 34% of samples contained at least one severely inconsistent edge in which the

child classifier’s probability exceeded the parent classifier’s probability by at least 0.25.Wewill use the term

‘‘correction’’ to refer to the task of reconciling the outputs of independent classifiers with a hierarchy

(Figure 2B).

To date, the one correction method that has been applied to the task at hand is Bayesian network correc-

tion (BNC), which is implemented in the URSA tool (Lee et al., 2013). Therefore, as a baseline, we imple-

mented a BNC algorithm following the description in Lee et al. (2013) (Transparent Methods). We also

tested two correction methods that have yet to be applied to the cell type classification task: isotonic

regression correction (IR; Obozinski et al., 2008) and a heuristic procedure called the True Path Rule

(TPR; Notaro et al., 2017). IR uses a projection-based approach for correction that entails finding a set of

consistent output cell type probabilities that minimize the sum of squared differences to the raw, and

possibly inconsistent, classifier output probabilities. In contrast, TPR uses a heuristic procedure that in-

volves a bottom-up pass through the ontology such that the outputs of children classifiers are averaged

with the output of the parent classifier to allow information flow across the ontology graph.

To test these correction methods, we first partitioned the bulk RNA-seq data set into a pre-training and

validation set (Figure 2A; Transparent Methods). Using this validation set, we performed a grid search to

find the optimal parameters for training each binary logistic regression classifier, and given the optimal

set of parameters, compared how well the aforementioned correction methods either enhanced or

degraded accuracy over the samples in the validation set. Overall, we find that IR and TPR output proba-

bilities similar to those output by the independent classifiers in regards to both average precision scores

across the cell types in the validation set (Figure 3A) and precision-recall curves when considering each

sample-cell type pair as an independent prediction (Figure 3B). This indicates that IR and TPR do not

degrade performance in comparison to independent classifiers. In contrast, we found that the BNC

approach significantly degraded performance (Figures 3A and 3B). We note that these results are in line

with work by Obozinski et al (2008), which demonstrates that IR outperforms BNC on the hierarchical pro-

tein function prediction task. Although both IR and TPR yielded similar results, we use IR as our correction

method of choice due to its simplicity.

We also used this partition of the bulk RNA-seq samples to tune the parameters of the CLR algorithm

(Transparent Methods). We found that after tuning, both IR and CLR achieved similar median F1-scores

and median average precisions across cell types on the validation set (Figure S13), and therefore, both

are included in the CellO software and evaluated throughout the remainder of this study.
Comparison to existing methods

We trained both CLR and IR on the full set of bulk RNA-seq samples in order to test their performance on

single-cell data (Figure 2A). We note that training a single-cell classifier with bulk RNA-seq data may lead to
iScience 24, 101913, January 22, 2021 5

A B

Figure 3. Reconciling the outputs of independent classifiers with a hierarchy

(A) Average precision scores across all cell types for the independent classifiers (Ind.), as well as for IR, TPR, and BNC on

the validation set.

(B) Each paired sample and cell type prediction was considered independently. The set of all such predictions was

ordered according to their prediction probability and the corresponding precision-recall curve was constructed for the

independent classifiers, IR, TPR, and BNC.

ll
OPEN ACCESS

iScience
Article
models being poorly calibrated to the sparse single-cell expression profiles. To address this challenge, we

first cluster single-cell data using the Leiden community detection algorithm (Traag et al. 2019) using the

default resolution parameter of 1.0, as implemented in the Scanpy Python package (Wolf et al. 2018), and

then compute each cluster’s mean expression profile. The mean expression profiles are less sparse than

those of the individual cells and thus better resemble the bulk RNA-seq data on which the algorithms

were trained. CellO first classifies each cluster based on its mean expression profile and then assigns

each cell to its cluster’s assigned cell types.

We compiled a data set consisting of 7,366 healthy primary cells originating from non-droplet-based RNA-

seq assays, such as SMART-Seq2 (Picelli et al., 2013) and MARS-seq (Jaitin et al., 2014), from the SRA in a

manner similar to that used for compiling the bulk RNA-seq training data. This data set originated from 14

studies and were labeled with 125 cell type terms, of which 32 were most specific to the data. Of these cells,

4,936 were of cell types that were included in the bulk RNA-seq training set. This subset of cells originate

from 12 studies and were labeled with 71 cell type terms of which 16 were most specific to the data set. We

note that for many of the cells used in this analysis, the ground-truth cell types provided by the authors of

the data were determined via in silico and/or manual approaches (e.g. via heuristic marker gene-based ap-

proaches), and thus, this analysis can be understood as an analysis of the ‘‘consistency’’ between the cell

types as annotated by the authors and those annotated by the automated methods explored in this work.

We use the subset of 4,936 cells to evaluate IR, CLR, as well as a baseline one-nearest-neighbor (1NN) al-

gorithm that simply returns the cell type labels of the most similar sample in the training set to the query

expression profile using Pearson correlation as the similarity metric. We evaluated two aspects of these

algorithms’ classifications. First, we compute the average precision (a measure of area under the preci-

sion-recall curve) on each cell type’s output probabilities. Second, for each cell, we evaluate a set of binary

yes-no decisions for each cell type that result from thresholding the raw output probabilities and enforcing

each cell to be annotated with only one most specific cell type (Figure 2B; Transparent Methods). We eval-

uate these binary decisions using precision, recall, and F1-score (harmonic mean of precision and recall).

We modified the evaluation metrics to take into account samples that were labeled with a general cell

type but not a specific cell type (e.g. T cell versus CD8+ T cell; Transparent Methods).

We found that IR and CLR outperformed 1NN according to F1-score, precision, and average precision (Fig-

ures 4A, 4B, and 4C). Specifically, IR, CLR, and 1NN produced median F1-scores of 0.81, 0.85, and 0.63,

respectively, across all cell types. The cell types on which classification performance was poor were gener-

ally more specific and clustered within the hierarchy (Figure 4D). We note that CellO’s average precision

scores across cell types tend to be higher than its F1-scores (Figure 4D). This discrepancy indicates that

CellO is doing well at discriminating among these cell types; however, the decision thresholds used by

CellO to output hard classifications for some cell types may be non-optimal. We hypothesize that this is
6 iScience 24, 101913, January 22, 2021

A

D

B C

Figure 4. Results on non-droplet-based single-cell data

CellO’s performance on the 4,936 non-droplet-based cells considering only cells whose cell types are present in the bulk RNA-seq training set. We compare

the distributions of (A) F1-score, (B) precision, and (C) average precision across all such cell types. (D) The subgraph spanning the non-droplet-based cells

where each cell type is colored according to CellO’s (IR) F1-score (top) as well as by average precision (bottom).

ll
OPEN ACCESS

iScience
Article
due to some classifiers being poorly calibrated, especially for cell types lower in the ontology. This may be

due to there being fewer ‘‘studies’’ in the training set generating these cell types, and thus, for a given cell

type, CellO’s binary classifiers may be more prone to fitting the batch effects present in these fewer studies

(Figure S16).

We also compared CellO to two existing methods, scMatch (Hou et al. 2019) and SingleR (Aran et al., 2019).

scMatch and SingleR are most comparable to CellO because they come packaged with comprehensive

reference data sets of human cells. Like CellO, these methods are designed to run out of the box on diverse

single-cell data sets. scMatch comes packaged with a reference data set comprising data from the

FANTOM5 project (Lizio et al., 2017). SingleR comes packaged with two comprehensive human reference

data sets: a data set comprising data from the Blueprint (Fernández et al., 2016) and ENCODE (Sloan et al.,

2016) projects and a reference set from the Human Primary Cell Atlas (Mabbott et al., 2013). We also built a

reference set for SingleR from CellO’s training set in order to isolate methodological differences between
iScience 24, 101913, January 22, 2021 7

A B

Figure 5. Comparison of CellO to existing approaches on non-droplet-based single-cell data

Evaluating CellO, SingleR, and scMatch on the non-droplet-based cells.

(A) The fraction of cell types in the single-cell test data set that are also present in each method’s training set. IR and CLR

are not shown separately because they share the same training set. We evaluate SingleR’s built in reference sets from the

Human Primary Cell Atlas (HPCA) and BluePrint + ENCODE (BE).

(B) The distribution of both F1-scores (left) and precisions (right) for only those cell types that are in eachmethod’s training

set. We compare CellO to scMatch, SingleR with the Human Primary Cell Atlas (HPCA), and SingleR with the Blueprint +

ENCODE reference (BE). Note each distribution evaluates different sets of cell types depending on the particular subset

of cell types present in each method’s training set.

ll
OPEN ACCESS

iScience
Article
SingleR and CellO. Unfortunately, scMatch does not support the creation of a custom reference set, and

therefore, we were unable to perform this experiment with scMatch. To enable a comparison between

scMatch, SingleR, and CellO, we project the outputs of scMatch and SingleR onto the Cell Ontology in or-

der to evaluate scMatch and SingleR within the hierarchical classification framework. Specifically, for a

given cell annotated by one of these methods with some cell type C, we also annotate the cell with all an-

cestors of C according to the Cell Ontology.

First, we note that CellO’s training sets included over 50%more of the cell types in this test set compared to

those of scMatch and SingleR. In fact, most cell types in this test set, such as pancreatic islet cell types, are

absent from scMatch and SingleR’s reference sets, thus indicating that a user would be required to supply

their own reference set for annotating these cell types (Figure 5A). We thus evaluated each method on only

cell types that exist in each respective method’s prepackaged reference set and found that CellO outper-

formed existing approaches (Figure 5B). SingleR performed poorly with CellO’s training set, which may be

due to the high number of samples in CellO’s training set, the high number genes (i.e. including non-cod-

ing genes), and the fact that CellO contains bulk RNA-seq samples at a higher level in the ontology (Fig-

ure S4A). We note that, in this analysis, for a given method, we may remove from the analysis a specific cell

type that is absent from a given method’s training set (e.g. stomach epithelial cell), but we would keep an

ancestral cell type term (e.g. epithelial cell) if the method’s training set contains a sample labeled with this

ancestral term (e.g. a sample labeled as intestinal epithelial cell).

Next, we evaluated CellO on fluorescence-activated cell sorted (FAC-sorted) f peripheral blood mononu-

clear cells (PBMC’s) from Zheng et al. (2017) that were sequenced with Chromium 10x. We selected this

data set because it is one of the few droplet-based data sets for which the cell type labels are determined

phenotypically (via sorting) rather than computationally (via expression analysis). To reflect the size of

typical single-cell data sets, we subsampled 2,000 cells from each of the ten sorted cell types and aggre-

gated these cells together creating a data set consisting of 20,000 cells. We first compared IR and CLR to

the 1NN baseline and again found that IR and CLR outperformed 1NN with respect to median F1-score,

although the difference between IR/CLR and 1NN was smaller than in the comparison than on the afore-

mentioned non-droplet-based scRNA-seq data set (Figure 6D). Specifically, IR, CLR, and 1NN produced

median F1-scores of 0.97, 0.96, and 0.95, respectively, across all cell types.

Next, we compared CellO to scMatch and SingleR on this PBMC data set. In this analysis, we also ran

SingleR using an immune-specific reference set of purified immune cells from Monaco et al. (2019). The

cell types in this data set are better represented in scMatch and SingleR’s respective reference sets, and
8 iScience 24, 101913, January 22, 2021

A B

C D

Figure 6. Results on 10x PBMC data

(A and B) (A) The subgraph of the Cell Ontology spanning the 10x PBMC data set from Zheng et al. (2017). Each cell type is colored according to CellO’s (IR)

F1-score, as well as (B) average precision.

(C) UMAP plots of the single-cell data set where cells are colored by their true cell type (top), as well as the most specific predicted cell type (i.e. lowest in the

ontology) as output by CellO (bottom).

(D) Boxplots displaying the distribution of F1-scores across all cell types for IR, CLR, 1NN, scMatch, SingleR with the Human Primary Cell Atlas (HPCA),

SingleR with the Blueprint + ENCODE reference (BE), and SingleR with the Monaco et al. reference (M).

ll
OPEN ACCESS

iScience
Article
thus, a comparison between CellO and these methods on this data better isolates performance differences

between these methods. Like scMatch and SingleR, CellO struggled to accurately classify the T cell sub-

types (Figures 6A–6C, S2C, S3, and S4B). Among the methods compared here, SingleR with the Monaco

et al. reference set most accurately classified the T cell subtypes (Figure S3), though we note that this refer-

ence set is specialized for immune cell types, whereas the other reference sets, including CellO’s, are more

broad. We also note that CellO produced high average precision scores on most cell types including many
iScience 24, 101913, January 22, 2021 9

A

B

Figure 7. Examination of CellO’s performance on difficult data sets

(A) UMAP plots of all healthy cells in Segerstolpe et al. (2016) including cells for which their specific cell types are not present in CellO’s bulk RNA-seq training

set. Cells are colored according to their true cell type (left) and (IR) predicted cell type (right). Highlighted are CellO’s predictions made on pancreatic acinar

cells (top right ovals), as well as a subset of uncharacterized pancreatic epithelial cells predicted as A cells (center ovals).

(B) UMAP plots of human, embryonic neural cells from La Manno et al. (2016). Cells are colored according to their true cell type (left) and predicted cell type

(right). Highlighted are CellO’s predictions made on both the microglial and glial cells and note that CellO annotates these cells using terms that are higher

in the ontology’s graph than their true terms.

ll
OPEN ACCESS

iScience
Article
of these T cell subtypes. Again, this indicates that CellO’s classifiers have learned to discriminate between

these cell types; however, the threshold for calling these cell types may be non-optimal.

Inspection of performance on challenging and diseased samples

We examined CellO’s classifications on three challenging data sets. Two of these data sets comprised sub-

sets of the 7,366 cells from non-droplet-based assays and are challenging because they contained cells for

which their combination of cell types was absent from CellO’s training set. First, we examined CellO’s ac-

curacy on 1,978 healthy pancreatic islet cells from Segerstolpe et al. (2016), which includes cell types that

are absent from the bulk RNA-seq training set, specifically ductal cells, acinar cells, epsilon cells, and delta

cells. We found that CellO was able to correctly annotate the acinar cells as glandular epithelial cells, which

is an ancestral cell type to acinar cells in the Cell Ontology (Figures 7A and S2A). This highlights the advan-

tage of classifying against a hierarchy in that it enables CellO to annotate cells with a term higher in the

ontology DAG when it is unsure about a cell’s more specific cell type. We also note that a number of cells

were uncharacterized in the original study due to not meeting a stringent quality control filter. CellO anno-

tated many of these cells as pancreatic A cells (a.k.a. pancreatic alpha cells), which is plausible owing to

both their close position to annotated A cells according to UMAP, which is known to preserve some level

of global structure in high dimensional data (Becht et al., 2018), as well as the fact that A cells were found to

be the most abundant endocrine cell type in Segerstolpe et al. (2016) of those that passed their stringent

quality control filtering.

We also further examined CellO’s classification on 1,977 fetal neural cells from La Manno et al. (2016).

Although the bulk RNA-seq training data contain samples of both embryonic cells and cells of various neu-

ral cell types, they do not contain any sample labeled as both neural cell and embryonic cell. Despite this

discrepancy, CellO was able to annotate these cells with reasonable cell type labels (Figures 7B and S2B).

We note that the microglial cells were annotated as phagocytes, which are an ancestral term to microglial
10 iScience 24, 101913, January 22, 2021

A

B

C

Figure 8. Examination of CellO on diseased cells

(A) UMAP plots of lung adenocarcinoma tumor LX675 from Laughney et al. (2020) colored by CellO’s output using IR and a Leiden resolution parameter of 1.0

(left) and the original cell type labels provided by the authors. We highlight four subpopulations comprising putative CD1C + myeloid dendritic cells (top

left), endothelial cells (top right), plasma cells (bottom left), and mast cells (bottom right).

(B) The legend for coloring cells in (A).

(C) UMAP plots of cells colored by their expression, in units log(TPM+1), of CD1C, a marker for CDC1+ myeloid dendritic cells, PECAM1, a marker for

endothelial cells, SDC1, a marker for plasma cells, and KIT, a marker for mast cells.

ll
OPEN ACCESS

iScience
Article
cells in the Cell Ontology. Similarly, CellO annotated the glial cells as neuron associated cells. These ex-

amples again highlight CellO’s ability to annotate cells with a term higher in the ontology DAG when it

is unsure about a cell’s more specific cell type.

Finally, we examined CellO’s classification on eight lung adenocarcinoma tumor samples from Laughney

et al. (2020) that were sequenced with 10x. This data set provides a good, yet challenging test set for CellO

due to (a) the heterogeneity of constituent cell types, (b) the fact that it contains cell types absent from

CellO’s training set, and (c) these cells originate from diseased tissue, thereby providing insight into

how CellO will perform on non-healthy samples. We compared CellO’s output to the annotations provided

by the authors, which were the result of a custom, in silico cell type annotation pipeline.

Overall, we found a high correspondence between the labels provided by CellO and the authors’ annota-

tion pipeline (Figures 8; Figures S5–S12). When the two methods differed, we attempted to determine

which method is likely to be correct using manual inspection of known marker genes and in many of these

discrepancies, CellO produced the correct cell type labels. For example, in tumor LX675 and LX682, CellO

correctly annotates putative endothelial cells (Figures 8; Figure S5), based on expression of PECAM1 (Fig-

ure 8C) and CD34 (data not shown), whereas the authors of these data labeled these as epithelial cells. In

tumor LX675, CellO labeled the myeloid dendritic cell population as CD1c+myeloid dendritic cells, a more

specific cell type than that provided by the authors (Figure 8). In tumor LX682, CellO correctly annotates the
iScience 24, 101913, January 22, 2021 11

ll
OPEN ACCESS

iScience
Article
putative fibroblasts as evidenced by their expression of FAP (Puré and Blomberg 2018) (Figure S5) and

S100A4 (Strutz et al., 1995; data not shown). In tumor LX679, CellO appears to correctly annotate the plas-

macytoid dendritic cell population as evidenced by the expression of IL3RA (Figure S6), a knownmarker for

this cell type (Collin et al. 2013). We also note that for cells whose likely true cell types are absent from Cel-

lO’s training set, CellO was able to label these cells using a correct but more general cell type. For example,

in tumor LX675, mast cells were absent from CellO’s training set, yet CellO accurately labeled these cells as

hematopoietic cells (Figure 8). Similarly, when CellO was unsure of the labels for cells of cell types for which

training data were sparse, such as for plasma cells and pericytes, CellO labeled these cells as more general

cell type terms lymphocyte of B lineage and connective tissue cell, respectively (Figure 8). Lastly, we note

some of the most clear-cut cases in which the authors’ pipeline produced correct labels but CellO erred.

For example, in tumor LX679, CellO labeledmany of the epithelial cell types as prostate epithelial cells (Fig-

ure S6), which is clearly incorrect given that these are lung tumor samples. Other errors produced by CellO

are due to rarer cell types within the sample clustering together with a more common, similar cell type. For

example, in tumor LX682, the myeloid dendritic cells are labeled by CellO as macrophages due to these

cells clustering together with the macrophage population (Figure S5).
Evaluation of robustness to clustering

In order to test CellO’s robustness to cluster granularity when clustering single-cell data, we tested CellO

on the Zheng et al. PBMC data set and Laughney et al. lung cancer data set using differing values for Lei-

den’s resolution parameter. On the Zheng et al. data set, we tested CellO with five values for the resolution

parameter and found both CLR and IR to perform similarly across these settings (Figure S15). In contrast to

the Zheng et al. data set, the lack of robust ground-truth labels for the Laughney et al. data set made it

difficult to perform a similar assessment. Instead, on this data set, we ran CellO using the default resolution

of 1.0, as well as a higher resolution of 8.0, and then manually inspected the differences in the outputs pro-

duced by these two settings (Figures S5–S12). Overall, we found that the higher resolution led CellO to

classify clusters with more granularity but at the cost of some errors. For example, on tumor LX679 and

LX682, CellO was able to correctly classify the putative myeloid dendritic cells at the resolution of 8.0,

whereas at the default resolution of 1.0, these cells were labeled incorrectly as alveolar macrophages (Fig-

ures S5 and S6). This is likely due to the fact that the dendritic cells were subsumed into the macrophage

cluster at the lower resolution. However, in other instances, the higher resolution led to errors. These errors

are likely due to the fact that at a more granular clustering resolution, each cluster’s mean expression value

remained sparse due to the averaging of fewer cells. For example, in tumor LX679, cells correctly labeled as

respiratory epithelial cells at a resolution of 1.0 were incorrectly labeled as prostate epithelial cells at a res-

olution of 8.0 (Figure S6).
User-friendly software

We provide a Python package for running CellO, using either IR or CLR, on a user-provided gene expres-

sion matrix (https://github.com/deweylab/CellO). CellO reduces the burden of reformatting and prepro-

cessing an input expression matrix by accepting a variety of input file formats, including comma or

tab-separated text files and HDF5, and by accepting expression data in a variety of units including counts

or transcripts per million (TPM). To address the scenario in which the input data set’s genes do not match

those expected by the pre-trained classifiers, we provide functionality for a user to re-train the models on

the bulk RNA-seq training set with a custom gene set. On a personal laptop, training a new classifier took

31 minutes to train IR and 11 minutes to train CLR on the full set of 58,243 GENCODE genes. Training

time is reduced when trained on a smaller set of genes (e.g., only protein-coding genes). We also note

that the time required for CellO to perform classification is low because of the fact that it uses pre-

trained logistic regression classifiers operating on cluster-averaged expression profiles. On the Zheng

et al. (2017) data set, CellO took six minutes to run on a personal laptop (including time for clustering),

whereas scMatch required six hours and nine minutes (run with five cores), and SingleR required between

nine and 22 minutes depending on the reference set used. Finally, we note that the relative performance

of IR and CLR varies across cell types. To guide a user on their selection of either IR or CLR, we provide

the average precision values achieved by both methods on each cell type in the bulk RNA-seq validation

set (Table S1, Bulk RNA-seq Validation Set Metrics). We also provide average precision values and F1-

scores achieved by both methods on each cell type on the test set of 4,936 non-droplet-based single

cells whose cell types were present in the bulk RNA-seq training set (Table S2, Single-cell RNA-seq

Test Set Metrics).
12 iScience 24, 101913, January 22, 2021

https://github.com/deweylab/CellO

ll
OPEN ACCESS

iScience
Article
Lastly, wenote that due toCellO’s comprehensive training set, which comprises cell types frommanyorgans and

tissues, some of CellO’s errors are due to CellO annotating cells using a cell type that is unique to a tissue type

that differs from the known tissue type of the target sample. For example, in some lung cancer tumors from

Laughney et al., endothelial cells were classified as ‘‘endothelial cell of the umbilical vein’’ (Figures S5, S6, and

S9), which is clearly incorrect given that these samples were taken from the lung. This error is likely due to the

fact that the endothelial cells in CellO’s training set largely originate from umbilical cord samples. Because these

errors can be easily caught by the user, the CellO package enables a user to fix such errors by enabling the user

to supply a blacklist of tissue types that do not pertain to the target sample. CellO then uses edges between the

Cell Ontology and theUberon ontology (which encodes anatomical entities; Mungall et al., 2012) to filter out cell

types from CellO’s output that are uniquely located in the blacklisted tissue types. For example, by blacklisting

the Uberon term ‘‘umbilical vein’’, CellO correctly classifies the endothelial cells from Laughney et al.

Interpretability of models

CellOmakesextensiveuseof linearmodels,whichareparticularlyamenable to interpretationespeciallywhen the

coefficients are sparse (Gleicher 2013). Although CellO’s models are not regularized to be sparse (as in Gleicher

2013),wesparsify thembyselecting the top tengenesper cell typeaccording to themagnitudeof the coefficients

associatedwith eachgenewithin eachcell type’s one-vs-rest binary classificationmodel,which is used forCellO’s

IR classifier. To enable their interpretation, we present a web-based tool, the CellO Viewer, for exploring these

discriminative genes uncovered by the models (https://uwgraphics.github.io/CellOViewer/). The tool supports

two modes of operation: a ‘‘cell-centric’’ mode (Figure 9A) and a ‘‘gene-centric’’ mode (Figure 9B). In the cell-

centric mode, the user can select cell types via a graphical display of the Cell Ontology in order to view and

compare themost importantgenes fordistinguishingthosecell types. In thegene-centricview, theuser canselect

genes and explore which cell types these genes are most important for distinguishing from the remaining cell

types. The CellO Viewer uses an interactive display of the Cell Ontology’s graph to enable the user to navigate

between cell types across the ontology.

We found that across diverse cell types, many known cell-type-specific marker genes were recovered by the

CellO models and are presented by the CellO Viewer. For example, CD3D, CD3E, and CD3G, which are

canonical markers for T cells, were all present within the top ten genes ranked according to the magnitude

of their coefficients within the binary logistic regression model used for distinguishing T cells from all other

cell types. Similarly, CD4 and CD8 were present in the top genes for the CD4+ T cell and CD8+ T cell

models, respectively (Figure 9). In a more complex example, the genes GCG, LOXL4, DPP4, GC, and

FAP, knownmarkers for pancreatic alpha cells, and INS, IAPP, and ADCYAP1, knownmarkers for pancreatic

beta cells Segerstolpe et al. (2016), all appear within the top ten genes for their respective cell types.

Interestingly, certain genes appear in the top ten coefficients for broad cell types but not more specific cell

types, indicating that CellO is able to find signals specific to broad cell type categories. For example, DDX4

appeared in the top ten genes for distinguishing germ line cells but did not appear within the top ten genes

for any of the more specific germ cell subtypes. DDX4 is known to be expressed in germ cells across both

sexes (Hickford et al., 2011). Similarly, the gene NRG1 appeared in the top ten genes for distinguishing pre-

cursor cells but did not appear within the top ten genes for any of the more specific cell types that are de-

scendents of precursor cells within the ontology. NRG1 is known to play a role in the development of a num-

ber of organ systems (Lemmens et al. 2007; Mei and Xiong 2008).

DISCUSSION

In this work, we explore the application of hierarchical classification algorithms to cell type classification

with the Cell Ontology using a well-curated set of human primary cell RNA-seq samples. This data set

may prove useful for future investigations of cell type expression patterns or for use in cell type deconvo-

lutionmethods (Aran et al., 2019; Newman et al., 2015). We demonstrate that the trained classifiers perform

well across cell types in diverse single-cell data sets and outperformed existing cell type annotation

methods when trained on their comprehensive reference sets. We packaged these classifiers into an

easy-to-run Python package called CellO.

In our exploration of methods for correcting the independent one-vs-rest classifiers, we found that discrim-

inative methods outperformed the generative BNC approach implemented in URSA (Lee et al., 2013). We

hypothesize that BNC suffers in comparison due to two causes. First, BNC’s probabilistic model makes

strong assumptions regarding the generative process of classifier scores and true cell type assignments.
iScience 24, 101913, January 22, 2021 13

https://uwgraphics.github.io/CellOViewer/

Figure 9. The CellO Viewer

Screenshots of the CellO Viewer web application for enabling the exploration of cell-type-specific expression signatures across the Cell Ontology.

(A) Comparing the top ten genes between CD4+ T cells and CD8+ T cells (red nodes in the Graph View) ranked by the magnitude of their coefficients in their

corresponding models. Genes that are shared between the two lists are highlighted with the same color. The CellO Viewer displays genes whose

expressions are both positively correlated (green) and negatively correlated (red) with the selected cell types.

(B)Ascreenshotof thegene-centricmodeof theCellOViewerwithGFAP,anastrocytemarker, selected.Foragivenselectedgene, theCellOViewerwilldisplay thecell

types within the DAG (top) and in list form (bottom) for which the selected gene appears within the top ten genes ranked by each model’s coefficients.

ll
OPEN ACCESS

iScience
Article
Second, BNC requires estimating the conditional probability distribution of each classifier’s output scores

(i.e., distance from the decision boundary) conditioned on the true cell type labels, which may be difficult to

estimate accurately given the limited quantity of training data available for each cell type.

By using linear models, CellO’s trained parameters are easily interpreted as cell-type-specific signatures across

the ontology. However, we note that since certain cell types undergo similar sorting and preparation procedures

(e.g., fluorescence-activated cell sorting), it remains unclear towhat extent these procedures affect gene expres-

sion and thus confound cell type. We sought to mitigate this effect by using data from a diversity of studies. We

also note that the CLR algorithmmay help to further mitigate this effect since the binary classifiers trained in this

framework for each cell type condition on the sample belonging to the parent cell types. Thus, for a given cell

type, if samples of its parent cell typeswereprepared through similar procedures, the learnedmodel parameters

for that cell type will better capture biological cell type signatures.

Limitations of the study

There are a number of avenues that require further investigation. First, future work will entail curating

comprehensive training sets from the SRA for other species such as mouse. This work will rely partly on

future inclusion of standardized mouse metadata in the MetaSRA.

Second, CellO is a cluster-based annotationmethod, and thus, its accuracy relies, in part, on the robustness

of the clustering algorithm. If the clustering is too coarse, rare cell types may be missed. If clustering is too
14 iScience 24, 101913, January 22, 2021

ll
OPEN ACCESS

iScience
Article
fine, the algorithm may not be combining enough data to accurately annotate each cluster. Determining

the optimal clustering in scRNA-seq data is a challenging, open problem that will require further investiga-

tion (Kiselev et al. 2019). Nonetheless, we demonstrated that CellO accurately classified a number of

diverse data sets using Leiden’s default parameter in the Scanpy package.

Third, we note that calibrating discriminative models trained on bulk RNA-seq data and applying them to

single-cell data is challenging. In this work, we developed techniques for closing the gap between the per-

formance of CellO when evaluated with average precision versus when evaluated with F1-score. The very

high average precision scores across many cell types indicate that CellO is learning an accurate represen-

tation of these cell types and that with better calibration, CellO’s accuracy when making binary yes-no de-

cisions for each cell type could be improved. Future work will investigate alternative approaches to calibrat-

ing CellO’s models in order to improve CellO’s binary cell type decisions.

Fourth, the Cell Ontology encodes anatomical and functional relationships between cell types; however,

there exist a number of other relationships between cell types that could be utilized to improve accuracy.

Such examples include lineage-based relationships (i.e., one cell type derives from another cell type; Yuan

et al., 2020) or evolutionary relationships between extant cell types and ancient cell types (Arendt et al.,

2016; Liang et al., 2018). For example, the evolutionary relationships between cell types may be utilized

to address inconsistencies in the independent classifiers approach that arise when certain cell types share

a parent cell type via the currently encoded ‘‘is a’’ relationship but are purported to have divergent evolu-

tionary origins.

Fifth and finally, we expect the performance of hierarchical classifiers to improve as both more data are

collected and as the Cell Ontology is expanded. Most importantly, we expect the calibration of the classi-

fiers to improve as more training data become available for each cell type. More training data will be

collected both as data are continually added to the SRA and as improvements are made to the SRA’s meta-

data, thereby allowing retrieval of previously undiscovered primary cell samples.
Resource availability

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Con-

tact, Colin Dewey (colin.dewey@wisc.edu).

Data and code availability

A Python package for running CellO can be found on GitHub: https://github.com/deweylab/CellO. The

data used in this work can be found on https://doi.org/10.5281/zenodo.4289064. The CellO Viewer can

be accessed at https://uwgraphics.github.io/CellOViewer/. The code implementing the CellO Viewer

can be found on GitHub: https://github.com/uwgraphics/CellOViewer. All code for performing the exper-

iments in this work can be found on GitHub: https://github.com/deweylab/cell-type-classification-paper.

Materials availability

This study did not generate new unique reagents.
METHODS

All methods can be found in the accompanying Transparent methods supplemental file.
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2020.101913.

ACKNOWLEDGMENTS

M.N.B. thanks Gary H. Bernstein, John Steill, Ron Stewart, and Christina Kendziorski for helpful conversa-

tions. This project has been made possible in part by grant U54 AI117924 from the National Institutes of

Health and grant 2018-182626 from the Chan Zuckerberg Initiative DAF, an advised fund of Silicon Valley

Community Foundation. M.N.B. acknowledges support of the Computation and Informatics in Biology and

Medicine Training Program funded by grant: 5T15LM007359 from the National Institutes of Health. M.N.B.
iScience 24, 101913, January 22, 2021 15

mailto:colin.dewey@wisc.edu
https://github.com/deweylab/CellO
https://doi.org/10.5281/zenodo.4289064
https://uwgraphics.github.io/CellOViewer/
https://github.com/uwgraphics/CellOViewer
https://github.com/deweylab/cell-type-classification-paper
https://doi.org/10.1016/j.isci.2020.101913

ll
OPEN ACCESS

iScience
Article
also acknowledges support from the Morgridge Institute for Research. M.G. acknowledges support from

the National Science Foundation award 1841349.

AUTHOR CONTRIBUTIONS

M.N.B. led the conceptual development of the ideas present in this article and implemented both the

CellO software and experiments. C.N.D. supervised the conceptual development and implementation

of the software and experiments. M.N.B. and C.N.D. wrote the manuscript. Z.M. implemented the CellO

Viewer. M.G. supervised the development of the CellO Viewer. M.N.B., Z.M., M.G., and C.N.D. contributed

to the conceptual design of the CellO Viewer.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: July 30, 2020

Revised: October 28, 2020

Accepted: December 2, 2020

Published: January 22, 2021
REFERENCES

Abdelaal, T., Michielsen, L., Cats, D., Hoogduin,
D., Mei, H., Marcel, J., Reinders, T., and Ahmed,
M. (2019). A comparison of automatic cell
identification methods for single-cell RNA
sequencing data. Genome Biol. 20, 194.

Alquicira-Hernandez, J., Anuja, S., Ji, H.P.,
Nguyen, Q., Joseph, E., and Powell. (2019).
scPred: accurate supervised method for cell-type
classification from single-cell RNA-seq data.
Genome Biol. 20, 264.

Aran, D., Hu, Z., and Butte, A.J. (2017). xCell:
digitally portraying the tissue cellular
heterogeneity landscape. Genome Biol. 18, 220.

Aran, D., Looney, A.P., Liu, L., Wu, E., Fong, V.,
Hsu, A., Chak, S., Naikawadi, R.P., Wolters, P.J.,
Abate, A.R., et al. (2019). Reference-based
analysis of lung single-cell sequencing reveals a
transitional profibrotic macrophage. Nat.
Immunol. 20, 163–172.

Arendt, D., Musser, J.M., Baker, C.V.H., Bergman,
A., Cepko, C., Erwin, D.H., Pavlicev, M., Schlosser,
G., Widder, S., Laubichler, M.D., et al. (2016). The
origin and evolution of cell types. Nat. Rev.
Genet. 17, 744–757.

Bard, J., Rhee, S.Y., and Ashburner, M. (2005). An
ontology for cell types. Genome Biol. https://doi.
org/10.1186/gb-2005-6-2-r21.

Becht, E., McInnes, L., Healy, J., Charles-Antoine,
D., Kwok, I.W.H., Ng, L.G., Ginhoux, F., and
Newell, E.W. (2018). Dimensionality reduction for
visualizing single-cell data using UMAP. Nat.
Biotechnol. https://doi.org/10.1038/nbt.4314.

Bernstein, M.N., Doan, A., and Dewey, C.N.
(2017). MetaSRA: normalized human sample-
specific metadata for the sequence Read archive.
Bioinformatics 33, 2914–2923.

Bray, N.L., Pimentel, H., Melsted, P., and Pachter,
L. (2016). Near-optimal probabilistic RNA-seq
quantification. Nat. Biotechnol. 34, 525–527.
16 iScience 24, 101913, January 22, 2021
Collin, M., McGovern, N., and Haniffa, M. (2013).
Human dendritic cell subsets. Immunology 140,
22–30.

Fernández, J.M., de la Torre, V., Richardson, D.,
Royo, R., Puiggròs, M., Moncunill, V.,
Fragkogianni, S., Clarke, L.; BLUEPRINT
Consortium, and Flicek, P., et al. (2016). The
blueprint data analysis portal. Cell Syst. 3, 491–
495.e5.

Gleicher, M. (2013). Explainers: expert
explorations with crafted projections. IEEE Trans.
Vis. Comput. Graph. 19, 2042–2051.

Gremse, M., Chang, A., Ida, S., Grote, A., Scheer,
M., Ebeling, C., and Schomburg, D. (2011). The
BRENDA tissue ontology (BTO): the first all-
integrating ontology of all organisms for enzyme
sources. Nucleic Acids Res. 39, D507–D513.

Hickford, D.E., Stephen, F., Pask, A.J., Shaw, G.,
and Renfree, M.B. (2011). DDX4 (VASA) is
conserved in germ cell development in
marsupials and monotremes. Biol. Reprod. 85,
733–743.

Hou, R., Elena, D., Alistair, R., and Forrest, R.
(2019). scMatch: a single-cell gene expression
profile Annotation tool using reference datasets.
Bioinformatics 35, 4688–4695.

Jaitin, D.A., Kenigsberg, E., Keren-Shaul, H.,
Elefant, N., Paul, F., Zaretsky, I., Alexander, M.,
Cohen, N., Jung, S., Tanay, A., et al. (2014).
Massively parallel single-cell RNA-seq for marker-
free decomposition of tissues into cell types.
Science 343, 776–779.

de Kanter, J.K., Lijnzaad, P., Candelli, T.,
Margaritis, T., Frank, C., and Holstege, P. (2019).
CHETAH: a selective, hierarchical cell type
identification method for single-cell rna
sequencing. Nucleic Acids Res. 47, e95.

Kiselev, V.Y., Andrews, T.S., and Martin, H. (2019).
Challenges in unsupervised clustering of single-
cell RNA-seq data. Nat. Rev. 20, 273–282.
Laughney, A.M., Hu, J., Nathaniel, R.C.,
Bakhoum, S.F., Setty, M., Lavallée, V.P., Xie, Y.,
Masilionis, I., Carr, A.J., Kottapalli, S., et al. (2020).
Regenerative lineages and immune-mediated
pruning in lung cancer metastasis. Nat. Med. 26,
259–269.

Lee, Y.S., Krishnan, A., Zhu, Q., and Olga, G.T.
(2013). Ontology-aware classification of tissue
and cell-type signals in gene expression profiles
across platforms and technologies.
Bioinformatics 29, 3036–3044.

Leinonen, R., Sugawara, H., Martin, S., and
International Nucleotide Sequence Database
Collaboration. (2011). The sequence Read
archive. Nucleic Acids Res. 39, D19–D21.

Lemmens, K., Doggen, K., and de Keulenaer,
G.W. (2007). Role of neuregulin-1/ErbB signaling
in cardiovascular physiology and disease:
implications for therapy of heart failure.
Circulation 116, 954–960.

Liang, C., Musser, J.M., Cloutier, A., Prum, R.O.,
and Wagner, G.P. (2018). Pervasive correlated
evolution in gene expression shapes cell and
tissue type transcriptomes. Genome Biol. Evol.
10, 538–552.

Lieberman, Y., Rokach, L., and Shay, T. (2018).
CaSTLe - classification of single cells by transfer
learning: harnessing the power of publicly
available single cell RNA sequencing
experiments to annotate new experiments. PLoS
One 13, e0205499.

Lizio, M., Harshbarger, J., Abugessaisa, I.,
Noguchi, S., Kondo, A., Severin, J., Mungall, C.,
Arenillas, D., Mathelier, A., Medvedeva, Y.A.,
et al. (2017). Update of the FANTOM web
resource: high resolution transcriptome of
diverse cell types in mammals. Nucleic Acids Res.
45, D737–D743.

Ma, F., and Pellegrini, M. (2020). ACTINN:
automated identification of cell types in single
cell RNA sequencing. Bioinformatics 36, 533–538.

http://refhub.elsevier.com/S2589-0042(20)31110-X/sref1
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref1
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref1
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref1
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref1
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref2
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref2
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref2
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref2
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref2
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref3
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref3
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref3
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref4
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref4
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref4
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref4
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref4
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref4
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref5
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref5
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref5
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref5
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref5
https://doi.org/10.1186/gb-2005-6-2-r21
https://doi.org/10.1186/gb-2005-6-2-r21
https://doi.org/10.1038/nbt.4314
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref8
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref8
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref8
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref8
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref9
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref9
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref9
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref10
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref10
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref10
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref11
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref11
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref11
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref11
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref11
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref11
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref12
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref12
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref12
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref13
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref13
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref13
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref13
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref13
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref14
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref14
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref14
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref14
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref14
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref15
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref15
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref15
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref15
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref16
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref16
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref16
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref16
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref16
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref16
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref17
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref17
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref17
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref17
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref17
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref18
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref18
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref18
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref19
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref19
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref19
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref19
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref19
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref19
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref20
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref20
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref20
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref20
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref20
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref21
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref21
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref21
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref21
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref22
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref22
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref22
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref22
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref22
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref23
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref23
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref23
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref23
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref23
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref24
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref24
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref24
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref24
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref24
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref24
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref25
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref25
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref25
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref25
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref25
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref25
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref25
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref26
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref26
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref26

ll
OPEN ACCESS

iScience
Article
Mabbott, N.A., Kenneth Baillie, J., Brown, H.,
Freeman, T.C., and Hume, D.A. (2013). An
expression Atlas of human primary cells:
inference of gene function from coexpression
networks. BMC Genomics 14, 632.

La Manno, G., Gyllborg, D., Codeluppi, S.,
Nishimura, K., Salto, C., Amit, Z., Borm, L.E., Stott,
S.R.W., Toledo, E.M., Villaescusa, J.C., et al.
(2016). Molecular diversity of midbrain
development in mouse, human, and stem cells.
Cell 167, 566–580.e19.

Mei, L., and Xiong, W.C. (2008). Neuregulin 1 in
neural development, synaptic plasticity and
schizophrenia. Nat. Rev. Neurosci. 9, 437–452.

Monaco, G., Lee, B., Xu, W., Mustafah, S., Hwang,
Y.Y., Carré, C., Burdin, N., Visan, L., Ceccarelli, M.,
Poidinger, M., et al. (2019). RNA-seq signatures
normalized by mRNA abundance allow absolute
deconvolution of human immune cell types. Cell
Rep. 26, 1627–1640.e7.

Mungall, C.J., Torniai, C., Gkoutos, G.V., Lewis,
S.E., and Haendel, M.A. (2012). Uberon, an
integrative multi-species anatomy ontology.
Genome Biol. 13, R5.

Newman, A.M., Liu, C.L., Green, M.R., Gentles,
A.J., Feng, W., Xu, Y., Chuong, D.H., Maximilian,
D., and Alizadeh, A.A. (2015). Robust
enumeration of cell subsets from tissue
expression profiles. Nat. Methods 12, 453–457.

Notaro, M., Schubach, M., Robinson, P.N., and
Valentini, G. (2017). Prediction of human
phenotype ontology terms by means of
hierarchical ensemble methods. BMC
Bioinformatics 18, 449.

Obozinski, G., Lanckriet, G., Grant, C., Jordan,
M.I., and Noble, W.S. (2008). Consistent
probabilistic outputs for protein function
prediction. Genome Biol. 9, S6.

Pérez-Silva, J.G., Araujo-Voces,M., andQuesada,
V. (2018). nVenn: generalized, quasi-proportional
venn and euler diagrams. Bioinformatics 34,
2322–2324.

Picelli, S., Björklund, Å.K., Faridani, O.R.,
Sagasser, S., Winberg, G., and Sandberg, R.
(2013). Smart-seq2 for sensitive full-length
transcriptome profiling in single cells. Nat.
Methods 10, 1096–1098.

Pliner, H.A., Shendure, J., and Cole, T. (2019).
Supervised classification enables rapid
annotation of cell atlases. Nat. Methods 16,
983–986.

Puré, E., and Blomberg, R. (2018). Pro-
tumorigenic roles of fibroblast activation protein
in cancer: back to the basics. Oncogene 37, 4343–
4357.

Segerstolpe, Å., Palasantza, A., Eliasson, P.,
Andersson, E.M., Anne-Christine, A., Sun, X.,
Picelli, S., Sabirsh, A., Clausen, M., Bjursell, M.K.,
et al. (2016). Single-cell transcriptome profiling of
human pancreatic islets in Health and type 2
diabetes. Cell Metab. 24, 593–607.

Shao, X., Liao, J., Lu, X., Xue, R., Ni, A., and Fan, X.
(2020). scCATCH: automatic annotation on cell
types of clusters from single-cell RNA sequencing
data. iScience 23, 100882.

Sloan, C.A., Esther, T.C., Davidson, J.M., Venkat,
S.M., Strattan, J.S., Hitz, B.C., Gabdank, I.,
Narayanan, A.K., Ho, M., Lee, B.T., et al. (2016).
ENCODE data at the ENCODE portal. Nucleic
Acids Res. 44, D726–D732.
Strutz, F., Okada, H., Lo, C.W., Danoff, T., Carone,
R.L., Tomaszewski, J.E., and Neilson, E.G. (1995).
Identification and characterization of a fibroblast
marker: FSP1. J. Cell Biol. 130, 393–405.

Tan, Y., and Cahan, P. (2019). SingleCellNet: a
computational tool to classify single cell RNA-seq
data across platforms and across species. Cell
Syst. 9, 207–213.e2.

Traag, V.A., Waltman, L., and van Eck, N.J. (2019).
From louvain to leiden: guaranteeing well-
connected communities. Sci. Rep. 9, 5233.

Wolf, F.A., Angerer, P., and Theis, F.J. (2018).
SCANPY: large-scale single-cell gene expression
data analysis. Genome Biol. 19, 15.

Yuan, M., Yang, X., Lin, J., Cao, X., Chen, F.,
Zhang, X., Li, Z., Zheng, G., Wang, X., Chen, X.,
et al. (2020). Alignment of cell lineage trees
elucidates genetic programs for the
development and evolution of cell types. iScience
23, 101273.

Zhang, A.W., O’Flanagan, C., Chavez, E.A., Lim,
J.L.P., Ceglia, N., McPherson, A., Wiens, M.,
Walters, P., Chan, T., Hewitson, B., et al. (2019a).
Probabilistic cell-type Assignment of single-cell
RNA-seq for tumor microenvironment profiling.
Nat. Methods 16, 1007–1015.

Zhang, X., Lan, Y., Xu, J., Quan, F., Zhao, E., Deng,
C., Luo, T., Xu, L., Liao, G., Yan, M., et al. (2019b).
CellMarker: a manually curated resource of cell
markers in human and mouse. Nucleic Acids Res.
47, D721–D728.

Zheng, G.X., Terry, J.M., Belgrader, P., Paul, R.,
Bent, Z.W., Ryan, W., Ziraldo, S.B., Wheeler, T.D.,
McDermott, G.P., Zhu, J., et al. (2017). Massively
parallel digital transcriptional profiling of single
cells. Nat. Commun. 8, 14049.
iScience 24, 101913, January 22, 2021 17

http://refhub.elsevier.com/S2589-0042(20)31110-X/sref27
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref27
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref27
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref27
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref27
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref28
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref28
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref28
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref28
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref28
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref28
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref29
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref29
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref29
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref30
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref30
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref30
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref30
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref30
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref30
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref31
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref31
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref31
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref31
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref32
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref32
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref32
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref32
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref32
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref33
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref33
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref33
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref33
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref33
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref34
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref34
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref34
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref34
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref35
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref35
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref35
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref35
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref36
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref36
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref36
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref36
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref36
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref37
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref37
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref37
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref37
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref38
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref38
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref38
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref38
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref39
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref39
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref39
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref39
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref39
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref39
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref40
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref40
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref40
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref40
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref41
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref41
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref41
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref41
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref41
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref42
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref42
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref42
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref42
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref43
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref43
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref43
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref43
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref44
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref44
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref44
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref45
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref45
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref45
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref46
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref46
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref46
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref46
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref46
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref46
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref47
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref47
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref47
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref47
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref47
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref47
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref48
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref48
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref48
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref48
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref48
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref49
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref49
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref49
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref49
http://refhub.elsevier.com/S2589-0042(20)31110-X/sref49

iScience, Volume 24
Supplemental Information
CellO: comprehensive and hierarchical

cell type classification of human

cells with the Cell Ontology

Matthew N. Bernstein, Zhongjie Ma, Michael Gleicher, and Colin N. Dewey

Supplemental Figures

Supplemental Figure 1. ​Distribution of edge inconsistencies (Related to Figure 3). ​The cumulative
distribution function over the difference in probability between the parent and child classifiers for all edges
for which either the parent or child classifier output a probability greater than 0.01.

Supplemental Figure 2. ​Cluster assignments for single-cell datasets evaluated in this work (Related
to Figures 6C, 7A-B). ​UMAP plots of the single-cell datasets examined this work where each cell is
colored according to its CellO cluster assignment. These clusters were aggregated to compute a mean
expression profile and on which CellO was run. Plots are displayed for (​A​) the ​Segerstolpe et al. (2016)
dataset of healthy pancreatic cells, (​B​) the ​La Manno et al. (2016) dataset of fetal neural cells, and (​C​) the
Zheng et al. (2017) dataset of PBMCs.

https://paperpile.com/c/d6I1q8/FPFBK
https://paperpile.com/c/d6I1q8/Fe1Yc

Supplemental Figure 3. ​PBMC F1-scores produced by existing methods (Related to Figures 6A and
6D). ​The subgraph spanning the PBMC’s from Zheng et al. (2017) where each node is colored according
to the F1-scores produced by SingleR with the Blueprint+Encode reference (BE), SingleR with the Human
Primary Cell Atlas reference (HPCA), SingleR with the Monaco et al. (2019) reference (M), and scMatch.

Supplemental Figure 4. ​PBMC F1-scores produced by SingleR using CellO’s training set (Related to
Figures 4D and 6A). ​(​A​) The subgraph spanning the non-droplet-based cells and (​B​) ​the subgraph
spanning the PBMC’s from Zheng et al. (2017) where each node is colored according to the F1-scores
produced by SingleR with CellO’s reference.

Supplemental Figure 5. Examination of CellO’s Output for Tumor LX682 (Related to Figure 8). UMAP
plots of lung adenocarcinoma tumor LX682 from Laughney et al. colored by (top) CellO’s output using IR
and a Leiden resolution parameter of 1.0 (middle) CellO’s output using IR and a Leiden resolution
parameter of 8.0, and (bottom) the original cell type labels provided by the authors. We highlight three
subpopulations of putative dendritic cells (top subpopulation), endothelial cells (middle subpopulation) and
fibroblasts (bottom subpopulation). We verified these subpopulations using known marker genes for these
cell types (top right).

Supplemental Figure 6. Examination of CellO’s Output for Tumor LX679 (Related to Figure 8). UMAP
plots of lung adenocarcinoma tumor LX679 from Laughney et al. colored by (top) CellO’s output using IR
and a Leiden resolution parameter of 1.0 (middle) CellO’s output using IR and a Leiden resolution
parameter of 8.0, and (bottom) the original cell type labels provided by the authors. We highlight the
plasmacytoid dendritic cell population and verify its identity using known marker genes for these cell types
(top right).

Supplemental Figure 7. Examination of CellO’s Output for Tumor LX653 (Related to Figure 8). UMAP
plots of lung adenocarcinoma tumor LX653 from Laughney et al. colored by (top) CellO’s output using IR
and a Leiden resolution parameter of 1.0 (middle) CellO’s output using IR and a Leiden resolution
parameter of 8.0, and (bottom) the original cell type labels provided by the authors.

Supplemental Figure 8. Examination of CellO’s Output for Tumor LX661 (Related to Figure 8). UMAP
plots of lung adenocarcinoma tumor LX661 from Laughney et al. colored by (top) CellO’s output using IR
and a Leiden resolution parameter of 1.0 (middle) CellO’s output using IR and a Leiden resolution
parameter of 8.0, and (bottom) the original cell type labels provided by the authors.

Supplemental Figure 9. Examination of CellO’s Output for Tumor LX675 (Related to Figure 8). UMAP
plots of lung adenocarcinoma tumor LX675 from Laughney et al. colored by (top) CellO’s output using IR
and a Leiden resolution parameter of 1.0 (middle) CellO’s output using IR and a Leiden resolution
parameter of 8.0, and (bottom) the original cell type labels provided by the authors.

Supplemental Figure 10. Examination of CellO’s Output for Tumor LX676 (Related to Figure 8).
UMAP plots of lung adenocarcinoma tumor LX676 from Laughney et al. colored by (top) CellO’s output
using IR and a Leiden resolution parameter of 1.0 (middle) CellO’s output using IR and a Leiden
resolution parameter of 8.0, and (bottom) the original cell type labels provided by the authors.

Supplemental Figure 11. Examination of CellO’s Output for Tumor LX680 (Related to Figure 8).
UMAP plots of lung adenocarcinoma tumor LX680 from Laughney et al. colored by (top) CellO’s output
using IR and a Leiden resolution parameter of 1.0 (middle) CellO’s output using IR and a Leiden
resolution parameter of 8.0, and (bottom) the original cell type labels provided by the authors.

Supplemental Figure 12. Examination of CellO’s Output for Tumor LX684 (Related to Figure 8).
UMAP plots of lung adenocarcinoma tumor LX684 from Laughney et al. colored by (top) CellO’s output
using IR and a Leiden resolution parameter of 1.0 (middle) CellO’s output using IR and a Leiden
resolution parameter of 8.0, and (bottom) the original cell type labels provided by the authors.

Supplemental Figure 13. ​Parameter tuning (Related to Figure 2A). ​(​A​) Average precision scores
across cell types in the bulk RNA-seq validation set produced by the independent one-vs.-rest classifiers
on data preprocessed with various numbers of principal components. (​B​) F1-scores produced by the
independent classifiers when using a threshold of 0.5 for making a binary yes-no decision for all cell types
versus a custom threshold for each cell type as empirically determined via a leave-study-out
cross-validation experiment on the pre-training set of bulk RNA-seq samples. (​C​) Average precision (left)
and F1-scores (right) across cell types in the bulk RNA-seq validation set produced by the independent
one-vs.-rest classifiers trained either with or without the class-balanced loss-function. (​D​) Average

precision scores across cell types in the bulk RNA-seq validation set produced by the one-vs.-rest and
CLR conditional classifiers when trained with various regularization strengths (i.e. penalties). These
penalty values correspond to the inverse of the regularization strength and thus, smaller numbers indicate
stronger regularization.

Supplemental Figure 14. Comparing Bayesian network correction with naive Bayes (Related to
Figure 3). ​A comparison between BNC and a naive Bayes variant of BNC that considers each cell type
independent of the graph-dependencies between cell types. We compared these approaches in terms of
both the distribution of average precisions across cell types (left) and joint precision-recall curves
constructed by considering each cell-cell type pair as an independent prediction.

Supplemental Figure 15. Effect of clustering parameter on performance (Related to Figure 6). ​We
clustered the Zheng et al. (2017) PBMC dataset using various resolution parameters for the Leiden
community-detection algorithm and then computed the average-precision across all cell types produced
by IR (left) and CLR (right) on the mean expression profiles for the clusters generated under each
parameter.

Supplemental Figure 16. ​Effect of number of training studies on calibration quality (Related to
Figure 2A). We evaluated IR on the bulk RNA-seq validation set and for each cell type, we computed the
F1-score (F1) using a decision-threshold of 0.5 and average precision (AP). We then plot the difference
between F1 and AP against the logarithm of the number of studies in the bulk RNA-seq pre-training set
that sequenced each cell type. A larger gap between F1 and AP (i.e. negative numbers with large
magnitude) indicates poorer calibration. Error bands around the ordinary least-squares regression line
indicate 0.95 confidence intervals estimated via bootstrapping.

Transparent Methods

Data curation
To create the training set of primary cell bulk RNA-seq samples, we first selected all samples labelled as
a “primary cell” sample by the MetaSRA (v1.4). Thus, we followed the conservative definition for a
primary cell sample by Bernstein et al. (2017), which requires that a sample has not undergone passaging
beyond the first culture. We followed this selection with a manual curation of each sample’s technical
variables by consulting sources of metadata that are not captured by the MetaSRA annotation process,
such as fields in Gene Expression Omnibus ​(Clough and Barrett 2016) records and each study's
publication. In total, we annotated 27,097 samples (available to download at
http://deweylab.biostat.wisc.edu/cell_type_classification/​). We then removed all samples that were either
incorrectly labelled as primary cell samples or had been experimentally treated. When found, we also
corrected errors in the MetaSRA-provided Cell Ontology labels by both adding additional cell types that
were missed by the MetaSRA as well as removing incorrect cell type labels. This curation effort resulted
in the final set of 4,293 samples.

Data processing
We quantified the gene expression of all RNA-seq samples from the SRA (both bulk and
non-droplet-based single-cell samples) with kallisto (v0.43.1) ​(Bray et al. 2016) using human genome
release GRCh38 with GENCODE annotation version 27. We chose kallisto for gene expression
quantification in order to prioritize processing speed on this large dataset, figuring that any small loss in
accuracy (at the gene level) relative to a less approximate, but slower approach would not be significant
for the cell type classification task. This produced estimated counts for 200,401 isoform-level genomic
features. We summed the transcripts per million (TPM) values by gene to produce TPM’s for 58,243
gene-level features. The curated metadata and associated quantified samples are available to download
at ​http://deweylab.biostat.wisc.edu/cell_type_classification​.

Notation
In the following descriptions of the methods used in this work, we let denote a gene expression
profile, where is the number of considered genes and is measured in units of log(TPM+1) where
TPM are transcripts per million. We let denote the number of samples, denote the number of
considered cell types, denote the cell type assignment for cell type and sample

.

Binary classification with logistic regression
We use L2-penalized logistic regression for each binary classifier as implemented by scikit-learn
(Pedregosa et al. 2011) using the LIBLINEAR solver ​(Fan et al. 2008)​. To speed up the training of each
binary classifier, we preprocessed the bulk RNA-seq training data using principal components analysis
(PCA) as implemented in scikit-learn. Specifically for each cell type , each classifier is trained by
minimizing the following loss-function:

where

is the logistic function, are the model-coefficients for cell type , is the intercept for cell type
, controls the strength of the regularization, is the number of training samples, is a

per-sample weight for handling class-imbalance in cell type ’s model, and is the PCA
loadings matrix.

https://paperpile.com/c/d6I1q8/Atktd
http://deweylab.biostat.wisc.edu/cell_type_classification/
https://paperpile.com/c/d6I1q8/Frjhp
http://deweylab.biostat.wisc.edu/cell_type_classification/
https://www.codecogs.com/eqnedit.php?latex=%5Cboldsymbol%7Bx%7D%20%5Cin%20%5Cmathbb%7BR%7D%5EG#0
https://www.codecogs.com/eqnedit.php?latex=G#0
https://www.codecogs.com/eqnedit.php?latex=%5Cboldsymbol%7Bx%7D#0
https://www.codecogs.com/eqnedit.php?latex=n#0
https://www.codecogs.com/eqnedit.php?latex=m#0
https://www.codecogs.com/eqnedit.php?latex=y_%7Bi%2Cj%7D%20%5Cin%20%5C%7B0%2C%201%5C%7D#0
https://www.codecogs.com/eqnedit.php?latex=j%20%5Cin%20%5Bm%5D#0
https://www.codecogs.com/eqnedit.php?latex=i%20%5Cin%20%5Bn%5D#0
https://paperpile.com/c/d6I1q8/4X7zC
https://paperpile.com/c/d6I1q8/gXpFn
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7Bmin%7D_%7B%5Cboldsymbol%7B%5Cbeta%7D_j%2C%20c_j%7D%20%5C%20%5Cfrac%7B1%7D%7B2%7D%7C%7C%5Cboldsymbol%7B%5Cbeta_j%7D%7C%7C%5E2_2%20%2B%20C%5Csum_%7Bi%3D1%7D%5E%7Bn%7D%20w_%7Bi%2Cj%7D%5Cleft%5B-y_%7Bi%2Cj%7D%20%5Clog(h_%7B%5Cboldsymbol%7B%5Cbeta%7D_j%2C%20c_j%7D(%5Cbold%7Bx%7D_i))%20%20-(1-y_%7Bi%2Cj%7D)%5Clog(1%20-%20h_%7B%5Cboldsymbol%7B%5Cbeta%7D_j%2C%20c_j%7D(%5Cbold%7Bx%7D_i))%20%5Cright%5D#0
https://www.codecogs.com/eqnedit.php?latex=h_%7B%5Cboldsymbol%7B%5Cbeta%7D_j%2C%20c_j%7D(%5Cbold%7Bx%7D_i)%20%3A%3D%20%5Cleft%5B1%2B%5Cexp((%5Cbold%7BU%7D%5Cbold%7Bx%7D_i)%5ET%5Cboldsymbol%7B%5Cbeta%7D_j%20%2Bc_j)%5Cright%5D%5E%7B-1%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cboldsymbol%7B%5Cbeta%7D_j%20%5Cin%20%5Cmathbb%7BR%7D%5Ek#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=c_j#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=C#0
https://www.codecogs.com/eqnedit.php?latex=n#0
https://www.codecogs.com/eqnedit.php?latex=w_%7Bi%2Cj%7D#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbold%7BU%7D%20%5Cin%20%5Cmathbb%7BR%7D%5E%7Bk%20%5Ctimes%20m%7D#0

We also note that most training sets are highly unbalanced. We found that the models were better
calibrated when the loss-function weighted each training sample such that the positive and negative
samples contribute equally to the loss function (via the weights above) as evidenced by the
improved F1-scores when using a threshold of 0.5 for making discrete yes-no cell type decisions (​Figure
S13C​). We implemented this class-balancing by setting the ​class_weight parameter to ‘balanced’ in
scikit-learn’s ​LogisticRegression​ class constructor.

Isotonic regression correction
We train a binary classifier for each cell type to model using logistic regression and a
one-versus-rest training strategy. As proposed by Obozinski ​et al. (2008), these probabilities are then
reconciled with the ontology graph using isotonic regression. Specifically, we output the set of
probabilities:

subject to

 and
where as output by each classifier and is the set of parent cell
types for cell type . CellO uses the quadprog Python package (​https://pypi.org/project/quadprog/​) for
solving this quadratic optimization problem.

Bayesian network correction
A binary classifier is trained for each cell type and a one-versus-rest training strategy. The classifier
outputs are then reconciled with the ontology graph using a Bayesian network as proposed by Lee et al.
(2013). The true assignments for each cell type within a given sample, denoted , are
modelled as latent random variables, and the classifier outputs, denoted (signed
distances to each decision boundary), are modelled as observed random variables in a Bayesian
network. The final output probability for cell type is then the marginal probability

More specifically, for a given cell type , we model the conditional distribution of the classifier’s output
(distance to the decision boundary) conditional on its true label as a discrete random variable

constructed as follows. We partition the training data for cell type into two folds ensuring that no study
is split between folds while attempting to keep the sizes of the two folds as similar as possible. We then
train on one fold and compute the classifier scores from the second fold (for each of the two folds).

Using all of these scores, we then compute a histogram where the bin sizes are determined using a
second 2-fold cross-validation scheme. Specifically, we then test a number of bin sizes by first estimating
a histogram density function using data in one fold and then computing the likelihood of the data in the
second fold (performing this procedure for both folds). The histogram density function is given by

where is the total number of data points, is the width of each bin, and is the number of
data points sharing the same bin as . We choose a bin size that maximizes the mean of the two data
log likelihoods computed on each fold.

https://www.codecogs.com/eqnedit.php?latex=w_%7Bi%2Cj%7D#0
https://www.codecogs.com/eqnedit.php?latex=j%20%5Cin%20%5Bm%5D#0
https://www.codecogs.com/eqnedit.php?latex=p(y_j%20%5Cmid%20%5Cboldsymbol%7Bx%7D)#0
https://www.codecogs.com/eqnedit.php?latex=p_1%2C%20%5Cdots%2C%20p_m%20%3A%3D%20%5Ctext%7Barg%20min%7D_%7Bp%27_1%2C%20%5Cdots%2C%20p%27_m%7D%20%5C%20%5Csum_%7Bi%3D1%7D%5Em%20(p%27_j%20-%20%5Chat%7Bp%7D_j)%5E2#0
https://www.codecogs.com/eqnedit.php?latex=%5Cforall%20j%20%5Cin%20%5Bm%5D%2C%20%5Cforall%20k%20%5Cin%20%5Ctext%7BPar%7D(j)%2C%20%5C%20p_j%20%5Cleq%20p_k#0
https://www.codecogs.com/eqnedit.php?latex=%5Cforall%20j%20%5Cin%20%5Bm%5D%2C%20%5C%200%20%5Cleq%20p_j%20%5Cleq%201#0
https://www.codecogs.com/eqnedit.php?latex=%5Cforall%20j%20%5Cin%20%5Bm%5D%2C%20%5Chat%7Bp%7D_j%20%3A%3D%20p(y_j%3D1%20%5Cmid%20%5Cboldsymbol%7Bx%7D)#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7BPar%7D(j)#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://pypi.org/project/quadprog/
https://www.codecogs.com/eqnedit.php?latex=y_1%2C%20%5Cdots%2C%20y_m#0
https://www.codecogs.com/eqnedit.php?latex=f_1(%5Cboldsymbol%7Bx%7D)%2C%20%5Cdots%2C%20f_m(%5Cboldsymbol%7Bx%7D)#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=p(y_j%20%3D%201%20%5Cmid%20f_1(%5Cbold%7Bx%7D)%2C%20%5Cdots%2C%20f_m(%5Cbold%7Bx%7D))#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=f_j(%5Cbold%7Bx%7D)#0
https://www.codecogs.com/eqnedit.php?latex=y_j#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=f(x)%20%3A%3D%20%5Cfrac%7B1%7D%7Bnh%7D%5Ctext%7BCount(x)%7D#0
https://www.codecogs.com/eqnedit.php?latex=n#0
https://www.codecogs.com/eqnedit.php?latex=h#0
https://www.codecogs.com/eqnedit.php?latex=Count(x)#0
https://www.codecogs.com/eqnedit.php?latex=x#0

As described by Lee et al. (2013), the true cell type assignments factor according to the
ontology graph:

where

are the assignments to the children cell types of cell type in the ontology. These conditional
distributions enforce consistency with the ontology by defining

if . Otherwise,

The values are computed from counts in the training data. Specifically, the prior for each leaf-node
cell type is simply the fraction of samples in the data set labelled as . For each internal node , the
prior is computed as the fraction of all samples labelled as , but not labelled as any child of . A
pseudocount of one was used in the calculation for all priors. Due to the size of the ontology, we perform
approximate inference using Gibbs sampling rather than exact inference using the Laurintzen algorithm
as was performed by Lee et al.

To test the impact of the graph-structured prior on this algorithm, we also tested a naive Bayes variant in
which each cell type is predicted independently (i.e., without the graph-structured prior). We found a
significant improvement in performance for the graph-structured BNC algorithm over the naive Bayes
algorithm indicating that the graph structured prior is an important component of this algorithm (​Figure
S14​).

True Path Rule
We train a binary classifier for each cell type to model using logistic regression and a
one-versus-rest training strategy. As proposed by Notaro et al. (2017), this method involves two passes
across the ontology: on a bottom-up pass, each cell type's output probability is averaged with the outputs
of all child cell types classifiers for which the classifier makes a positive prediction according to a
predefined threshold. More specifically, each cell type 's output probability is set to

where according to the classifier and

is the set of children of cell type for which the classifier output a positive prediction according to a
predefined threshold . We used a threshold of . This bottom-up pass allows for sharing of
information across the classifiers. In the top-down pass of the ontology, the output probabilities are set to
ensure consistency with the ontology. This procedure works as follows: each node in the ontology is
visited according to the topologically sorted order of nodes and for a given visited cell type , its final
probability is set to

https://www.codecogs.com/eqnedit.php?latex=p(y_1%2C%20.%20.%20.%20%2C%20y_m)#0
https://www.codecogs.com/eqnedit.php?latex=p(y_1%2C%20%5Cdots%2C%20y_m)%20%3A%3D%20%5Cprod_%7Bj%3D1%7D%5Em%20p(y_j%20%5Cmid%20%5Ctext%7BChildren%7D_j)#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7BChildren%7D_j%20%3A%3D%20%5C%7By_k%20%5Cmid%20k%20%5Ctext%7B%20%5C%20is%20a%20child%20of%20%5C%20%7D%20j%5C%7D#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=p(y_j%20%7C%20%5Ctext%7BChildren%7D_j)#0
https://www.codecogs.com/eqnedit.php?latex=p(y_j%20%3D%201%20%5Cmid%20%5Ctext%7BChildren%7D_j)%20%3A%3D%201.0#0
https://www.codecogs.com/eqnedit.php?latex=1%20%5Cin%20%5Ctext%7BChildren%7D_j#0
https://www.codecogs.com/eqnedit.php?latex=p(y_j%20%3D%201%20%5Cmid%20%5Ctext%7BChildren%7D_j)%20%3A%3D%20%5Ctext%7Bprior%7D_j#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7Bprior%7D_j#0
https://www.codecogs.com/eqnedit.php?latex=c#0
https://www.codecogs.com/eqnedit.php?latex=c#0
https://www.codecogs.com/eqnedit.php?latex=c#0
https://www.codecogs.com/eqnedit.php?latex=c#0
https://www.codecogs.com/eqnedit.php?latex=c#0
https://www.codecogs.com/eqnedit.php?latex=j%20%5Cin%20%5Bm%5D#0
https://www.codecogs.com/eqnedit.php?latex=p(y_j%20%5Cmid%20%5Cboldsymbol%7Bx%7D)#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbar%7Bp%7D_j%20%3A%3D%20%5Cfrac%7B1%7D%7B%7CC_j%7C%2B1%7D%5Cleft(%5Chat%7Bp%7D_j%20%2B%20%5Csum_%7Bk%20%5Cin%20C_j%7D%20%5Cbar%7Bp%7D_k%5Cright)#0
https://www.codecogs.com/eqnedit.php?latex=%5Chat%7Bp%7D_j%20%3A%3D%20p(y_j%3D1%20%5Cmid%20%5Cboldsymbol%7Bx%7D)#0
https://www.codecogs.com/eqnedit.php?latex=C_j%20%3A%3D%20%5C%7Bk%20%5Cin%20%5Ctext%7BChildren%7D(j)%20%5C%20%3A%20%5C%20%5Chat%7Bp%7D_j%20%3E%20t%20%5C%7D#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=t#0
https://www.codecogs.com/eqnedit.php?latex=t%20%3D%200.5#0
https://www.codecogs.com/eqnedit.php?latex=j#0

where are the parent nodes of node in the DAG.

Cascaded logistic regression
Classification is made in a top-down fashion starting from the root of the ontology downward as proposed
by Obozinski et al. (2008). This is accomplished by training a logistic regression, binary classifier
(although any binary classifier that outputs a prediction probability can be used) for each cell type

 to model the distribution

where indicates whether the sample belongs to all of the parents of in the ontology. In
order to model these distributions, each cell type's negative training examples consist of those samples
that are labeled with all parent cell types, but not the target cell type. Given these learned distributions,
the probability that originates from cell type is computed via

where denotes the ancestors of cell type in the ontology's DAG.

One-nearest neighbors
Given a query gene expression profile , we return all cell type labels belonging to the training set
expression profile

where is the Pearson correlation of the expression values in and as implemented in
Python’s SciPy package ​(Virtanen et al. 2020)​.

Quantification and statistical analysis

Partitioning bulk RNA-seq data into training and test sets
In order to find the optimal parameters and configurations for CellO, we partitioned the bulk RNA-seq
training dataset into a pre-training set and validation set (​Figure 2A​). When creating this partition, we
sought to satisfy a number of criteria that would enable unbiased estimation of performance across cell
types. First, we required that no study be split between the pre-training and validation sets in order to
ensure that a model is never tested on data from a study on which it was trained. This mitigates the
possibility that the algorithm will provide an overly optimistic estimate of the generalization error when run
on the validation set. Second, we sought an approximately 80/20 split of the data between the pre-training
and validation sets. Third and finally, we sought for all cell types to be represented in both the pre-training
and validation sets. We framed this partitioning task as an optimization problem where our four criteria
were encoded in an objective function. Minimizing this objective function entails creating a partition that
most closely meets the aforementioned four criteria. To optimize the objective function, we performed a
simple hill-climbing procedure where we moved a study’s data from the validation set to the pre-training
set if such a move resulted in a partition that improved the objective function.

Parameter tuning
To choose the optimal number of principal components, we evaluated various numbers of principal
components by training the collection of one-vs.-rest classifiers on the bulk RNA-seq pre-training set and
evaluating on the bulk RNA-seq validation set. We found that using 3,000 principal components
performed equally well to using the raw gene expression values as features. Further, we found
performance degraded as the number of principal components decreased (​Figure S13A​). We then
performed a parameter sweep of penalty-weight parameters (i.e. regularization-strength parameters) for

https://www.codecogs.com/eqnedit.php?latex=p_j%20%3A%3D%5Cbegin%7Bcases%7D%20%5Cbar%7Bp%7D_j%20%26%20%5Ctext%7Bif%7D%20%5C%20j%20%5C%20%5Ctext%7Bis%20a%20root%20node%7D%20%5C%5C%5C%5C%20%5Ctext%7Bmin%7D_%7Bk%20%5Cin%20%5Ctext%7BPar%7D(j)%7D%20%20%5C%20p_k%20%26%20%5Ctext%7Bif%7D%20%5C%20%5Ctext%7Bmin%7D_%7Bk%20%5Cin%20%5Ctext%7BPar%7D(j)%7D%20%5C%20p_k%20%3C%20%5Cbar%7Bp%7D_j%20%20%5C%5C%5C%5C%20%5Cbar%7Bp%7D_j%20%26%20%5Ctext%7Botherwise%7D%5Cend%7Bcases%7D#0
https://www.codecogs.com/eqnedit.php?latex=Par(j)#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=j%20%5Cin%20%5Bm%5D#0
https://www.codecogs.com/eqnedit.php?latex=q_j%20%3A%3D%20p(y_j%20%3D%201%20%5Cmid%20%5Cpi_j%3D1%2C%20%5Cboldsymbol%7Bx%7D)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cpi_j%20%5Cin%20%5C%7B0%2C%201%5C%7D#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=%5Cboldsymbol%7Bx%7D#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=p(y_j%20%3D%201%20%5Cmid%20%5Cboldsymbol%7Bx%7D)%20%3D%20q_j%20%5Cprod_%7Bk%20%5Cin%20A_j%7D%20q_k#0
https://www.codecogs.com/eqnedit.php?latex=A_j#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=%5Cboldsymbol%7Bx%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7Barg%20min%7D_%7B%5Cboldsymbol%7Bx%7D%27%20%5Cin%20%5Cboldsymbol%7BX%7D%7D%20%5C%201%20-%20%5Ctext%7BCorr%7D(%5Cboldsymbol%7Bx%7D%2C%20%5Cboldsymbol%7Bx%7D%27)#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7BCorr%7D(%5Cboldsymbol%7Bx%7D%2C%5Cboldsymbol%7Bx%7D%27)#0
https://www.codecogs.com/eqnedit.php?latex=%5Cboldsymbol%7Bx%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cboldsymbol%7Bx%7D%27#0
https://paperpile.com/c/d6I1q8/8kGLN

IR and CLR and chose the values that maximized the median average precisions for each method
(​Figure S13D​).

Model calibration
We found that for many cell types, there were relatively few studies in the training set for which samples
of these cell types originated and thus, we found that the models tended to overfit to the training set
leading to poorly calibrated models. This was evidenced by the fact that the average-precision scores
were high across most cell types; however, the F1-scores were much lower when using a default
threshold of 0.5 for making binary cell type decisions (​Figure S13D​). The high average precision scores
indicate that the positive and negative examples of each cell type are well separated in the ranking of
samples when ranked according to the classifier output probability for the given cell type. However, the
poor F1-scores indicate that the default threshold of 0.5 is non-optimal for separation.

To address this issue, we used a data-driven approach to find empirical thresholds according to a
leave-study-out cross-validation experiment. Specifically, we performed leave-study-out cross-validation
on the pre-training set of bulk RNA-seq samples and used these results to empirically choose a threshold
for each cell type such that if a given threshold less than 0.5 led to a higher F1-score than the default
threshold of 0.5, we select this empirical threshold. When applying these data-driven thresholds to the
validation set, we observed a significant increase in the F1-scores across cell types under the
independent one-vs.-rest classifiers approach (​Figure S13B​). Thus, when training the final CellO models
(both CLR and IR), we performed this same cross-validation procedure on the entire bulk RNA-seq
training set to select data-driven thresholds.

We note that even with these selected thresholds, CellO often output more than one specific cell type for
a given sample (e.g. both natural killer cell and T cell), which may confuse a user of the tool. This
phenomenon is a consequence of both mis-calibrated models (despite the data-driven thresholding
procedure) and because CellO performs multi-label hierarchical classification. To address this issue,
whenever CellO outputs more than one specific cell type, we select only the cell type with highest output
probability along with all ancestor cell types. All F1-scores reported in the main text followed from this
correction procedure and thus, are an apt measure of the practical utility of CellO on real data (​Figure
2B​).

Model interpretation

We note that although the logistic regression model’s coefficients (where denotes the index
for a given cell type) weight the principal components rather than genes, each gene’s contribution to
the model’s decision can be recovered by

where is the PCA loading matrix and describes the contribution of gene to the
model’s decision. The full set of these vectors over all cell types can be explored within the CellO Viewer
web application.

Evaluation metrics
For a given input dataset, CellO generates two sets of outputs: binary yes-no decisions for each cell type
assignment as well as probability scores that quantify how likely each cell should be assigned to any
given cell type. Both of these outputs can be represented as matrices. More specifically, given an input
dataset, where is the number of cells and is the number of genes, the binary yes-no
decisions can be represented as a matrix where is the number of cell types and

if the classifier predicts cell to be of cell type . The probability scores can also be
represented as a matrix where denotes the classifier’s confidence that cell type
should be labelled as cell type . Finally, the true cell type assignments can also be represented as a

https://www.codecogs.com/eqnedit.php?latex=%5Cboldsymbol%7B%5Cbeta%7D_j%20%5Cin%20%5Cmathbb%7BR%7D%5E%7Bk%7D#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=k#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbold%7Bw%7D_j%20%3A%3D%20%5Cbold%7BU%7D%5Cboldsymbol%7B%5Cbeta%7D_j#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbold%7BU%7D%20%5Cin%20%5Cmathbb%7BR%7D%5E%7Bm%20%5Ctimes%20k%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbold%7Bw%7D_%7Bj%2Cg%7D#0
https://www.codecogs.com/eqnedit.php?latex=g#0
https://www.codecogs.com/eqnedit.php?latex=%5Cbold%7BX%7D%20%5Cin%20%5Cmathbb%7BR%7D%5E%7Bn%20%5Ctimes%20G%7D#0
https://www.codecogs.com/eqnedit.php?latex=n#0
https://www.codecogs.com/eqnedit.php?latex=G#0
https://www.codecogs.com/eqnedit.php?latex=B%20%5Cin%20%5C%7B0%2C1%5C%7D%5E%7Bn%20%5Ctimes%20m%7D#0
https://www.codecogs.com/eqnedit.php?latex=m#0
https://www.codecogs.com/eqnedit.php?latex=B_%7Bi%2Cj%7D%20%3D%201#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=S%20%5Cin%20%5B0%2C1%5D%5E%7Bn%20%5Ctimes%20m%7D#0
https://www.codecogs.com/eqnedit.php?latex=S_%7Bi%2Cj%7D#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=j#0

matrix where if cell is truly of cell type ​.

We first define metrics for comparing to . For cell type , we define the number of true positives
(TP), false positives (FP), and false negatives (FN) as:

We then evaluate the classifier’s performance on cell type using precision, recall, and F1-score, which
are defined as

We note that for a given cell, the ground-truth assignments for cell types that are more-specific than the
cell’s most-specific ground-truth cell type are ambiguous since these samples could, in theory, truly be of
a more specific cell type than they are labelled with (e.g., a cell labelled as a T cell could be a CD8+ T cell
even if it isn’t annotated as such). Thus, when computing the aforementioned metrics for a given cell type
within these single cell datasets, we exclude those cells that are labelled most-specifically as an ancestor
of the cell type. For example, for metrics calculated for CD8+ T cells, we would exclude from the
calculations those cells that are most-specifically labelled as T cells.

References

Clough, Emily, and Tanya Barrett. 2016. “The Gene Expression Omnibus Database.” ​Methods in
Molecular Biology ​ 1418: 93–110.

Fan, Rong-En, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. 2008. “LIBLINEAR: A
Library for Large Linear Classification, Journal of Machine Learning Research.” ​Journal of Machine
Learning Research: JMLR​ 9: 1871–74.

Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, et al. 2011. “Scikit-Learn: Machine Learning in Python.” ​Journal of Machine
Learning Research: JMLR​ 12: 2825–30.

Virtanen, Pauli, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, et al. 2020. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python.” ​Nature Methods​ 17 (3): 261–72.

https://www.codecogs.com/eqnedit.php?latex=T%20%5Cin%20%5C%7B0%2C1%5C%7D%5E%7Bn%20%5Ctimes%20m%7D#0
https://www.codecogs.com/eqnedit.php?latex=T_%7Bi%2Cj%7D%20%3D%201#0
https://www.codecogs.com/eqnedit.php?latex=i#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=B#0
https://www.codecogs.com/eqnedit.php?latex=T#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=TP%20%3A%3D%20%7C%5C%7Bi%20%5Cmid%20T_%7Bi%2Cj%7D%20%3D%201%20%5Cwedge%20B_%7Bi%2Cj%7D%3D1%5C%7D%7C#0
https://www.codecogs.com/eqnedit.php?latex=FP%20%3A%3D%20%7C%5C%7Bi%20%5Cmid%20T_%7Bi%2Cj%7D%3D0%20%5Cwedge%20B_%7Bi%2Cj%7D%20%3D%201%20%5C%7D%7C#0
https://www.codecogs.com/eqnedit.php?latex=FN%20%3A%3D%20%7C%5C%7Bi%20%5Cmid%20T_%7Bt%2Cj%7D%20%3D%201%20%5Cwedge%20B_%7Bi%2Cj%7D%20%3D%200%5C%7D%7C#0
https://www.codecogs.com/eqnedit.php?latex=j#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7Bprecision%7D%20%3A%3D%20%5Cfrac%7BTP%7D%7BTP%20%2B%20FP%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7Brecall%7D%20%3A%3D%20%5Cfrac%7BTP%7D%7BTP%20%2B%20FN%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Ctext%7BF1-score%7D%20%3A%3D%20%5Cfrac%7B2%20*%20%5Ctext%7Bprecision%7D%20*%20%5Ctext%7Brecall%7D%7D%7B%5Ctext%7Bprecision%7D%20%2B%20%5Ctext%7Brecall%7D%7D#0
http://paperpile.com/b/d6I1q8/Atktd
http://paperpile.com/b/d6I1q8/Atktd
http://paperpile.com/b/d6I1q8/Atktd
http://paperpile.com/b/d6I1q8/Atktd
http://paperpile.com/b/d6I1q8/gXpFn
http://paperpile.com/b/d6I1q8/gXpFn
http://paperpile.com/b/d6I1q8/gXpFn
http://paperpile.com/b/d6I1q8/gXpFn
http://paperpile.com/b/d6I1q8/gXpFn
http://paperpile.com/b/d6I1q8/4X7zC
http://paperpile.com/b/d6I1q8/4X7zC
http://paperpile.com/b/d6I1q8/4X7zC
http://paperpile.com/b/d6I1q8/4X7zC
http://paperpile.com/b/d6I1q8/4X7zC
http://paperpile.com/b/d6I1q8/8kGLN
http://paperpile.com/b/d6I1q8/8kGLN
http://paperpile.com/b/d6I1q8/8kGLN
http://paperpile.com/b/d6I1q8/8kGLN
http://paperpile.com/b/d6I1q8/8kGLN

	ISCI101913_proof_v24i1.pdf
	CellO: comprehensive and hierarchical cell type classification of human cells with the Cell Ontology
	Introduction
	Results
	A comprehensive curated RNA-seq data set of human primary cells
	Applications of hierarchical classification methods
	Comparison to existing methods
	Inspection of performance on challenging and diseased samples
	Evaluation of robustness to clustering
	User-friendly software
	Interpretability of models

	Discussion
	Limitations of the study
	Resource availability
	Lead contact
	Data and code availability
	Materials availability

	Methods
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References

