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Clear cell renal cell carcinoma (ccRCC) is a heterogeneous disease that is

associated with poor prognosis. Recent works have revealed the significant

roles of miRNA in ccRCC initiation and progression. Comprehensive

characterization of ccRCC based on the prognostic miRNAs would

contribute to clinicians’ early detection and targeted treatment. Here, we

performed unsupervised clustering using TCGA-retrieved prognostic miRNAs

expression profiles. Two ccRCC subtypes were identified after assessing

principal component analysis (PCA), t-distributed stochastic neighbor

embedding (t-SNE), and consensus heatmaps. We found that the two

subtypes are associated with distinct clinical features, overall survivals, and

molecular characteristics. C1 cluster enriched patients in relatively early stage

and have better prognosis while patients in C2 cluster have poor prognosis with

relatively advanced state. Mechanistically, we found the differentially expressed

genes (DEGs) between the indicated subgroups dominantly enriched in

biological processes related to transmembrane transport activity. In addition,

we also revealed amiRNA-centeredDEGs regulatory network, which severed as

essential regulators in both transmembrane transport activity control and

ccRCC progression. Together, our work described the molecular

heterogeneity among ccRCC cancers, provided potential targets served as

effective biomarkers for ccRCC diagnosis and prognosis, and paved avenues

to better understand miRNA-directed regulatory network in ccRCC

progression.
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Introduction

Renal cell carcinoma (RCC) is among the top ten most

commonly diagnosed cancers worldwide (Sung et al., 2021).

Clear cell renal cell carcinoma (ccRCC) is the predominant

histology type of RCC, representing 70–80% RCC cases with

an estimation of 360,000 new cases and 150,000 deaths

worldwide in 2020 (Sung et al., 2021). Although ccRCC is

potentially curable by surgical or ablative strategies in its early

stage, up to a third of cases diagnosed in advanced stages with

or develop metastases due to the lack of clinical manifestations

in its early stages. In contrast to patients in early stages, the

prognosis for patients with the advanced ccRCC state is poor

(Jonasch et al., 2021). Targeted therapy is currently the first-

line treatment for such cases. This involves the use of tyrosine

kinase inhibitors (TKIs), TOR inhibitors, monoclonal

antibodies to vascular endothelial growth factor (VEGF)

and immune checkpoint inhibitors (ICIs) (Braga et al.,

2021; Mori et al., 2021). Unfortunately, not all patients are

susceptible to those therapy, and over time, the targeted

therapy and the use of checkpoint inhibitors can develop

resistance (Jenkins et al., 2018; Rosenzweig 2018).

Therefore, it is urgent to discover novel level of biomarkers

for early diagnosis and provide potential targets to facilitate

the efficiency of targeted therapy.

One of the recently discovered levels of regulation is the

action of microRNAs (miRNAs), which are a class of small

endogenous non-coding RNA of 19–22 nucleotides

(Marchioni et al., 2021; Tito et al., 2021). Through regulated

numerous targeted functional gene products, miRNAs are

involved in many aspects of cancer development (Mendell

and Olson 2012). Recent literatures reported that the

alteration of miRNA was closely linked with ccRCC

tumorigenesis and recurrence and highlighted that these

miRNAs expression level in ccRCC tissue provide diagnostic

and prognostic information (Hildebrandt et al., 2010; Gebauer

et al., 2013;Wotschofsky et al., 2013; Fu et al., 2014; Samaan et al.,

2015; Shu et al., 2017; Zhang et al., 2018; Saleeb et al., 2019). In

addition, miRNAs are also circulating in blood and they are

characterized by a remarkable stability against degradation by

RNases, pH changes, and freeze/thawing, which makes miRNA

became an important matter for biomarker researchers (Chen

et al., 2008; Heinemann et al., 2018).

Given the important role of miRNA in ccRCC diagnosis

and prognosis, we systematically investigated the molecular

heterogeneity of ccRCC based on prognosis-related miRNA

expression in the present study. We identified two subtypes

with distinct molecular and clinical characteristics and

revealed the potential regulatory network responsible for

the differences. These results would lay a foundation for

better understanding of ccRCC’s pathogenesis and

provide alternative choices for early diagnosis and targeted

therapy.

Materials and methods

Data download and preprocessing

The miRNA-sequence data (isoform expression

quantification) were obtained from the Cancer Genome Atlas

(TCGA, https://portal.gdc.cancer.gov/) database. Firstly, the

miRNAs with missing values of more than 20% in all samples

were removed. Subsequently, we retrieved the information of

mature miRNA corresponding to the miMAT accession numbr

using the R package miRBaseVersions.db (Haunsberger,

Connolly, and Prehn 2017). The RNA-sequence data

(fragments per kilobase of exon model per million mapped,

FPKM), copy number variation (gene-level), clinical

information and phenotype information of ccRCC patients

were downloaded from the UCSC Xena website (http://xena.

ucsc.edu/). The miRNA-array data and the related clinical

information were obtained from GSE131959 in Gene

Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/

) database. The RNA-sequence data of RCC patients were

downloaded from the ICGC (https://dcc.icgc.org/) database.

Survival analysis and subtyping

Univariate Cox regression analysis was used to identify

prognosis-related miRNAs. Variables with p value <0.01 in

univariate Cox were further used for multivariate Cox

regression analysis to determine whether they could function

as independent prognostic factors along with the clinical factors

(including age, gender, tumor stage and tumor grade). The

hazard ratios (HRs) with 95% confidence intervals (CI) and

log-rank p values were also computed. These results were

obtained from the survival R package and visualized by the

ggplot2 R package.

Consensus clustering (the “ConsensusClusterPlus” package

in R) (Wilkerson and Hayes 2010) was performed to determine

the optimal number of which independent prognosis related

miRNAs based ccRCC subtypes. The principal component

analysis (PCA) and t-distributed stochastic neighbor

embedding (t-SNE) analysis (the “Rtsne” package in R) (Van

Der Maaten 2014) were applied to verify the classification

between Cluster 1 and Cluster 2. Then Kaplan–Meier survival

analysis was performed to estimate the survival difference

between these two clusters by using the survival and

survminer R packages.

Clinical and molecular characteristics
identification of the indicated subgroups

The proportions of different clinical factors in the subgroups

of ccRCC were statistically analyzed and visualized by
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ggplot2 R package. The differentially expressed genes (DEGs)

between the two clusters were screened out by the limma R

package (Schober, Boer, and Schwarte 2018) with the criteria of |

log2 (fold change)| > 1 and adjusted p value <0.05.

Functional enrichment analysis

The Gene Ontology (GO) was performed by limma and

clusterProfiler R packages (Yu et al., 2012). GOplot R package

was used to display the result of the functional enrichment

analysis.

Targets prediction of the DEipr-miRNAs

The differential expressed ipr-miRNAs (DEipr-miRNAs)

between the two subgroups were screened out by the limma R

package with the criteria of |log2 (fold change)| > 1 and adjusted

p value <0.05. The target genes of DEipr-miRNAs were predicted

using TargetScan (http://www.targetscan.org/), miRDB (http://

www.mirdb.org/) and miRWalk (http://mirwalk.umm.uni-

heidelberg.de/). The overlapped target genes were obtained by

using the Venn diagram by the venn R package. According to

DEGs between the two subgroups, we constructed regulatory

networks of the DEipr-miRNAs and their targeted DEGs by

using Cytoscape software (Saito et al., 2012).

Identification of the prognostic DEipr-
miRNAs-regulated DEGs

Firstly, the subcellular localization of DEipr-miRNAs-

targeted DEGs’ mRNA were searched and recorded in

RNALocate database (https://www.rna-society.org/rnalocate/).

Then, we conduct statistical analysis of the subcellular

distribution. According to the canonical function of miRNAs

in cytoplasm, we focused on the cytosolic DEGs and screened out

the DEipr-miRNAs-targeted DEGs which were expressed in an

opposite direction to DEipr-miRNAs as the DEipr-miRNAs-

regulated DEGs. Finally, univariate and multivariate cox

regression analyses (p value <0.01) were used to determine the

prognosis of DEipr-miRNAs-regulated DEGs in ccRCC patients.

Expression, subcellular localization, and
clinical validation of DEipr-miRNAs-
regulated ipr-DEGs

The copy number variation (CNV) data were downloaded

from UCSC Xena database to calculate the percentage of the

indicated DEipr-miRNAs-regulated ipr-DEGs gain and loss in

the total number of ccRCC patients, which indicated the gene

level changes of the aforementioned ipr-DEGs. The RNA-

sequence data were downloaded from TCGA and ICGC.

Differential expression analysis was conducted and the

screening standard (|log2 (fold change)| > 1 and adjusted p

value <0.05) were set to validate the expression of the

indicated DEipr-miRNAs-regulated ipr-DEGs in ccRCC and

RCC normal and tumor samples in RNA level. The

immunohistochemical data of the indicated DEipr-miRNAs-

regulated ipr-DEGs were downloaded from the Human

Protein Atlas database (HPA, https://www.proteinatlas.org/)

(Digre and Lindskog 2021) to determine their expression in

protein level. The immunofluorescence data of the indicated

DEipr-miRNAs-regulated ipr-DEGs were downloaded from

HPA database to represent their subcellular localization.

Kaplan Meier-plotter method was performed to validate the

relationship between the indicated DEipr-miRNAs-regulated

ipr-DEGs and overall survival (OS) of TCGA-retrieved ccRCC

patients.

Results

Identification of the independent
prognosis-related miRNAs in clear cell
renal cell carcinoma

To systematically investigate the role of miRNAs in ccRCC,

we conducted a set of analyses. The study design was illustrated

in Supplementary Figure S1. We downloaded the miRNA-seq

and clinical datasets from TCGA, including 506 tumor tissues.

To better understand the prognostic value of miRNAs in ccRCC,

we used univariate Cox regression (Figure 1A and

Supplementary Table S1) and multivariate cox regression

analysis (Figure 1B and Supplementary Table S2) to analyze

survival according to the expression of the associated miRNAs in

ccRCC samples from the TCGA database. The results identified

45 most significant miRNAs influencing overall survival (OS) of

TCGA-retrieved ccRCC patients, with either being a protective

factor (hazard ratio, HR < 1) or being an adverse factor (hazard

ratio, HR > 1). These miRNAs were named as independent

prognosis-related miRNA (ipr-miRNA) in the present study.

Clustering by ipr-miRNAs for clear cell
renal cell carcinoma

Subsequently, based on the transcriptomic patterns of the

ipr-miRNAs, we employed the k-means of unsupervised

consensus clustering to classify TCGA-retrieved ccRCC

patients. K = 2 was then selected as the optimal cluster

number after a comprehensive consideration (Figure 1C,

Supplementary Figure S2, and Supplementary Table S3). As

shown in Figure 1C, when k = 2, ccRCC patients were
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FIGURE 1
Consensus clustering based on the independent prognosis-related miRNAs for ccRCC. (A) Univariate cox regression analysis to identify the
prognosis-relatedmiRNAs (pr-miRNAs) in ccRCC. (B)Multivariate cox regression analysis to identify the independent prognosis-relatedmiRNAs (ipr-
miRNAs) in ccRCC. (C) Consensus matrix heatmap when k = 2. Related to Supplementary Figure S2. (D) Principal component analysis (PCA) for the
TCGA-retrieved ccRCC patients, each dot represents a single sample. (E) T-distributed stochastic neighbor embedding (t-SNE) analysis for the
TCGA-retrieved ccRCCpatients, each dot represents a single sample. (F) Kaplan-Meier plot analysis for the indicated TCGA-retrieved ccRCCpatients
distributed in Cluster1 (C1) and Cluster2 (C2).
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classified into 2 subgroups, that is, the C1 and C2 subgroups,

which had clear boundaries, suggesting a stable and reliable

clustering for the ccRCC patients. Then, the principal

component analysis (PCA) and t-distributed stochastic

neighbor embedding (t-SNE) analysis were further applied to

validate the assignments of the two subtypes, and the results from

both methods showed that samples in one subgroup were closer

to each other than those in the other subgroup, which suggests

the two-dimensional PCA, t-SNE distribution and the two

subtypes had similar consistency (Figures 1D,E). To further

explore the clinical significance of ccRCC subgroups, we

mapped the TCGA-retrieved ccRCC patients to corresponding

subgroups and found the survival time between different

subgroups showed dramatic difference (Figure 1F). The

survival curve revealed that C1 had a dramatically better

survival outcome when compared to C2 in overall survival

(p-value < 0.001) (Figure 1F).

To validate the role of ipr-miRNAs in stratifying ccRCC

subgroups, we also employed the k-means of unsupervised

consensus clustering to classify an independent GEO-retrieved

ccRCC patients (GSE131959) based on the expression of ipr-

miRNAs. As shown in Supplementary Figure S3A, GEO-

retrieved ccRCC patients were also divided into two

subgroups with relatively clear boundaries. When we mapped

the GEO-retrieved ccRCC patients to corresponding subgroups,

we also found a dramatic discrepancy of survival time between

FIGURE 2
Clinical and molecular differences between the C1 and C2 subgroups. (A) Comparison of the clinical characteristics between the indicated
subgroups of ccRCC. (B) Heatmap shows the differentially expressed genes (DEGs) between the indicated subgroups of ccRCC. (C) Functional
enrichment of the DEGs.
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different subgroups (Supplementary Figure S3B). Together, these

results suggested the stable and reliable clustering for the ccRCC

patients based on the ipr-miRNAs in both train and validation

cohorts from TCGA and GEO datasets.

C1 and C2 subgroups have distinct clinical
characteristics and molecular landscapes

To further figure out the differences between C1 and

C2 subgroups, we investigated the clinical characteristics

between the indicated subgroups. We compared the clinical

events (age, gender, tumor stage, tumor grade) between the

indicated subgroups and found dramatic discrepancies in

tumor stage and tumor grade, other than the age and gender,

between C1 and C2 subgroups (Figure 2A). The results that

patients in C1 subgroup have relatively lower tumor grade and

stage not only explained why patients in this subgroup have

higher survival probability than patients in C2 subgroup, but also

validated the separative capability of the developed stratified

system based on the ipr-miRNAs.

Samples derived from different cancer subtypes are often

characterized with various molecular features. Thus, we also

investigated the molecular differences between the C1 and

C2 subgroups (Figures 2B,C). We found a total of

1,650 differentially expressed genes (DEGs), which consist of

1,510 up-regulated and 140 down-regulated genes, between the

indicated two subgroups (Figure 2B and Supplementary Table

S4). To further examine the biological discrepancies between the

indicated two subgroups, functional enrichment analysis was also

performed on these DEGs. Consequently, our analysis revealed

multiple biological processes that these two subgroups are

different, including “metal ion transmembrane transporter

activity”, “sodium ion transmembrane transporter activity”,

“passive transmembrane transporter activity”, “channel

activity”, and “gated channel activity” etc. (Figure 2C). Recent

works have demonstrated that cell transmembrane transport

activity played vital roles in ccRCC cell survival, which

indicated the distinct transmembrane transport activity might

be the potential underlying mechanisms account for the dramatic

difference in survival between C1 and C2 subgroups (Selvakumar

et al., 2014; Liu Y et al., 2015; He and Yang 2019).

Previously, unsupervised cluster analyses of whole genome

mRNA expression data have revealed distinct molecular subtypes

of ccRCC and the subtypes have been validated being prognostic

for clinical outcomes (Brannon et al., 2010; Cancer Genome Atlas

Research 2013; Beuselinck et al., 2015; Verbiest et al., 2018). To

systematically examine the ccRCC transcriptomic subgroups, we

also analyzed the expression profile of independent prognosis-

related mRNAs (ipr-mRNAs) across the TCGA-retrieved

ccRCCs (Supplementary Table S5). The ipr-mRNAs were then

adopted to perform the unsupervised consensus clustering.

Similar with the miRNA-derived subgroups, the consensus

clustering also showed the optimal performance at K = 2,

where ccRCCs were classified into 2 subgroups (C1′ and C2′)
(Supplementary Figure S4A). When we mapped the TCGA-

retrieved ccRCC patients to corresponding subgroups, we

found C1′ had a dramatically better survival outcome

compared to C2′ in overall survival (Supplementary Figure

S4B). In line with the overall survival rate, patients in C1′
subgroup have relatively lower tumor grade and stage

(Supplementary Figure S4C). Notably, when we performed the

functional enrichment analysis to enrich the differently

expressed mRNA genes between the C1′ and C2′ subgroups,
our results also showed these differently expressed mRNA genes

were enriched in multiple transmembrane transport related

biological processes (Supplementary Figures S4D,E). These

results not only revealed the close association between miRNA

and mRNA expression patterns in ccRCC patients but also again

suggested the important roles of transmembrane transport in

ccRCC progression. In addition, when we compared the detailed

clinical characteristics of miRNA-derived subgroups and

mRNA-derived subgroups, we found miRNA-derived

subgroups have relatively better stratified ability than mRNA-

derived subgroups as ccRCC patients which specifically enriched

in C1 subgroup have relatively lower tumor stage and grade than

in C1′ subgroup while patients specifically enriched in

C2 subgroup have relatively higher tumor stage and grade

than C2’ subgroup (Supplementary Figures S5A–D).

Ipr-miRNAs play regulatory roles in
transmembrane transport

Recent works have shown the transmembrane transport

of ion, sodium and other subjects regulate a myriad of tumor-

related biological processes. Across various types of cancer,

the ion, sodium, etc., channel protein expression and activity

are often dysregulated, offering value in stratifying risk and

determining the treatment plan (Hu et al., 2021; Fan and

Huang 2022). Considering miRNAs play important roles in

regulating gene expression, and their dysregulation is closely

correlated with cancer initiation and development (He et al.,

2020). Thus, in order to understand the role of ipr-miRNAs in

the aforementioned biological processes, we started to

investigate the interplay between dysregulated miRNAs

and the dysregulated genes. Firstly, we investigated the

differently expressed miRNAs between C1 and

C2 subgroups. A total of 13 miRNAs were identified,

which consist of 9 up-regulated and 4 down-regulated

miRNAs (Figure 3A). And the Kaplan-Meier analyses

validated that the expression of these miRNAs were

significantly correlated with patient survivals

(Supplementary Figure S6). These miRNAs were named as

differently expressed independent prognosis-related miRNAs

(DEipr-miRNAs).
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FIGURE 3
Identification of the prognostic DEipr-miRNAs-regulated DEGs. (A) Heatmap shows the differential expressed ipr-miRNAs (DEipr-miRNAs)
between the indicated subgroups of ccRCC. (B) Regulatory networks of the DEipr-miRNAs and their targetedDEGs. (C) Functional enrichment of the
DEipr-miRNAs-targeted DEGs. (D) Univariate cox regression analysis to identify the prognosis-related DEGs (pr-DEGs). (E) Multivariate cox
regression analysis to identify the independent prognosis-related DEGs (ipr-DEGs). (F) Regulatory networks of the DEipr-miRNAs and reversely
expressed ipr-DEGs.
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Next, to find whether DEipr-miRNAs regulated the

expression of the aformentioned DEGs, we predicted the

DEipr-miRNA targeted genes by multiple bioinformatic tools

and searched if the targeted genes were included in the DEGs list.

The TargetScan (http://www.targetscan.org/), miRDB (http://

www.mirdb.org/), and miRWalk (http://mirwalk.umm.uni-

heidelberg.de/) were used for predicting DEipr-miRNA target

genes (Supplementary Figure S7 and Supplementary Table S6).

As a result, we found 106 targeted DEGs totally. The network of

DEipr-miRNAs and their targeted DEGs are shown in Figure 3B

and Supplementary Table S7. Then, to investigated the role of

DEipr-miRNAs-targeted DEGs, we performed the functional

enrichment analysis. Consequently, our analysis revealed

multiple biological processes including “voltage-gated sodium

channel activity”, “sodium ion transmembrane transporter

activity”, “metal ion transmembrane transporter activity”,

“growth factor receptor binding”, and “sodium channel

activity” (Figure 3C). The gene ontology results again

enriched in the biological processes of transmembrane

transport activities suggests DEipr-miRNAs-targeted DEGs

mainly functioned in the related biological processes and

DEipr-miRNAs might play roles in transmembrane transport

activity regulatory network through DEipr-miRNAs-

targeted DEGs.

Identification of prognostic DEipr-
miRNAs-regulated DEGs

The canonical role of miRNAs is to initiate decay or block

translation of specific target mRNAs and thus negatively

regulated targeted gene expression in the cytoplasm (Hill and

Tran 2021). For the aforementioned DEipr-miRNAs-targeted

DEGs, we also investigated their mRNAs’ subcellular

localization. According to the annotation in RNALocate

database (https://www.rna-society.org/rnalocate/) (Cui et al.,

2022), we found above 95% mRNAs of DEipr-miRNAs-

targeted DEGs (101/106, some of them spread in more than

one subcellular fraction including membrane, cytosolic, and

nuclear fraction) were localized in cytosolic fraction

(Supplementary Figure S8, Supplementary Table S8). Thus, to

reveal the DEipr-miRNAs-regulated DEGs, we screened out the

DEGs which were expressed in an opposite direction to DEipr-

miRNAs (Supplementary Table S9).

To better understand the prognostic value of above identified

reversely expressed DEGs in ccRCC, we performed univariate

cox regression andmultivariate cox regression analysis to analyze

survival according to the expression of the indicated DEGs in

ccRCC samples from the TCGA database. The results identified

17 independent prognosis-related DEGs (ipr-DEGs), including

LYPD6, ONECUT2, G6PC, EREG, NAV3, SLC13A1, TRIM10,

TFAP2A, SLC6A19, GJB6, DOCK3, DRP2, COL11A1, EPGN,

NTNG1, PEX5L, and KIF5A (Figures 3D,E and Supplementary

Table S10, Supplementary Table S11). The regulatory network of

DEipr-miRNAs and ipr-DEGs were illustrated in the Figure 3F.

Subcellular localization, expression,
clinical features, and KEGG enrichment of
ipr-DEGs

Although the subcellular localization and expression patterns

of ipr-DEGs at the mRNA levels have been studied, information

on the localization and expression of ipr-DEGs at the protein

levels remains to be elucidated. Therefore, the

immunofluorescence (IF) and immunohistochemistry (IHC)

analysis to further identify the expression and subcellular

distribution of ipr-DEGs were performed by using the data

from Human Protein Atlas database (HPA, https://www.

proteinatlas.org/) (Digre and Lindskog 2021). As shown in

Supplementary Figure S9, most of the ipr-DEGs (DRP2,

EPGN, KIF5A, NAV3, NTNG, ONECUT2 and ALKBH5)

showed strong cytoplasmic staining as well as relative weak

nuclear staining. Specifically, some proteins (COL11A1,

DOCK3, EREG, GJB6, LYPD6) were detected only in the

cytoplasm, while TFAP2A signals were found only in the nucleus.

To determine the differentially protein expression of ipr-

DEGs, IHC staining images for the ipr-DEGs proteins in ccRCC

tissues as well as normal renal tissues were obtained from the

HPA database. The results showed that the protein expression

levels of DOCK3, G6PC, KIF5A, LYPD6, NAV3, PEX5L,

SLC13A1, SLC6A19, and TFAP2A were higher in normal

renal tissues than that in ccRCC tissues, while the protein

expression levels of ONECUT2 and TRIM10 were not

detected (Figure 4). The rest of proteins, including COL11A1,

DRP2, EPGN, EREG, GJB6, and NTNG1 were not available in

HPA database. Consistent with the above results, transcriptional

results from TCGA and ICGC databases showed that DOCK3,

KIF5A, LYPD6, PEX5L, SLC13A1, SLC6A19, and TFAP2A were

dramatically down-regulated in ccRCC and RCC tumor samples

than normal samples (Supplementary Figures S10A,B).

Interestingly, we also investigated the copy number variations

of the indicated genes in ccRCC tumor and normal samples. The

copy number variations resulted from TCGA revealed that little

changes in the DNA levels were happened for the ipr-DEGs

excluding DOCK3 (Supplementary Figure S10C). Together,

these results indicated that the downregulation of

DOCK3 might occurred in the gene levels, while the

downregulation of KIF5A, LYPD6, PEX5L, SLC13A1,

SLC6A19, and TFAP2A might occurred in the post-

transcriptional levels directed by DEipr-miRNAs.

We further validated the correlation between the

expression of ipr-DEGs and overall survivals in ccRCC to

explore the clinical significance of ipr-DEGs’ expression. As

shown in Supplementary Figure S11, Kaplan-Meier analyses

revealed that, except LYPD6 and EPGN, the expression of ipr-
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DEGs were all significantly correlated with ccRCC patient

survivals.

To further investigate the detailed functional mechanisms

of the identified ipr-DEGs, we uploaded the indicated ipr-

DEGs to the online tool KEGG pathway analysis (https://www.

genome.jp/kegg/tool/map_pathway2.html). KEGG analysis

enriched SLC13A1, SLC6A19, and PEX5L in cellular

biosynthesis and metabolism related pathways through

regulating the transportation of Na+, amino acid, and

proteins. TFAP2A and KIF5A were enriched in endocytosis

processes of multiple cell growth factors (Supplementary

Figure S12A). Cellular biosynthesis, metabolism, and the

function of growth factor are widely recognized as

important regulators of ccRCC tumor proliferation and

survival (Wettersten et al., 2017; Jonasch et al., 2021). Thus,

the enrichment of KIF5A, PEX5L, SLC13A1, SLC6A19, and

TFAP2A in the aforementioned pathways indicates these ipr-

DEGs are functioned through regulating the activity of

transmembrane transport, biosynthesis, metabolism, and

endosome and peroxisome systems to regulate the

development of ccRCC and the dysregulation of these ipr-

miRNAs regulated ipr-DEGs drives the generation of ccRCC

samples with distinct clinical and biological characteristics

(Supplementary Figure S12B). Together, these results

revealed an ipr-miRNA centered ipr-DEGs regulatory

network involved in ccRCC prognosis.

FIGURE 4
Validation of the expression of DEipr-miRNAs-regulated ipr-DEGs. (A–K) The protein expressions of indicated DEipr-miRNAs-regulated ipr-
DEGs in ccRCC tumor and normal tissues using clinical specimens from the Human Protein Profiles.
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Discussion

The Consensus Molecular Subtypes (CMSs) have implications

for our understanding of tumor heterogeneity and the prognosis of

patients (Guo et al., 2021; Zhong et al., 2021). So far, the classification

has been widely based on the use of messenger RNAs (mRNAs),

although miRNAs have been shown to play vital roles in tumor

heterogeneity and biological differences between CMSs (Lu et al.,

2005; Adam et al., 2022). In contrast to mRNAs, miRNAs have a

smaller size and increased stability, facilitating their detection and

thus became an important matter for biomarker researchers. In the

present study, we collected 506 TCGA-retrieved ccRCC patients and

presented a comprehensive transcriptomic and clinical-related

analysis of miRNAs. The ccRCC patients were classified into two

subgroups (C1 and C2) exhibiting different biological properties

based on transcriptomic prognosis-related miRNA profiling. The

patients in C1 subgroup are characterized with relatively lower

tumor stage, grade, and a better overall survival while the patients in

C2 subgroup are characterized with relatively higher tumor stage,

grade, and a poor overall survival.

In addition to the clinical differences between the C1 and

C2 subgroups, we also found discriminating features in the

expression of genes, which were further enriched in the biological

processes related to transmembrane transporter activities for transport

ion, sodium, and other subjects. Cell membrane transport function

plays vital roles in many aspects of tumorigenesis. For example, our

previous work delineated that regulating the transport of H+ through

carbonic anhydraseⅨwould dramatically affect the proliferation and

metastasis of tongue squamous carcinomas (Shen et al., 2021).

Selvakumar P et al. found that knockdown of the von Hippel-

Lindau (VHL) tumor suppressor gene in renal cell carcinoma

(RCC) cell lines would disturb the expression of Na+ and K+

transported proteins which is associated with RCC initiation and

progression (Selvakumar et al., 2014).WuYY et al. showed the activity

of ligand-gated Ca2+ channel was significantly associated with

primary human RCC Fuhrman grades and histopathological

subtypes (Wu et al., 2018). These reports not only supported the

close relationship of transmembrane transporter activities with ccRCC

initiation andprogression, but also indicated the important roles of the

transmembrane transporter activities in regulating different ccRCC

subtypes.

Across various types of cancer, the ion, sodium, etc., channel

protein expression and activity are often dysregulated and offered

value in stratifying risk and determining the treatment plan (Hu et al.,

2021; Fan and Huang 2022). In the present study, we identified and

validated the regulation of KIF5A, PEX5L, SLC13A1, SLC6A19, and

TFAP2A were occurred in the post-transcriptional levels directed by

DEipr-miRNAs. Among these validated ipr-DEGs, KIF5A is reported

to regulate the transport of endosomal vesicles and control autophagic

flux, which might regulate renal tumorigenesis through mediating

HIF2α degradation (Schmidt et al., 2009; Liu X et al., 2015; Liu et al.,

2021). PEX5L, also named as TRIP8b, is suggested to function in

vesicle transport in mouse pituitary tumor AtT20 cells (Chen et al.,

2001). Genetic variation of PEX5L is closely related to the function of

peroxisomes and non-small cell lung cancer survival (Chen et al.,

2022). SLC13A1 and SLC6A19 are identified as typical and novel

renal amino acid cotransporter which imports a broad range of

neutral amino acids, ion, andNa+ (Verrey et al., 2005; Markovich and

Aronson 2007). The dysregulation of SLC13A1 and SLC6A19 are

reported to affect various type of tumor progression including ccRCC

(Horinouchi et al., 2010; Bogatikov et al., 2012; Choudhury et al.,

2015). TFAP2A served as typical epigenetic marker for ccRCC and

regulates potassium (K+) channel tetramerization domain containing

15a and 15b (Kctd15a and 15b) (Dalgin et al., 2008; Chambers et al.,

2020). The interplay between TFAP2A andmiRNAs canmanifest the

survival of ccRCCpatients (Qin et al., 2019). The involvement of these

ipr-DEGs in transmembrane transporter regulation is closely

associated with tumorigenesis and progression, which support the

undiscovered functions in transmembrane transporter and tumor-

related roles of their upstream regulators DEipr-miRNAs in ccRCC.

miRNAs are small nucleotides with wide regulatory

functions including initiating decay or blocking translation of

specific target mRNAs. Thus, we investigated the correlation of

the dysregulated prognostic miRNAs (DEipr-miRNAs) and the

aforementioned ipr-DEGs. After targeting prediction, regulatory

network analysis, hub module investigation (including CNV,

expression, and subcellular localization analysis), and prognostic

validation, we eventually found miR-2115–5p, miR-200c-5p,

miR-106a-5p, miR-466, and miR-222–5p are the upstream

regulators of the aforementioned ipr-DEGs. Among these

miRNAs, miR-106a-5p has been proved to be a tumor

suppressor by targeting VEGFA in RCC (Ma et al., 2020). In

our analysis, we also found miR-106a-5p is highly expressed in

C1 subgroup, which have relatively lower tumor grade, stage, and

survival probability. miR-222–5p has been reported to highly

expressed in ccRCC tumor cells and repress the express of

TRIM2 and thus promote the progression and prognosis of

metastatic ccRCC (Wei et al., 2020). Correspondingly, in our

study, we found miR-222–5p is highly expressed in C2 subgroup,

which have relatively higher tumor grade, stage, and survival

probability. Although the other miRNAs have not been

investigated in ccRCC yet, previous studies have reported that

the expression of miR-200c-5p (Li et al., 2017) and miR-466

(Colden et al., 2017) were associated with tumorigenesis and

progression in various tumor types, which support their further

identification and exploring in ccRCC. For miR-2115–5p,

although there has been no direct evidence demonstrating that

miR-2115–5p plays a role in tumor progression yet, our results

implicate the potential relevance of miR-2115–5p in ccRCC.

The classification based on prognostic miRNA expressions in

our study will be helpful for biological function, pre-clinical

precision meditation and target-therapy research. The patients

from different subgroups showed distinct molecular landscapes

and clinical outcomes, which suggests potential strategies of more

efficient clinical management for patients in different subgroups.

Covering more ccRCCs in the future works will offer a relatively
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more comprehensive characterization. In addition, further efforts

are needed to validate the role of aforementioned miRNAs in

regulating the predicted pathways and ccRCC progression in the

future works. Up to date, our study provided a comprehensive

picture of molecular alterations in ccRCC from the aspect of

miRNA, which contributes much to the understanding of

ccRCC. The subgroups based on miRNA expression exhibited

high consistence in both PCA and t-SNE methods, which

indicates that miRNA expression is sufficient to catch the major

biological discrepancies among different subgroups.

Conclusion

In summary, our study recapitulated molecular and clinical

features of clear cell renal cell carcinoma patients through

miRNA transcriptome, unveiled potential targets served as

effective biomarkers in multiple layers, and would accelerate

the development of diagnosis and prognosis for clear cell renal

cell carcinoma patients.
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