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Aim: Our previous study demonstrated miR-122 mimic decreased NOS2 expression
in blood leucocytes and improved stroke outcomes when given immediately after
middle cerebral artery occlusion (MCAO) in rats. Since NOS2 is associated with
neuro-inflammation in stroke and decreasing NOS2 expression alone in leucocytes is
insufficient to improve stroke outcomes, we hypothesized that miR-122 mimic may also
decrease NOS2 expression in brain microvascular endothelial cells (BMVECs) even at
extended time windows.

Methods: We administered PEG-liposome wrapped miR-122 mimic (2.4 mg/kg, i.v.) 0
or 6 h after MCAO, and assessed stroke volume and NOS2 expression in BMVECs 24 h
following MCAO in rats. Luciferase reporter assays were used to determine if miR-122
binds to 3′ untranslated regions (3′UTR) of NOS2.

Results: The data showed that miR-122 mimic decreased infarct volumes and
decreased MCAO-induced NOS2 over-expression in BMVECs. However, miR-122 did
not bind to 3′UTR of NOS2 in the luciferase assays.

Conclusion: The data show the 6-h period of therapeutic efficacy of miR-122 mimic
which could relate to indirect knockdown of NOS2 in both BMVECs and leucocytes.

Keywords: microRNA-122 (miR-122), ischemic stroke, brain microvascular endothelial cells (BMVECs), inducible
nitric oxide synthase (NOS2), 3′ untranslated regions (3′UTR)

INTRODUCTION

Though many compounds improve outcomes in animal stroke models, none have been effective
in human stroke trials (Stroke Therapy Academic Industry Roundtable [Stair], 1999; DeGraba and
Pettigrew, 2000; Richard Green et al., 2003; Young et al., 2007; Grupke et al., 2014), except for r-tPA
(Fagan et al., 1998; Morris et al., 2001; Gropen et al., 2006). These failures have been ascribed in part
to the focus on small molecules that target a single gene, protein, or enzyme. Since ischemic brain
may die via many parallel pathways, blocking just one or two pathways may be ineffective.

MicroRNAs (miRNAs) may circumvent this issue (Schmidt, 2014), because a single miRNA
down-regulates hundreds of gene targets by binding to their 3′ untranslated regions (3′UTR)
(Bartel, 2004, 2009; Betel et al., 2010; Li and Zhang, 2015). Moreover, miRNAs are expressed in
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all cells in blood and in blood vessels, and thus could modulate
leukocytes, platelets, and brain microvascular endothelial cells
(BMVECs) that participate in stroke pathogenesis (Danton and
Dietrich, 2003; Hallenbeck et al., 2005; Jin et al., 2010; Eltzschig
and Eckle, 2011; Iadecola and Anrather, 2011; Macrez et al., 2011;
Gronberg et al., 2013; Jickling et al., 2015; Shi et al., 2016).

MicroRNA-122 is produced in the liver and secreted into
blood (Rivkin et al., 2016). Reduction of miR-122 in blood is
associated with inflammation in several diseases, including stroke
(Bandiera et al., 2015; Liu et al., 2016; Rivkin et al., 2016). We have
shown that intravenous miR-122 mimic increases miR-122 in
blood, and intravenous but not intraventricular miR-122 mimic
improved stroke outcomes (Liu et al., 2016), suggesting miR-122
improves outcomes by acting on blood cells or BMVECs and does
not have to cross the blood brain barrier (BBB).

Aside from miR-122, drugs targeting other miRNAs (e.g., miR-
497, Let 7f, miR-181, miR-15b, miR-133b) can improve stroke
outcome in rodent MCAO models (Yin et al., 2010; Ouyang et al.,
2012; Selvamani et al., 2012; Peng et al., 2013; Shi et al., 2013; Xin
et al., 2013; Chi et al., 2014; Wang et al., 2014; Xu et al., 2014;
Zhao et al., 2014; Liu et al., 2015; Stary et al., 2015). Although
no miRNA drugs are being tested in stroke clinical trials, several
miRNA drugs have advanced to human trials, such as anti-
miR-122 to treat hepatitis C infection, anti-miR-103/107 to treat
diabetes; and miR-16/29/34 mimics to treat cancer (Garzon et al.,
2010; Janssen et al., 2013; Schmidt, 2014; Rupaimoole and Slack,
2017).

NOS2, a key player in the post-ischemic inflammatory
cascade (Dirnagl et al., 1999; Garcia-Bonilla et al., 2014), is
expressed from hours to several days after MCAO in rodents
(Iadecola et al., 1995; Grandati et al., 1997). Inhibiting NOS2
has an extended therapeutic window and induces long-lasting
protection (Iadecola et al., 1995, 1996; Garcia-Bonilla et al.,
2014). Post-ischemic NOS2 is expressed in leukocytes and brain
endothelial cells of rodents and humans (Iadecola et al., 1996;
Nathan, 1997; Forster et al., 1999; Niwa et al., 2001; Garcia-
Bonilla et al., 2014), though decreasing NOS2 expression in
leucocytes alone is insufficient to improve stroke outcomes
(Garcia-Bonilla et al., 2014).

Since we have previously shown that miR-122 mimic decreases
NOS2 expression in blood leucocytes after stroke (Liu et al.,
2016), this study was designed to show that miR-122 mimic also
decreases NOS2 expression in BMVECs. Moreover, we show that
miR-122 does not bind to the 3′UTR of NOS2, suggesting it may
improve stroke outcomes in part by indirect inhibition of NOS2.

MATERIALS AND METHODS

Ischemic Stroke Model
The suture MCAO model was used to produce ischemic stroke
(Liu et al., 2005; Engel et al., 2011) in male Sprague-Dawley rats
(250–300 g) anesthetized with isoflurane. A silicon coated suture
(Doccol Corporation, Sharon, MA, United States) was inserted
into the external carotid artery and advanced up the internal
carotid artery to the origin of the middle cerebral artery (MCA)
to produce a 1.5 h MCAO. Laser Doppler confirmed that blood

flow decreased to <20% of control levels. Following the MCAO,
the suture was removed followed by a 22.5 h reperfusion. Sham
controls had the identical surgery, except that the suture was not
inserted into the MCA. Rats were blindly randomized prior to
surgery to receive either miR-122 mimic or scrambled miRNA
as a control. This study was carried out in accordance with
NIH guidelines. The protocol was approved by the Institutional
Animal Care and Use Committee (IACUC) at University of
California, Davis.

Animal Groups and miRNA Drug
Administration After MCAO
Male Sprague-Dawley rats (n = 24, 250–300 g) were blindly
assigned to four groups (six rats/group). These included sham
operation, three groups of MCAO rats treated with intravenous
(i.v.) scrambled miRNA (2.4 mg/kg) and two i.v. miR-122
mimic groups (2.4 mg/kg, 0 or 6 h MCAO). Scrambled miRNA
or miR-122 mimic were prepared in PEG-liposomes prior to
administration.

The body temperature and blood oxygen saturation were
recorded at −2, 0, 2, 4, and 6 min post MCAO or sham
operations. Statistical differences between the groups were
determined using repeated measures ANOVA followed by
Dunnett’s post hoc test.

Cresyl Violet Staining and Brain
Infarction Measurement
One day after MCAO, rats were perfused with intracardiac
saline followed by 4% paraformaldehyde (PFA). Brain sections
were stained with Cresyl Violet as described previously (Liu
et al., 2016). The infarction volume was measured using Adobe
Photoshop CS6. To account for errors induced by edema, brain
infarction volume was calculated using the Swanson method
(Swanson et al., 1990). Statistical differences were determined
using ANOVA followed by Dunnett’s post hoc test.

Double Labeling of Rat Endothelial Cell
Antigen 1 (RECA-1) and NOS2
Brain sections were incubated with primary antibodies to mouse
anti-RECA-1 (1:500, AbD Serotec, Oxford, United Kingdom),
and to rabbit anti-NOS2 (1:200, Abcam, MA). Secondary
antibodies were species-specific IgG, conjugated to Alexa
594 or 488 (1:5000; Life Technology, CA, United States).
Images were taken by blinded investigators from the ischemic
hemisphere and quantified using ImageJ. An ANOVA followed
by Bonferroni correction for multiple comparisons was used to
assess significance.

3′UTR of NOS2 Clone and Luciferase
Reporter Assay
The rat wild-type NOS2 3′UTR was synthesized and inserted
downstream of a firefly luciferase gene in vector pMirTarget
(OriGene) and luciferase reporter assays performed (Ouyang
et al., 2012). Neuro2a cells (ATCC, CCL-131) were transfected
with 0.5 µgpMirTarget 3′UTR reporter (wild) clones for
miRNA target validation (OriGene). Triplicate experiments were
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FIGURE 1 | MiR-122 mimic (2.4 mg/kg, i.v., given 0 or 6 h after MCAO) maintains vessel caliber RECA-1 immunoreactivity, but prevents NOS2 induction 24 h after
MCAO in rats (A–C, sham; D–F, scramble MCAO; G–I, 0 h data, J–L, 6 h data). For M, ∗P < 0.01, ∗∗P < 0.05 vs. MCAO/Scramble miRNA; ##P < 0.001 vs. Sham.
Scale bar: A–L, 50 µm. n = 6/group.
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FIGURE 2 | MiR-122 mimic has little effects on luciferase activity of wild type
NOS2 3′UTR. Results from triplicate experiments were displayed as a ratio of
firefly/Renilla luciferase activity, expressed as a percentage of the values
obtained in cells treated only with transfection reagents and NOS2 3′UTR
reporter clones. n = 3/group.

performed as a ratio of firefly/Renilla luciferase activity. An
ANOVA with a post hoc Bonferroni (GraphPad Prism 6) was used
to assess significance.

RESULTS

The Protective Effects of miR-122 Mimic
on Brain Infarction After MCAO
The results show that miR-122 mimic, 2.4 mg/kg, i.v., given
at 6 h after MCAO, decreased brain infarction assessed using
cresyl violet staining by ∼56% (∗P < 0.05 vs. MCAO/scramble,
Supplementary Figure S1). Importantly, miR-122 mimic did not
affect body temperature or blood oxygen saturation after MCAO
which could have affected infarct volumes (Supplementary
Table S1). These data suggest that elevating miR-122 in
blood has a ≥6 h therapeutic window for treating ischemic
stroke.

The Inhibitory Effects of miR-122 Mimic
on NOS2 Expression in Brain
Microvascular Endothelial Cells After
MCAO
To examine BMVEC expression of NOS2, brain sections were
double labeled with antibodies to RECA1 and NOS2. As
expected, there was no NOS2 expression in vessels or brain
parenchyma in non-ischemic sham controls (Figures 1A–C).
In scramble miRNA treated MCAO animals, however, NOS2
was markedly induced in BMVECs and brain tissue adjacent
to the damaged brain vessels in the basal ganglia (ischemic
core) 24 h after tMCAO (Figures 1D–F; ##P < 0.01, vs. sham
control, Figure 1M). Intravenous miR-122 mimic, given 0 or
6 h after MCAO, decreased MCAO-induced NOS2 expression
in BMVECs and adjacent brain tissue and maintained the tube
shape of vessels, though some NOS2 was still expressed in
cerebral vessels (Figures 1G–I, 0 h data, Figures 1J–L, 6 h data;
∗P < 0.01, ∗∗P < 0.05 vs. MCAO/Scramble miRNA, Figure 1M).

Failure of miR-122 to Decrease
Luciferase Activity of NOS2 3′UTR Clone
Using the miRanda algorithm1, a comprehensive resource for
miRNA-target predictions, miR-122 was predicted to bind to
a complementary sequence within the 3′UTR of NOS2. Since
the 3′UTR sequence of a gene of interest is cloned downstream
of the firefly luciferase gene, the chimeric transcript level is
regulated by its interaction/binding with miRNA, resulting in
varied luciferase activity quantifiable using a colorimetric assay.
Thus, the 3′UTR of NOS2 luciferase plasmids were cloned to
a luciferase reporter, co-transfected with miR-122 or scrambled
miRNA, and assayed 48hr after transfection into Neuro2a cell
lines. The data showed that miR-122 (100 nM) had no effect
on luciferase activity when the luciferase vector was inserted
with NOS2 3′UTR (Figure 2). Thus, the above results indicate
that miR-122 did not directly bind to the 3′UTR of NOS2, but
indirectly inhibited NOS2.

DISCUSSION

The new findings of this study are that miR-122 mimic
(2.4 mg/kg, i.v.), given 6 h after MCAO, significantly decreased
infarction volume and decreased expression of NOS2 in BMVECs
at 24 h after MCAO in rats. Moreover, we also show that
the knockdown of NOS2 by the miR-122 mimic was indirect
since miR-122 did not bind the NOS2 UTR. These results
complement our previous study that showed miR-122 mimic,
given immediately after MCAO, decreased brain infarction
volume (Liu et al., 2016).

In our previous study we showed miR-122 mimic decreased
NOS2 in leukocytes following MCAO in rats (Liu et al., 2016).
In this study we significantly extend these observations to show
that miR-122 mimic decreased expression of NOS2 in BMVECs
as well. These combined results suggest that intravenous miR-
122 mimic acted on both blood leucocytes and BMVECs from
the luminal sides of vessels, and are consistent with previous
reports that only combined deletion of NOS2 in blood cells
and BMVECs prevents brain injury after ischemic stroke in rats
(Garcia-Bonilla et al., 2014). Since NOS2 is a key player in the
post-ischemic inflammatory cascade, and inhibiting NOS2 has
an extended therapeutic window out to at least 6 h (Iadecola
et al., 1995, 1996; Garcia-Bonilla et al., 2014), it suggests that
miR-122 mimic could have a broad therapeutic window to treat
stroke.

Mechanistic studies of miRNA therapeutics usually include
assessment of miRNA-target genes. The 3′UTR plasmids provide
a convenient solution for quantitative assessment of the
inhibitory effect between a miRNA and its potential target genes
in vitro. Using the luciferase reporter assay, our results showed
that miR-122 failed to bind to 3′UTR of NOS2, indicating miR-
122 mimic inhibited NOS2 indirectly. These results suggest that
miR-122 acted on an unknown intermediary molecule (like
Pla2g2a which is a miR-122 target) which then down-regulated
NOS2. Thus, future studies could determine whether miR-122

1http://www.microrna.org
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mimic downregulated Pla2g2a, which was in turn responsible for
downregulating NOS2 in both leucocytes and blood vessels.

CONCLUSION

The data show miR-122 mimic given at 0 and 6 h improves
stroke outcome possibly by the combined knockdown of NOS2
in BMVECs in the current study and with knockdown of NOS2
in leucocytes in our previous study. However, miR-122 does not
bind to 3′UTR of NOS2, though miR-122 mimic inhibits NOS2
expression. Future studies will be required to determine the target
gene(s) to which miR-122 binds that are responsible for inhibiting
NOS2.
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FIGURE S1 | MiR-122 mimic (2.4 mg/kg, i.v., given at 6 h after MCAO) reduces
brain infarction 24 h after MCAO in rats. Scrambled miRNA or miR-122 mimic was
wrapped using PEG-liposomes prior to administration (i.v.) after MCAO. A: Cresyl
Violet staining; B: infarction volume. ∗p < 0.05, ∗∗p < 0.01 vs. MCAO/scramble
miRNA. n = 6/group.

TABLE S1 | MiR-122 mimic does not significantly affect body temperature (BT)
and blood oxygen saturation (BOS) after MCAO in rats. Statistical differences
between the groups were determined using repeated measures ANOVA followed
by Dunnett’s post hoc test.
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