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Abstract

Implantable cardioverter defibrillators (ICD) are the most effective therapy to terminate

malignant ventricular arrhythmias (VA) and therefore to prevent sudden cardiac death. Until

today, there is no way to predict the onset of such VA. Our aim was to develop a mathemati-

cal model that could predict VA in a timely fashion. We analyzed the time series of R-R inter-

vals from 3 groups. Two groups from the Spontaneous Ventricular Tachyarrhythmia

Database (v 1.0) were analyzed from a set of 81 pairs of R-R interval time series records

from patients, each pair containing one record before the VT episode (Dataset 1A) and one

control record which was obtained during the follow up visit (Dataset 1B). A third data set

was composed of the R-R interval time series of 54 subjects without a significant arrhythmia

heart disease (Dataset 2). We developed a new method to transform a time series into a net-

work for its analysis, the ε−regular graphs. This novel approach transforms a time series

into a network which is sensitive to the quantitative properties of the time series, it has a sin-

gle parameter (ε) to be adjusted, and it can trace long-range correlations. This procedure

allows to use graph theory to extract the dynamics of any time series. The average of the dif-

ference between the VT and the control record graph degree of each patient, at each time

window, reached a global minimum value of −2.12 followed by a drastic increase of the aver-

age graph until reaching a local maximum of 5.59. The global minimum and the following

local maxima occur at the windows 276 and 393, respectively. This change in the connectiv-

ity of the graphs distinguishes two distinct dynamics occurring during the VA, while the

states in between the 276 and 393, determine a transitional state. We propose this change

in the dynamic of the R-R intervals as a measurable and detectable “early warning” of the

VT event, occurring an average of 514.625 seconds (8:30 minutes) before the onset of the

VT episode. It is feasible to detect retrospectively early warnings of the VA episode using

their corresponding ε−regular graphs, with an average of 8:30 minutes before the ICD termi-

nates the VA event.
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Introduction

Implantable cardioverter defibrillators (ICD) are the cornerstone of sudden cardiac death pre-

vention through termination of ventricular tachycardia/ventricular fibrillation. Although ICD

shocks usually occur when the subject is unconscious, it could be very useful to patients and

close relatives to have the possibility to know in advance, either seconds or minutes, when

those malignant arrhythmias could occur in order to take appropriate preventive measures.

We hypothesized that a novel mathematical analysis, ε−regular graphs, could perform such

task.

Network theory possesses the capacity to abstractly represent interactions of any kind of

entities. Currently, complex networks have arisen as a common way to tackle intricate dynam-

ics [1]. A broad range of applications in different biological and medical areas abound. In the

area of biology, they have been used to analyze a population’s structure [2, 3], and pandemics

[4, 5]. The use of protein-protein interaction networks coupled with information theory have

led to discover potential therapeutic biomarkers on cancer research [6]. Integrative approaches

for anticipating critical transitions have been proposed [7] in several phenomena, although the

area of cardiology has not yet been explored. The terms “early warnings” and “tipping points”

are still not part of the cardiologist community. Several methods have been developed to trans-

form time series into networks for its analysis. Such methods include the visibility graphs

method [8], and a plethora of its modifications [9, 10], which consider the topological proper-

ties of the time series, the recurrence analysis of time series [11, 12], and the analysis based on

the phase space [13]. In this work, we usher in a new method to transform a time series into a

network for its analysis, the ε−regular graphs. This novel approach transforms a time series

into a network which is sensitive to the quantitative properties of the time series, it has a single

parameter (ε) to be adjusted, and it can capture long-range correlations. This procedure per-

mits using graph theory to extract the dynamics of any time series. As a direct application of ε
−regular graphs, data from patients diagnosed with imminent ventricular tachyarrhythmias

(VT) was analyzed. The heart activity is driven by the action of the opposing forces of the sym-

pathetic and the parasympathetic nervous systems [14, 15]. The failure in heart function is the

result of malfunctions in the myocardium, heart valves, pericardium, or the endocardium [16].

Limitations

The method proposed in this work requires further testing with patients whose clinical history

is well documented and controlled, coupled with respiratory data. A significant clinical limita-

tion of this work is the fact that this approach is restricted to patients with normal sinus

rhythm and is unlikely to work in patients with atrial fibrillation or those with a pacemaker. In

the former group because of the large variability of R-R intervals, and in the later because of

fixed pacing rhythms.

Methods

A mathematical method to transform time series to networks

The method consists in assigning to each point in a time series a vertex in the network. Then,

for a fixed value of the parameter ε = ε0, any two points of the time series p1,p2 will be joined

in the network, if and only if |p1−p2|�ε0; this means that two point of the time series will be

adjacent in the ε−regular graph if the values of the points have a maximum difference of ε0.

For illustrative purposes, we show a diagram of the algorithm in Fig 1. In Fig 1A, we show a

time series of ten points; the values of the points are p1,p7, and p10 = 0.2; p2 and p4 are equal to

0.29; p5 = p8 = 0.38; p3 = p6 = p9 = 0.7. The ε−regular graph is constructed with a parameter
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value of ε0 = 0.1. In Fig 1B, intervals of width ε0 = 0.1 are drawn around each point of the time

series. For a given point p of the time series, all the point lying inside the interval of width ε0

will be adjacent to p in the corresponding ε−regular graph.

Other algorithms to convert time series into graphs have been developed but with qualita-

tive instead of quantitative rules for determining the adjacencies in the corresponding graphs

(visibility plots). The algorithm for the visibility graphs determines the adjacencies by analyz-

ing the lines joining the points of the time series [8] as observed in Fig 1C. The visibility graph

algorithm confers to its graph properties that strongly differ to our ε−regular graph derived

from the same time series because the former does not capture the quantitative properties of a

Fig 1. Diagram of the ε−graph algorithm. In (A), a time series of ten points from which an ε−regular graph is constructed with a parameter value of ε0 = 0.1.

In (B), intervals of width ε0 = 0.1 are drawn around each point of the time series. For a given point p of the time series, all the point lying inside the interval of

width ε0 will be adjacent to p in the corresponding ε−regular graph. Note that points with a higher value of 0.7, belong to a different component than the rest of

time series reflecting its outlier nature. Also note that the periodic values, p3,p6 and p9 form a subgraph. Points with the same value that are not periodic will

form a complete subgraph, such as the points p1,p7 and p10. In (C), the time series is transformed to a graph using the visibility-graph algorithm.

https://doi.org/10.1371/journal.pone.0235101.g001
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time series as the ε−regular graph do. When considering the outliers of a time series, in a visi-

bility graph, the extremely high or low values of a time series would be “visible” from almost

all the rest of the points of the time series, and thus, according to the visibility graph algorithm

would be highly connected and act as a hub. This would remain true even if the outlier value

were not so extremely contrasting. In contrast, an outlier in a ε−regular graph would have dif-

ferent behaviors according to its value. If the outlier value is significantly different, it will be

assigned to a different component in the ε−regular graph: If the suspected outlier’s point value

is not so different to the rest of the time series, it will remain in the same component. This

behavior is reflected in the time series of Fig 1, where points with a higher value of 0.7, belong

to a different component than the rest of time series reflecting its outlier nature. If instead of

the value 0.7, the values were set to 0.48, they will still be higher than the rest of the time series

but will remain in the same graph component of the rest of the time series points since the ε0

value is set at ε0 = 0.1, and the points with the second-highest value are equal to 0.38.

From the definition of adjacencies in an ε−regular graph, it is directly derived that on a

given set of points, in which the points of the set have a value difference up to ε0 among them,

they will be joined and thus they will form a complete subgraph. This result is useful when con-

sidering time series with regular or periodic values. The periodic values will form a complete

subgraph, as the points p3,p6, and p9 in Fig 1B. Also, points with the same value that are not

periodic will form a complete subgraph, such as the points p1,p7, and p10 (Fig 1) that form the

complete graph K3. A similar property is not inherited in visibility graphs. In visibility graphs,

periodic or regular points from the time series might in some cases not be adjacent, as some

points might block the visibility condition for them to be adjacent. What can be rescued from

visibility graphs is the short-term correlations of the time series.

As proof of concept, two time series were simulated from theoretical frameworks and their

corresponding ε−regular graphs were derived. Time series of 104 points were simulated, the

first time series was obtained from a standard normal probability distribution, and the second

from a standard Brownian motion valued at integer times. The value of the parameter ε0 was

set as the standard deviation, and half of the standard deviation of both the normal distribution

and the Brownian motion, which correspond to 1 and 1/2 respectively, in both cases. The

degree centrality measure was calculated for the resulting graphs (Fig 2). The values of the cen-

trality measure were standardized to the unit interval. The degree distributions for the graphs

constructed form the Brownian motion approximates a Gaussian curve despite its multiple

modes; and the distribution from points sampled from a normal distribution approximates a

lognormal distribution. The distributions of the degree measurements maintain, up to some

extent, the statistical properties from the time series they were derived from. The difference

between any two values of the Brownian motion follows a normal distribution, and this prop-

erty is shown by the ε−regular graphs in the degree centrality measure when setting the ε−-

parameter equal to values related to the standard deviation.

The computer program is found in Supporting Information I.

Application to imminent VT

As a direct application of the ε−regular graphs algorithm, a set of time series related to VT was

analyzed. The data was downloaded from the Spontaneous Ventricular Tachyarrhythmia

Database Version 1.0 from Medtronic Inc. (available at http://physionet.org/physiobank/

database/mvtdb/) [17]. A set of 81 pairs of R-R interval time series records from different

patients was obtained (Group 1A), each pair contains one record before the VT episode and

one control record (CR) which was obtained during the follow up visit (Group 1B). A third

data set composed of the R-R interval time series of 54 subjects without a significant
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arrhythmia heart disease was obtained (available at: https://physionet.org/physiobank/

database/nsrdb/) [16]. This third dataset of time series will be hereafter considered as healthy

subjects (HS) and denoted as Group 2.

The time series for groups 1A and 1B were cropped to the same length starting from the

end to make them directly comparable (985 points), the start of the VT episode is at the last

point of the time series. The Group 2 (HS) series were also cropped by subsampling a random

set of sequential points of each subject that match the length of the VT and CR time series. The

VT, CR, and HS time series of each patient were subdivided in time series of 60 points with a

sliding window method with an offset of one point. This would allow analyzing the change of

the series in time to detect an early warning of the VT episode. The time series on each window

were transformed into graphs with the ε−regular graph algorithm setting the parameter value

at ε0 = 0.04.

The average degree of the graphs from each window of each subject was calculated and

averaged among the subjects, for the three different time series. This process results in a time

series of the average degree of the graphs representing the three different states of the subjects

(Fig 3). The datasets VT and CR arise from the same subjects, so a direct comparison of sub-

jects prior to a VT episode and in a normal stage is possible. The average of the difference

between the VT and the CR graph degree of each patient, at each time window (Fig 3), reaches

a global minimum value of −2.12, followed by a drastic increase of the average graph until

reaching a local maximum of 5.59. The global minimum and the following local maxima occur

at the windows 276 and 393, respectively. This change in the connectivity of the graphs distin-

guishes two distinct dynamics occurring during the ventricular tachyarrhythmia, while the

states in between the 276 and 393, determine a transitional state. We propose this change in

Fig 2. Degree centrality of the applied ε−graph algorithm. Two time series were simulated from theoretical frameworks and their corresponding ε-regular

graphs were derived. Time series of 10,000 points were simulated, the first time series was obtained from a standard normal probability distribution (solid and

dashed yellow curves), and the second from a standard Brownian motion (solid and dashed blue curves) valued at integer times. The value of the parameter ε0

was set as the standard deviation, and half of the standard deviation of both the normal distribution and the Brownian motion, which correspond to 1 and 1/2,

respectively, in both cases. The degree distributions for the graphs constructed form the Brownian motion approximates a Gaussian curve despite its multiple

modes; and the distribution from points sampled from a normal distribution approximates a lognormal distribution.

https://doi.org/10.1371/journal.pone.0235101.g002
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the dynamic of the R-R intervals as a measurable and detectable early warning of the VT event,

occurring an average of 514.625 seconds (8:30 minutes) before the start of the VT episode. The

count of 514.625 seconds corresponds to the sum of the average of the time lapses of the last

R-R intervals starting from the point 276 to when the VT episode begins at point 985.

The optimization of the parameter ε is based on the statistical parameters of the R-R time

series. The average, minimum and maximum distance between two points of the R-R time

series are: 0.043, 1.11×10−16, 0.12, respectively. Thus, the ε value of 0.04 approximates the

mean of the differences. In Supporting Information II, we show the degree time series when

the values 0.01, 0.02, 0.03, 0.04, and 0.06 are assigned to the parameter ε (S1 Fig). Note that the

overall pattern is preserved. In particular, the abrupt change of the dynamics is captured by the

different values of the parameter ε.

Comparison with detrending fluctuation analysis

A widely used procedure used in the analysis of data originated from diverse heart records is

the application of the Detrended fluctuation analysis (DFA) method. DFA is a mathematical

Fig 3. Early warning of a VT event. Comparison of the ε−graph algorithm and detrended fluctuation analysis. In (A), a set of 81 pairs of

RR interval time series records from different patients was obtained (Group 1A), each pair contains one record before the VT episode

and one control record (CR yellow solid curve) which was obtained during the follow up visit (Group 1B). A third data set composed of

the RR interval time series of 54 healthy subjects (HS green solid curve) without a significant arrhythmia heart disease was obtained,

denoted also as Group 2. In (B), the result of applying the detrended fluctuation analysis (DFA) to the RR series displayed in (A), are

shown. The start of the VT episode is at the last point of the time series. The time series on each window were transformed into ε−graphs

setting the parameter value at ε0 = 0.04. The average degree of the graphs from each window of each subject was calculated and averaged

among the subjects, for the three different time series. This process results in a time series of the average degree of the graphs

representing the three different states of the subjects In (C), the average of the difference between the VT and the CR graph degree of

each patient, at each time window reaches a global minimum value of -2.12, followed by a drastic increase of the average graph until

reaching a local maximum of 5.59. The global minimum and the following local maxima occur at the windows 276 and 393, respectively.

This change in the connectivity of the graphs distinguishes two distinct dynamics occurring during the ventricular tachyarrhythmia,

while the states in between the 276 and 393, determine a transitional state. In (D), the corresponding DFA of the curve obtained in (C) is

shown.

https://doi.org/10.1371/journal.pone.0235101.g003
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linear method to analyze time series by removing the linear trend of time series divided into

smaller windows. This method is of special use to address nonstationary time series [18].

Results from the DFA method are commonly graphed in a log-log scale and the scaling expo-

nent of the time series is estimated from a least-square fit of a linear model. The scaling expo-

nent measures the correlation in the noise and approximates the Hurst exponent of the time

series.

The DFA method was applied to the mean time series of the 3 groups (Fig 3A), and the dif-

ference between the mean VT and CR subjects (Fig 3B). From the DFA of the different states

of the subjects it can be observed that the time series from the HS subjects possess the same

scaling properties at short- and long-time lengths, which is deduced from the fact that the

DFA approximates a linear model. On the other hand, the DFA analysis from the VT and CR

subjects show that their time series possess two different scales of autocorrelation, which is

related to the two different linear models fitting the DFA of VT and CR. The VT and CR time

series behave similarly in the sense that both exhibit different scaling properties for short cor-

relations (windows with 15 or less points) and a different scaling factor for long correlations

(15 or more points). Since the slope of the liner models fitted to VT, 0.24 and 0.95 for short

and long correlations, respectively, and CR, 0.25 for short and 1.01 for long correlations (Fig

3C), are practically the same, then, their corresponding Hurst exponents will be the same,

which results in that the VT and CR behave similarly regardless if short or long correlations

are assessed. This is validated by the fact that the slopes of the two linear models fitted to the

DFA of VT-CR, 0.31 and 1.08 for short and long correlations, approximates the ones obtained

when analyzing VT and CR separately (Fig 3D). The DFA method is capable to discern the dif-

ferent scaling properties occurring on the Groups 1A (VT) and 1B (CR) patients as compared

to the Group 2 (HS) subjects. However, the DFA results are not varying in time, and hence

this method is not capable of discerning an early warning for VT.

Discussion

In this work we propose a novel parametric method to analyze time series by transforming

them into networks. By using this method, it is possible to apply the graph and network theory

in the analysis of time series. Herein, a direct application of the ε−regular graph method is

herein shown by using time series data derived from patients with ventricular heart tachyar-

rhythmia disease. The application of the ε−regular graph method, using a sliding window

framework, detected a potential early warning of the disease that it is not detectable using the

current linear methods available for the analysis of time series. The ε−regular graphs differ

from the visibility graph method as the former is a parametric quantitative method and the lat-

ter is a qualitative approach. The adjustable parameter ε in ε−regular graphs, determines the

sensitivity of the transformation of time series to networks. By varying the parameter, it is pos-

sible to obtain a range of graphs going from graphs in which a vertex is only connected to

other ones having the same value, up to completely connected graphs. An inverse transforma-

tion, form a network to a time series, would be possible if there exists a compendium of graphs

derived from the same time series using different ε values. Then, if needed, the original time

series can be inferred using the different adjacencies from the ε−regular graphs. An inverse

transformation that faithfully recovers the time series is not possible for visibility graphs. Since

visibility graphs is a qualitative methodology, the values of a time series derived from these

graphs would vary in an interval, whose length would be different for each point in the time

series. The framework of complex networks for analyzing heart rate variability data towards

the detection of early warnings and the design of clinical tools for disease management has

been considered before as other nonlinear methods [19]. Visibility graphs have been applied to
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the analysis of congestive heart failure [20]. Inhere, a statistical analysis of the scale-freeness of

the obtained network is used for the detection of early stages of the disease. In a broader analy-

sis, several summary statistics of a horizonal visibility network have been proposed as useful

for the analysis of heart rate variability [21]. In general, the use of summary statistics for the

detection of early warnings in a transition of dynamical state may be difficult since such statis-

tics may rely on inadequate data or other factors [22]. Other studies have shown that the incor-

poration of respiration signals to the electrocardiogram data increase the detection of a VT

episode [23]. Hitherto, the effect of the vagus nerve in the heart activity has been recently

investigated [25]. Different techniques based on other methodologies and data have shown dif-

ferent times before the VT episode occurs [23, 24]. Any predictor, regardless of the methodol-

ogy must clearly distinguish a VT episode from the usual cardiac arrythmias of each patient to

avoid false positive detection. So far, the low heart rate variability has been considered as the

single predictor of heart failure, although the forces for the acceleration and deceleration in

heart activity have been shown to be uncoupled [25]. The device used by the patient has high

impact on any method for the detection of early warnings of a cardiac malfunction, as it has

been shown that ICDs can detect QT variability in near-field or far-field right ventricular

intracardiac electrogram [26]. ICD are excellent machines devoted to terminating VT and they

have proved its efficacy to prevent sudden cardiac death in different clinical settings. The per-

formance of the algorithms has been tested first to detect the VT and to provide appropriate

shocks. Then, algorithms were improved to avoid unnecessary (“inappropriate”) discharges to

the patient. In recent years there has been a small but strong movement in the medical com-

munity towards the possibility of alerting the patient when an ICD shock is going to occur.

This possibility is not minor. From a clinical point of view, such alert could permit the patient

or his close relatives to take appropriate measures before the shock takes place. A new window

of opportunity (clinical interventions) could be generated if a software could be able to detect

with some seconds or, even better, minutes, the possibility of an imminent ICD shock. Until

today, there is no such possibility. The present retrospective study sheds light of a possible

mathematical analysis that could detect “early warnings” of an appropriate ICD shock for VT

with an average of 8:30 minutes. The process of optimization of the ε parameter value requires

a more extensive clinical experimentation. It stands to reason that the parameter value is spe-

cific for each individual patient and it ought to be tuned from the complete set of clinical

parameters of the patient to avoid false-positives and false-negatives. In a more general case, it

is also probable that the parameter value of ε is not fixed throughout the day and is dependent

of the circadian rhythm of the patient.

Obviously, this mathematical application should be tested prospectively, but this can only

be done if implemented into the software of the ICD. Collaboration with ICD industry is vital

to achieve such goal.

Conclusions

Early warnings of the VA episode could be detected using their corresponding ε−regular
graphs, even 8:30 minutes before the ICD comes into action. A prospective study is warranted

to further corroborate this finding.

Supporting information

S1 File. The script was developed using Wolfram Mathematica 12.0.

(NB)
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S1 Fig. The time series of the R-R intervals for the VT episode are substracted from the

control group from an average of the records of 81 patients. The regular graphs are derived

considering ε values of 0.01, 0.02, 0.03, 0.04, 0.05, 0.06 and a window of 60 points. The degree

centrality is averaged for each window and plotted in this figure.

(TIFF)
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