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Abstract: Exosomes, considered as cell debris or garbage bags, have been later characterized as
nanometer-sized extracellular double-membrane lipid bilayer bio-vesicles secreted by the fusion of
vesicular bodies with the plasma membrane. The constituents and the rate of exosomes formation
differ in different pathophysiological conditions. Exosomes are also observed and studied in
different parts of the eye, like the retina, cornea, aqueous, and vitreous humor. Tear fluid consists
of exosomes that are shown to regulate various cellular processes. The role of exosomes in eye
cancers, especially retinoblastoma (RB), is not well explored, although few studies point towards
their presence. Retinoblastoma is an intraocular tumor that constitutes 3% of cases of cancer in
children. Diagnosis of RB may require invasive procedures, which might lead to the spread of the
disease to other parts. Due to this reason, better ways of diagnosis are being explored. Studies on the
exosomes in RB tumors and serum might help designing better diagnostic approaches for RB. In this
article, we reviewed studies on exosomes in the eye, with a special emphasis on RB. We also reviewed
miRNAs expressed in RB tumor, serum, and cell lines and analyzed the targets of these miRNAs
from the proteins identified in the RB tumor exosomes. hsa-miR-494 and hsa-miR-9, upregulated
and downregulated, respectively in RB, have the maximum number of targets. Although oppositely
regulated, they share the same targets in the proteins identified in RB tumor exosomes. Overall this
review provides the up-to-date progress in the area of eye exosome research, with an emphasis on RB.
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1. Introduction: Exosomes

Exosomes were considered as waste bags or the organelle responsible for the storage of cell
debris but later characterized in 1987 [1] as nanometer-sized extracellular double-membrane lipid
bilayer bio-vesicles secreted once multivesicular bodies gets fused with the plasma membrane [2].
These contain an entire cargo of protein, DNA, RNA (tRNA, mRNA, miRNA, lncRNAs), lipids,
and sugars [2–5]. They are heterogeneous and dynamic in nature, constituting markers, or contents of
cells that secrete them [4]. All eukaryotic cells are known to secrete exosomes that are detected in plasma
and various fluids, such as amniotic fluid, bile, breast milk, cerebrospinal fluid (CSF), saliva, semen,
synovial fluid, tears, and urine. The secretion rate changes during certain pathological conditions,
which can be used for early detection of disease conditions [2,4–8]. Exosomes are also detected in
the growth medium of all cell cultures. The constituents of exosomes are responsible for functions,
such as activation of cell signaling pathways, cell-cell communication, modulation of immunity, cargo
shuttle from donor to the target cell, and antigen presentation [2,4,5,9]. Exosomal biogenesis requires
the invagination of late endosomes within multivesicular bodies (MVBs), resulting in the formation
of intraluminal vesicles (ILVs) [10]. ESCRT (endosomal sorting complex required for transport) is
critical in the formation of ILVs and is required for MVB formation, vesicular budding, protein cargo
sorting [11,12]. Tetraspanin-associated microdomains (TEMs) play a role in exosome formation and
protein cargo sorting [13–15]. Recently, the ceramide pathway, which is ESCRT independent, has been
recognized to transport protein cargo where lipids seem to play a major role in exosomes biogenesis [16].
A total of 11,261 proteins, 2375 mRNAs, and 764 miRNAs, listed in the Exocarta database, are identified
from 134 exosomal studies [17]. Exosomes are enriched in proteins like tetraspanins (cell fusion and
invasion proteins) and heat shock proteins (antigen binding and presentation); Tumor Susceptibility
Gene (TSG)101 (MVB formation proteins, exosome biogenesis), membrane transport, and fusion
serve as potential exosome markers. Exosomes constituents also include various lipids, such as
sphingomyelin, cholesterol, phosphatidylserine, glycosphingolipids, which play a structural and
functional role in their formation and release in the extracellular environment [18]. As genetic material
can be transported, exosomes are responsible for altering the genetic constitution of the target cell.
The ubiquitous presence of exosomes and the emerging research of finding specific constituents of
exosomes and their functional characterization has paved the way in the medical field for finding the
cause, diagnosis, and therapy involving target specific markers of exosomes.

2. Exosomes of the Eye

Exosomes, present in tears, aqueous humor, vitreous humor, are easily accessible and may be
explored for studies involving diagnosis, therapy, and drug efficacy (Figure 1). Exosomal functions
identified via various studies include intercellular communication, extracellular matrix (ECM)
communication with cells, ECM assembly and remodeling, adhesion, and cellular waste removal [19,20].
The eye is an exosome-mediated immune-privileged site similar to the placenta, owing to Fas L and
TRAIL ligands and functions in the prevention of inflammation [21–24]. Exosomes are involved in
angiogenesis or neovascularization. Hypoxia in tumor cells leads to the instant release of exosomes,
which, when taken up by other cells, stimulate angiogenesis and further metastasis [25–28]. Exosomes
released from tumor cells may also cause leakiness in the cell membrane because of their cellular
content. miR105 from exosome is shown to downregulate ZO1, a tight junction protein that increases
vascular permeability and helps in metastasis [25,29]. Other studies have shown that exosomal miRNA
146a expression is upregulated in serum as well as vitreous humor, suggesting that it may well be a
biomarker for the diagnosis of uveal melanoma (UM) [25,30].
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Figure 1. The schematic drawing of how the exosomes may be studied for various applications in the 
pathophysiology of the retinoblastoma and other eye cancers. 

2.1. Tear Fluid Exosomes 

Exosomes are found in tears in normal as well as cancer patients. Cancer-specific markers are 
highly expressed in a study conducted in metastatic breast cancer patients [31]. Sjogren’s syndrome 
(SS) is an autoimmune disease that targets glandular tissues, including the lacrimal glands and 
exocrine salivary glands, where local inflammation is thought to manifest primary symptoms, such 
as xerostomia and xerophthalmia. The presence of T cell exosome-derived miR-142-3p in SS suggests 
it as a potential driver in the immunopathology [32]; also, exosomes are already proven to transfer 
miRNA between cells [33], and it has a functional role in the glandular cell dysfunction [32]. Breast 
cancer-specific miR-21 and miR-200c show higher expression levels in tear exosomes of metastatic 
breast cancer patients as opposed to healthy controls [31]. Most of the studies suggest exosomal 
constituents of tears to be biomarkers. 

2.2. Retinal Exosomes 

The immune-privileged nature of the eye has provided protection against inflammation and 
compromised vision [34] as the retina fails to regenerate after severe inflammation. The retinal 
pigment epithelium (RPE), which is present between the retina and choroid, forms the blood-retina 
barrier and is one of the key sites for the pathophysiology of AMD (age-related macular 
degeneration). For visual homeostasis and proper vision, communication between RPE, 
photoreceptors, and choroid capillary endothelium should be achieved. Exosomes exchange cargo 
between neighboring cells and have gained importance in recent years. Different cargos are observed 
in exosomes from RPE cells under stress [35–37]. 

When ROS (reactive oxidation species) production in the RPE increases, more exosomes with 
VEGF (vascular endothelial growth factor) or VEGF 2 receptors are released, which are responsible 
for accelerated choroidal neovascularization [36,38,39]. When ROS increases, it leads to the secretion 
of autophagosomes, lysosomes, and exosomes or MVBs as they combine and work together in 
degrading the content [40–43]. Thus, the overproduction of ROS increases stress in cells, which 
influences the exosomal release and autophagic activity. The exosomes are released as a result of 
stress-damaged nearby cells, leading to degeneration, which is one of the many reasons for the 
pathophysiology of AMD [44]. Besides, recent findings suggest the potential role of extracellular 
vesicles (EVs) and apoptotic blebs in the dysregulation of complement pathway by removing cell 
surface complement immune regulators, such as CD46, CD59, CD55 from RPE (in ARPE-19 cell 
model), leaving the RPE cells more vulnerable to complement attacks under oxidative stress [45–47]. 
Here, exosomes’ presence suggests its role in causing trouble owing to oxidative stress. 

2.3. Corneal Exosomes 

The cornea is avascular, maintained in the state owing to the balance between pro-angiogenic 
and anti-angiogenic stimuli. Any imbalance in stimuli or inflammation in the cornea may lead to 
neovascularization, causing opacity and vision loss [48,49]. Extracellular vesicles in corneas are 

Figure 1. The schematic drawing of how the exosomes may be studied for various applications in the
pathophysiology of the retinoblastoma and other eye cancers.

2.1. Tear Fluid Exosomes

Exosomes are found in tears in normal as well as cancer patients. Cancer-specific markers are
highly expressed in a study conducted in metastatic breast cancer patients [31]. Sjogren’s syndrome
(SS) is an autoimmune disease that targets glandular tissues, including the lacrimal glands and
exocrine salivary glands, where local inflammation is thought to manifest primary symptoms, such as
xerostomia and xerophthalmia. The presence of T cell exosome-derived miR-142-3p in SS suggests
it as a potential driver in the immunopathology [32]; also, exosomes are already proven to transfer
miRNA between cells [33], and it has a functional role in the glandular cell dysfunction [32]. Breast
cancer-specific miR-21 and miR-200c show higher expression levels in tear exosomes of metastatic
breast cancer patients as opposed to healthy controls [31]. Most of the studies suggest exosomal
constituents of tears to be biomarkers.

2.2. Retinal Exosomes

The immune-privileged nature of the eye has provided protection against inflammation and
compromised vision [34] as the retina fails to regenerate after severe inflammation. The retinal pigment
epithelium (RPE), which is present between the retina and choroid, forms the blood-retina barrier and
is one of the key sites for the pathophysiology of AMD (age-related macular degeneration). For visual
homeostasis and proper vision, communication between RPE, photoreceptors, and choroid capillary
endothelium should be achieved. Exosomes exchange cargo between neighboring cells and have
gained importance in recent years. Different cargos are observed in exosomes from RPE cells under
stress [35–37].

When ROS (reactive oxidation species) production in the RPE increases, more exosomes with
VEGF (vascular endothelial growth factor) or VEGF 2 receptors are released, which are responsible for
accelerated choroidal neovascularization [36,38,39]. When ROS increases, it leads to the secretion of
autophagosomes, lysosomes, and exosomes or MVBs as they combine and work together in degrading
the content [40–43]. Thus, the overproduction of ROS increases stress in cells, which influences the
exosomal release and autophagic activity. The exosomes are released as a result of stress-damaged
nearby cells, leading to degeneration, which is one of the many reasons for the pathophysiology
of AMD [44]. Besides, recent findings suggest the potential role of extracellular vesicles (EVs) and
apoptotic blebs in the dysregulation of complement pathway by removing cell surface complement
immune regulators, such as CD46, CD59, CD55 from RPE (in ARPE-19 cell model), leaving the RPE
cells more vulnerable to complement attacks under oxidative stress [45–47]. Here, exosomes’ presence
suggests its role in causing trouble owing to oxidative stress.
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2.3. Corneal Exosomes

The cornea is avascular, maintained in the state owing to the balance between pro-angiogenic
and anti-angiogenic stimuli. Any imbalance in stimuli or inflammation in the cornea may lead
to neovascularization, causing opacity and vision loss [48,49]. Extracellular vesicles in corneas
are responsible for cell-cell communication and have also been shown to interact with corneal
keratinocytes/fibroblasts during fibrosis and cornea scarring, suggested by the high expression of SMA
(α-smooth muscle actin) [50]. Besides, studies have shown that corneal epithelium-derived exosomes
are one of the factors responsible for wound healing and neovascularization by stimulating endothelial
cell proliferation [51]. Corneal graft rejection is also one of the main concerns; even though cornea is
immune privileged, graft rejection occurs when major histocompatibility complex (MHC) antigens
from a donor are recognized by T cells, i.e., adaptive immune response [52]. Studies have held EVs,
including exosomes, partly responsible for the same [53]. Whereas other studies have shown that
exosomes from certain immuno-suppressive cell populations ensure allograft survival by providing
tolerance [54].

2.4. Exosomes of Aqueous Humor

Aqueous humor, a watery transparent fluid, is secreted by the ciliary body, which nourishes the
cornea and lens and gives shape to the eye by maintaining intraocular pressure. Aqueous humor also
consists of exosomes where one such study has identified more than 10 miRNA isolated from aqueous
humor exosomes collected during cataract surgery, in which miR-486-5p, miR-204, and miR-184 are
abundant [55].

2.5. Exosomes of Vitreous Humor

Vitreous humor, a gelatinous transparent fluid between the lens and retina of the eye, is produced
by non-pigmented cells of the ciliary body, a part of the Uvea. The UM patients are shown to have
different miRNA profiles of vitreous humor and serum with respect to healthy individuals [30].

3. Eye Cancers

Eye cancers are rare but are of unique importance as both vision and quality of life are severely
compromised. Eye cancer can be characterized based on regions, intraocular cancers (occurs within the
eyeball), orbital cancers (includes eye socket), adnexal cancers (including accessory regions, such as
eyelids and tear glands). Intraocular cancers are of two types; primary, which starts primarily in the
eyeball, of which most common is RB, and secondary, metastasized to eyeball from different parts of
the body, mostly from breast and lung tumors. Common eye cancers include RB in children and UM
occurring in the choroid.

Uveal melanoma collectively comprises melanoma of iris, choroid, and ciliary body, which
are uncontrollable divisions of melanocytes residing in the uveal tract [56]. They are mostly
seen in older people, and the risk increases with age [57,58]. The occurrence in children and
the congenital cause are very rare [59,60]. With respect to gender, the incidence is more prevalent
in males than females in higher than 65 years of age and has a higher occurrence in the white
population than the black population [57,61–64]. However, the larger population studies show equal
prevalence in the male and female populations [65]. The occurrence of tumors in UM is in three
sites: iris (3–4%), ciliary body (6–7%), choroid (90%) [66]. Iris melanoma is often spotted early [65].
Microscopy studies have shown that 5% of the sample population shows metastasis, and older age
combined with intraocular pressure and extraocular extension increases the risk of metastasis [67].
Diffuse iris melanoma is a rare form of iris melanoma, and glaucoma and cataract are the main
complications. Choroidal and ciliary body melanomas have symptoms, such as photopsia, visual
field loss, visible tumor, blur vision, pain, metamorphopsia, different combinations of symptoms,
and also asymptomatic [68]. In addition to this, ciliary body melanoma often hides behind iris
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and, thus, requires more prominent symptoms for prognosis. The pathogenesis for UM involves
genetic and molecular changes that include disruption in the Rb (retinoblastoma) tumor suppressor
pathway, where cyclin D overexpression directly and the methylation and inactivation of the INK4A
gene indirectly inactivate Rb by hyperphosphorylation [68–70]. The diagnosis of UM varies for
iris, choroid, and ciliary body, also depending on the symptoms and rate of progression, mostly
including CT (computed tomography), high-frequency ultrasound, optical coherence tomography,
MRI (magnetic resonance imaging), and invasive biopsy. The most common treatments for local UM
include laser therapy, enucleation, resection through surgery, brachytherapy, and radiation. Treatments
after metastasis include chemotherapy and immunotherapy [71]. The alterations in the expression
of miRNA are common in the vitreous humor and vitreal exosomes, where miR-146, detected in
serum, serum exosomes, and tissue, could serve as a potential marker of UM [30]. Exosomes isolated
from the liver perfusion are of melanoma origin in metastatic UM patients, and the constituents of
these exosomes are different from the healthy controls [72]. These might serve as markers to monitor
prognosis and disease progression [73]. The majority of the proteins secreted in UM is through
exosomal mechanisms, and they are involved in various cellular mechanisms like extracellular matrix
remodeling and metastasis [74].

Tumors of conjunctiva and cornea, basal cell carcinoma of the eyelid, squamous cell carcinoma,
hemangioma, intraocular lymphomas, and lacrimal gland tumors are other types of eye cancers.
Exosomes derived from the corneal epithelium, corneal keratinocytes, and stroma are involved
in cell-cell communication, migration, cell proliferation, and wound healing [75–77]. Pterygium,
a surface lesion from conjunctiva towards the cornea, is due to the proliferation and ECM remodeling.
The secreted proteins from the pterygium are of exosome origin [78]. However, to date, no studies have
been reported on exosomes and their role in corneal and conjunctival cancers. Tumors of conjunctiva
and cornea include tumors from benign lesions to malignant Kaposi’s sarcoma. A neoplasm in these
segments can arise from epithelial as well as stromal structure, the former being more common. Some of
them are congenitally present or arisen after birth [79]. They are rare but can spread through blood and
have proven life-threatening. Kaposi’s sarcoma-associated herpesvirus (KSHV) is shown to change
the microenvironment by utilizing the host-derived exosomes [80]. Epidermal growth factor receptor
plays an important role in the infection of KSHV, and this is promoted by the exosomes associated
with HIV [81].

Exosomes and their role in basal cell carcinoma of eyelids, hemangioma, and squamous cell
carcinoma of the eye are not well studied. Basal cell carcinoma is the most common cancer of eyelids.
Metastasis is rare, but if they do, they can affect various regions of the brain. Therefore, various surgeries,
radiation, and chemotherapy are suggested. Squamous cell carcinoma can metastasize at a much faster
rate and prove fatal if the prognosis is late. Hemangioma is a benign tumor of the retina and choroid,
which, from its name, suggests the uncontrolled proliferation of blood vessels. It may sometimes lead
to bulging of the eye. Intraocular lymphomas (IOL) can be primary or secondary. They can arise in the
uvea, optic nerve, vitreous, or can occur somewhere outside and metastasize to the eye. The origin is
from B cells, but there are T cell variants too. It is a rare type of malignancy. Lacrimal gland tumors
range from benign epithelial and lymphoid lesions to aggressive malignant carcinomas and sarcomas.
Surgery is used to treat benign tumors, whereas adjuvant therapy or chemotherapy and other high
invasive procedures are required to treat malignant ones. The research regarding eye cancer has led to
more knowledge in the overall cancer biology, cell cycle, development, cell differentiation, and diverse
diagnostic and treatment strategies. Exosomes intercellular communications in tumorigenesis and
metastasis are major players in the progression of cancer. Besides, the extracellular matrix-modulating
exosomal activity by exosomal metalloproteinases, syndecans (proteoglycans), annexins has been
identified as constituents responsible for the progression of metastasis [82–84].
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4. Retinoblastoma and Exosomes

Retinoblastoma is a primary intraocular and the most common form of cancer in children [85].
It occurs in two types: (1) Bilateral/multifocal (in both eyes), which is heritable, occurs because of
germline mutation of the RB1 tumor suppressor gene in a developing retinal cell, and includes 25% of
the total cases, and (2) Unilateral/unifocal (in one eye), which is non-heritable and includes 75% of all
cases [86]. Tumor formation is because of the loss of function mutation in both the alleles of the RB1
gene present in chromosome 13q [87,88]. The RB1 gene codes for tumor suppressor retinoblastoma
protein that binds to the transcription factors and proteins, which remodel chromatin, regulating the
cellular replication [88–90]. The disease staging is done by the international RB staging system (IRSS).
RB seeding may also occur in advanced stages when the tumor disperses into a liquid or semi-liquid
compartment. Intraocular RB can seed to four sites: (1) Vitreous seeding—by endophytic disruption
of the internal limiting membrane (ILM) of the retina at the tumor apex, (2) Retrohyaloid space—by
endophytic disruption of ILM at tumor base, (3) Subretinal space by exophytic growth, and (4) Aqueous
fluid of anterior and posterior chamber [91]. Seeding may lead to dust, cloud, or sphere formation.

The diagnosis for RB is tricky as it may be the reason for spreading the tumor outside the eye
(extraocular). Besides, most of the time, in the starting stage, tumor cells are not found in the blood of
the patients. So, recently, researchers are focused on finding alternative ways for diagnosis, which
are less or non-invasive and will not spread the tumor. The exosomes are abundantly secreted from
aggressive tumor cells and are present in various biological fluids [92]; liquid biopsies may promise
to provide an alternative diagnosis for RB. Besides, proteins and non-coding RNAs, specifically
miRNAs of exosomes, are identified, isolated, and characterized for their role in various pathological
conditions [93,94]. In the recent study, the proteins of exosomes are characterized by the RB tumor
tissue and from the RB vitreous seeding (RBVS) in the vitreous humor [95]. In RBVS exosomes,
the proteins involved in the invasion and metastasis are identified, regulating functions, such as
extracellular matrix (ECM) remodeling and metabolism of glucose and amino acids, etc. [95]. Besides,
to prognosticate RB, less invasive procedures, such as a liquid biopsy, would serve as the best option
for children and are less painful than the invasive procedures, such as bone marrow aspiration or
lumbar puncture, for the detection of metastasis. Therefore, circulating exosomal biomarkers are
considered one of the best choices for the diagnosis as well as efficacy.

5. miRNA and Their Targets in Retinoblastoma

miRNAs are non-coding RNAs that have a regulatory role. Circulating miRNAs have been
reported in serum as potential biomarkers for various cancers [96,97]. Exosomal miRNAs are shown
as potential biomarkers for the diagnosis of various cancers [98–104]. A cluster of miRNA, including
hsa-miR-494, is identified to be highly expressed in human RB tissues and maybe a major constituent
involved in tumorigenesis [105]. In another bioinformatic analysis, 22 miRNAs are upregulated in
SNOUT-RB1 cell lines, including miR-29c, and other 17 are upregulated in Y79 cell line, including
hsa-let-7i, and are found to be related to biological processes and could affect processes in cell cycle
and cell adhesion, suggesting a role in the treatment of RB by targeting miRNA [106]. Bioinformatics
analysis and next-generation sequencing have confirmed the relative expression pattern of hsa-let-7i,
suggesting its role in the pathogenesis of myopia [107]. miR-9 is identified along with other miRNAs
as circulating small RNAs in the vitreous humor of patients with ocular diseases but is not detectable in
serum [108]. Another study has shown the suppression of UM by miR-9 through the NFκB1 pathway
via stopping cell migration and invasion [109]. The higher expression of miR-148a in the ocular
region is detected in patients with retinal detachment (RD), suggesting that it might function in EMT
(epithelial-mesenchymal transition) in retinal pigment epithelium [110]. The correlation of highly
expressed miR-148a in a vitreous fluid is shown with the duration and severity of the rhegmatogenous
retinal detachment disease [111].

The studies by Beta M et al. and Ravishankar H et al. have identified the miRNA constituents of
exosomes in the RB cell lines, WERI-Rb-1, and NCC-RbC-51 cells and in RB tumor samples and RB
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patients’ serum samples. hsa-miR-1307-5p, hsa-miR-301b-3p, hsa-miR-148a-5p, and hsa-miR-216b-5p
are present in exosomes of both cell lines, whereas hsa-miR-582-3p and hsa-miR-887-3p are specific
to WERI and hsa-miR-200a-5p and hsa-miR-483-5p to NCC-RbC-51 cells. A total of 33 miRNAs are
common in the miRNAs deregulated in the RB tumor and those present in the serum of RB children.
Of these, 25 are upregulated, and eight are downregulated [112,113]. In another study by Galardi
A et al., the proteomic profiling of the exosomes constituents has identified 99 proteins that are
exclusively present in RB tumors [114]. We have analyzed the targets of the miRNAs from both these
studies [112,113] from the proteins identified in RB tumor exosomes [114]. hsa-miR-494 (upregulated)
and hsa-miR-9 (downregulated) have the maximum number of targets in proteins identified in RB
tumor exosomes (Table 1).

The miRNAs common to RB tumor and RB serum and those present in RB cell line exosomes are
shown to function as important regulators in various studies; hsa-miR-216b-5p and hsa-miR-301b-3p are
upregulated in the primary RB tissues and RB cell lines [112]. hsa-miR-30b is one of the 25 upregulated
miRNAs in the comparison of miRNA between primary RB tissues and serum obtained from children
suffering from RB [113].

In the upregulated miRNAs of RB, miR-142-3p is considered as a probable target for the treatment
of UM as its overexpression has shown to suppress UM, inhibiting cell migration, proliferation,
and invasiveness by targeting CDC25C, TGFβR1, GNAQ, WASL, and RAC1 [115]. Another study
has revealed that the overexpression of miR-142 causes apoptosis-associated protein expression
in osteosarcoma cells, suggesting the possible role of miRNA in the osteosarcoma treatment [115].
Runx3, a tumor suppressor, is upregulated after miR-106b suppression, and the inhibition of Y79
cell proliferation is seen, which suggests that Runx3 is a target of miR-106b in an RB [116]. miR-182
alteration is related to cervical cancer pathogenesis and plays an oncogenic role involving apoptosis
and cell cycle pathways [117]. miR-182 as an integrator of growth, apoptosis, differentiation, tumor
progression in glioblastoma [118]. miR-182 and miR-183 are responsible for promoting cell proliferation
and invasion in mesothelioma by specifically targeting FOXO1 and p27 [119]. miR-148b targets
the WNT1/β catenin pathway and functions as a suppressor of cell proliferation and invasion in
hepatocellular carcinoma (HCC), suggesting that it may be a possible target of HCC and may prove
as a treatment strategy [120]. miR-148 is shown to regulate Mitf expression in melanocytes, and loss
of this particular regulation may be a particular factor leading to the formation or progression of
melanoma [121]. miR-29c is shown to target LINC01296, an oncogene that provides a therapeutic
option in ovarian cancer [122]. miR-30b-5p plays a role in the suppression of the tumor in esophageal
squamous cell carcinoma [123]. miR-494 promotes cancer proliferation in breast cancer cell lines and
colorectal cancer [124,125]. But in another study, it is shown to inhibit cancer proliferation in breast
cancer via the inhibition of PAK1 [126].

In the miRNAs that are downregulated in RB, miR-let-7a, a tumor suppressor, inhibits cellular
proliferation and suppresses tumor growth by inhibiting E2F2 in osteosarcoma cells [127]. miR-92a,
a tumor suppressor, regulates primary mediastinal large B-cell lymphoma (PMBL) by targeting
FOXP1, known to deliver an oncogenic effect [128]. miR-216a plays a role in the inhibition of
gastric cancer metastasis via targeting JAK2/STAT3-mediated EMT, thereby suggesting its role in
tumor suppression and, ultimately, gastric cancer development [129]. hsa-miR-9 plays a role in the
prognosis of glioblastoma and is shown to control metastasis by regulating MAPK4 signaling [130].
miR-9 downregulates TM4SF1 and is shown to function for the suppression of metastasis in colorectal
cancer [131].
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Table 1. The list of miRNA reported in RB tumor, RB serum, and RB cell lines and their targets from the proteins identified in the RB tumor exosomes.

Upregulated miRNA RB Tumor and RB Serum and Targets
Identified in RB Tumor Exosomes

Downregulated miRNA RB Tumor and RB Serum and
Targets Identified in RB Tumor Exosomes

miRNA Derived from RB Cell Lines Exosomes and Targets
Identified in RB Tumor Exosomes

miRNA Target Gene miRNA Target Gene miRNA Target Gene

hsa-miR-16-1 KIAA1598 hsa-let-7a TJP3

hsa-miR-148a CAMSAP1, IKBIP, NUP50, PPP2R2A
hsa-miR-29b-1 LPGAT1 hsa-miR-92a INTS1

hsa-miR-34a PTRHD1
hsa-let-7f-2 ERCC3, UNC13B

hsa-miR-96 UNC13B

hsa-miR-143 ADD3, AK2 hsa-miR-217 ARPC2, EIF1
hsa-miR-582 CACNA2D2, MPP1, NEFL, PIN4, VDAC3

hsa-miR-30d DCK, POLD3 hsa-let-7a-2 CCNB1, GSTM1, TMEM55B

hsa-miR-16 OS9, TPPP3
hsa-miR-92a-1 FAM120A, MPDZ, TNR, TPPP3

hsa-miR-200a
CTSV, DAG1, GLRX, MTMR2, PRPS1,

SLC27A4, UBXN4

hsa-miR-142 CCNB1, FAM49B, SDHB

hsa-miR-106b PPP2R2A, UBXN4, WDR36

hsa-miR-216a
GLRX, POLD3, PPP2R2A, DLG5,

PPIF, UNC119
hsa-miR-182 IKBIP, LMAN2, NUP50

hsa-miR-183 MPP1, SEC61B, SNAP25

hsa-miR-148b MPDZ, TRIM2, DKFZp781M17165,
LONP1, PPP1R2 hsa-miR-92a-2 CACNA2D2, MPP1, OS9, P4HTM,

PAK1, SIN3B hsa-miR-483 DCK, DKFZp781M17165, GSTM1, HAUS3,
MYDGF, PPP2R1B, PTRHD1

hsa-miR-29c DAG1, NDUFS6, PDCD4, PPIF,
NEFL, PRPS1

hsa-let-7i
DNAJC5, ATP8A1, DAG1,

PTRHD1, SLC25A13,
TTC9C, UQCRFS1

hsa-miR-216b
ABI2, ATP2B2, ATP8A1, CCDC85C, CISD2,

CUX1, DNAJC5, FAM120A, ITSN1, LPGAT1,
PPP1R2, RQCD1, TNR, TRMT6, TSPAN14,

UBXN7, WIPF2hsa-miR-30b CACNA2D2, ERCC3, GSTM1,
SLC27A4, TMEM55B, MED4, ARPC2

hsa-miR-494

ABI2, ATP2B2, ATP6V1C1, ATP8A1,
CAMSAP1, CCDC85C, CISD2, CTSV,
CUX1, DCC, DLG5, DNAJC5, DPF3,

EIF1, FAM120A, GLRX, HAUS3,
ITSN1, KDM1B, MTMR2, NCAN,
PAK1, QSER1, SLC25A13, UBXN7,

WDR11, WIPF2, ARPP19, PEA15, PIN4,
PPP2R1B, RQCD1, SIN3B, SYNGR1,

TNR, TRMT6, TSPAN14,
UNC119, UQCRFS1

hsa-miR-9

ADD3, ARPP19, ATP6V1C1,
CCDC85C, CISD2, CTSV, CUX1,

DCC, DCK, FAM49B, ITSN1,
KDM1B, LPGAT1, MED4, NCAN,
PDCD4, PEA15, QSER1, RQCD1,
TRIM2, UBXN4, WDR11, ABI2,

ATP2B2, CAMSAP1,
DKFZp781M17165, DPF3, HAUS3,

IKBIP, MTMR2, NEFL, PPP1R2,
PRPS1, SLC27A4, SNAP25,
TSPAN14, UBXN7, WIPF2

hsa-miR-301b
ADD3ARPP19ATP6V1C1CCNB1DCCDLG5D
PF3FAM49BNCANPAK1PEA15QSER1SLC25A
13SNAP25TMEM55BTRIM2UQCRFS1WDR11
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Among the miRNA studied in cell lines, miR148a targets CCK-BR via the inactivation of STAT3 and
Akt and is identified as a tumor suppressor in human gastric cancer [132]. A recent study also suggests
the role of miR-148 as a suppressor of hepatocellular carcinoma tumor where sphingosine-1-phosphate
receptor 1 is the target [133]. A study has reported that hsa-miR-582-5p, an oncogenic miRNA,
and miRNA-363 are responsible for human glioblastoma cell survival by effectively targeting caspase 3,
caspase 9, and Bim [134]. Another study has revealed the role of miR-582-5p as a tumor-suppressor in
gastric cancer cell growth via targeting AKT3, suggesting it as a target for treatment as well as diagnosis
of gastric cancer [135]. hsa-miR-582, along with hsa-miR-320d, is responsible for the regulation of
apoptotic activity in vascular smooth muscle cells [136]. Upregulated miR-200a provides resistance to
the treatment for chemotherapy by antagonizing TP53INP1 and YAP1 in breast cancer cell lines [137].
miR-200a is reported to confer tumor-suppressive ability by regulating Wnt/β-catenin signaling
pathway and is considered to be a potential candidate for treatment [138]. Decreased expression
of miR-200 family members has shown resistance against the endocrine antiestrogen in LY2 human
breast cancer cells [139]. miR-483-5p, in coordination with miR-125-3p, is identified as a promoter of
adipogenesis via the suppression of the RhoA/ROCK1/ERK1/2 pathway, and their studies may prove
as a strategy to treat obesity or multiple symmetric lipomatosis (MSL) [140]. miR-483 is responsible for
playing a role in digestive tract cancers (DCT) [141]. miR-216b is shown to be responsible for the tumor
suppression of pancreatic ductal adenocarcinoma cells (PDAC) and is suggested as a treatment target
in PDAC [142]. miR216b targets FOXM1 and inhibits cell proliferation in cervical cancer [143]. A study
in prostate cancer patients has revealed the possible oncogenic role of the miR-130b/301b cluster [144].

Interestingly, in the proteins identified in the exosomes of RB tumor, 23 proteins are common
targets to both hsa-miR-494, which is upregulated, and hsa-miR-9, which is downregulated, in RB
tumor and RB serum (Table 2). This even shows the complex regulation of miRNA in the tumorigenesis
of RB. The proteins identified in the exosomes of RB tumor are shown to have a role in cell growth
and tumorigenesis, as discussed. Proteins abl interactor 2 (ABI2), neurocan (NCAN), V-type proton
ATPase subunit C1 (ATP6V1C1), and UBX domain protein 4 (UBXN4) are identified in RBT-derived
exosomes [114]. Studies have shown that ABI2 (Abl-interactor 2 protein) suppresses cell growth,
and its truncated form plays a role in the acceleration of tumorigenesis, suggesting that ABI2 may be a
tumor suppressor in RB [145,146]. NCAN, an extracellular proteoglycan, is shown to be responsible
for promoting malignancy by the stimulation of neuroblastoma cells [147].

Table 2. Common targets of hsa-miR-494 (upregulated) and hsa-miR-9 (downregulated) in RB tumor
and RB serum.

ABI2 CAMSAP1 CUX1 ITSN1 PEA15 UBXN7

ARPP19 CCDC85C DCC KDM1B QSER1 WDR11

ATP2B2 CISD2 DPF3 MTMR2 RQCD1 WIPF2

ATP6V1C1 CTSV HAUS3 NCAN TSPAN14

ARPP19 (cAMP-regulated phosphoprotein 19) promotes mitotic entry by inhibiting PP2A [148].
In addition to miR494 and miR 9, ARPP19 is shown to be a target of miR 320 a and miR 26 a in
breast [149] and thyroid cancers [150]. ATPase plasma membrane Ca2+ transporting 2 (ATP2B2) is a
calcium transporter, whose levels correlate with mortality in breast cancers [151]. The overexpression
of ATP6V1C1 is seen in a variety of cancers, including breast cancer, oral cancer, and oral squamous cell
carcinoma [152–154]. ATP6V1C1 controls tumor growth and bone metastasis, and the silencing of the
gene suggests treatment and prevention strategies against cancer [154]. The overexpression of atp6v1c1
facilitates filament actin arrangement in the metastasis of cancerous cells and proves an innovative
target in the treatment of breast cancer metastasis [153]. The overexpression of camsap1 mRNA is seen
in laryngeal squamous cell carcinoma rather than normal tissues [155]. Spectrin-associated protein 1
(Camsap1) is shown to be modulated by miR 26; this modulation alters the tumor microenvironment
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and inhibits metastasis [155]. The expression of cathepsin V (CTSV) and human augmin complex
unit 3 (Haus3) correlates with the poor prognosis in invasive and ductal carcinoma in situ types
of breast cancer [156] and hepatocellular carcinoma, respectively [157]. CISD2 (CDGSH iron-sulfur
domain (2)) promotes glioma cell proliferation via the inhibition of beclin-1-mediated autophagy [158].
CUX1 (CUT-like homeobox (1)) is shown to be related to both progression and suppression of
tumor, but a haploinsufficient tumor suppressor gene and its overexpression are seen in advanced
cancers [159]. DCC (deleted in colorectal carcinoma), a tumor suppressor gene, whose functional loss
in colorectal cancer suggests its metastatic role [160]. Another study has suggested its role in tumor cell
differentiation and tumor proliferation [161]. The downregulation of the DPF3 (double PHD fingers)
gene activates the JAK2/STAT3 signaling pathway and performs a major role in the progression of breast
cancer [162]. KDM1B (flavin-dependent histone demethylases) knockdown shows to inhibit cellular
proliferation and induce apoptotic activity in pancreatic cancer and suggests a role in prevention [163].
Intersectin 1 (ITSN1) has the transforming potential and is shown to be involved in the tumorigenesis
of neuroblastoma [164]. MTMR2 (myotubularin-related protein-2) is shown to inactivate IFN γ/STAT
signaling and promote gastric cancer (GC) invasion and metastasis and maybe a new therapeutic target
for the treatment of GC [165]. Unphosphorylated PEA-15 (astrocytic phosphoprotein) is responsible
for tumor progression by blocking the β-catenin pathway [166].

6. Conclusions and Future Perspectives

Extensive research on exosome biogenesis and their role in the pathology of RB and other
eye cancers will help in the development of new diagnostic approaches and therapeutic strategies.
The diagnosis of RB requiring invasive procedures will benefit immensely if relevant disease-specific
exosome or its constituents are discovered in the blood. The subtle differences in the exosomes during
therapy will also help in streamlining the drugs and their doses. Unlike other cancers, the research on
exosomes in RB and other eye cancers is not well explored. Tear proteome is largely uncharacterized.
The focus on identifying the potential biomarkers of eye cancers by studying the exosomes in aqueous
humor and vitreous humor and tears will help to save the globe of the eye from invasive procedures,
both for diagnosis and therapy.
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