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Abstract: In this work, the thermo-sensitive materials N-isopropylacrylamide (NIPAM) and acrylic
acid (AA) were crosslinked with carboxymethyl cellulose (CMC) (CMC/P (NIPAM-co-AA)) via
a free radical polymerization method for the removal of U(VI) from aqueous solution. The L16 (45)
orthogonal experiments were designed for the optimization of the synthesis condition. The chemical
structures of the crosslinking hydrogel were confirmed by FTIR spectroscopy. The microstructural
analyses were conducted though scanning electron microscopy (SEM) to show the pore structure of
the hydrogel. The adsorption performance of the CMC/P (NIPAM-co-AA) hydrogel for the uptake
of U(VI) from simulated wastewater was also investigated. The adsorption reached equilibrium
within 1 h. Under the reaction of pH = 6 and a temperature of 298 K, an initial concentration of
U(VI) of 5 mg·L−1, and 10 mg of the CMC/P(NIPAM-co-AA) hydrogel, the maximum adsorption
capacity was 14.69 mg g−1. The kinetics fitted perfectly with the pseudo-second-order model, and the
isotherms for the composite hydrogel adsorption of U(VI) was in accordance with the Langmuir model.
The chemical modification confirmed that the acylamino group played an important role in uranium
adsorption. The desorption and reusability study revealed that the resolution rate was still available
at approximately 77.74% after five alternate heating cycles at 20 and 50 ◦C of adsorption-desorption.

Keywords: orthogonal experiments; U(VI); thermo-sensitive hydrogel; adsorption; wastewater
treatment

1. Introduction

The technology of dissolution and leaching is widely used in uranium mining and metallurgy,
and a large amount of low-concentration uranium-containing radioactive wastewater can be generated
from these industrial processes, which could pose a serious potential risk to the environment and
the health of those involved [1]. Traditional methods such as reverse osmosis, ion exchange,
and evaporation have the demerits of complexity, high energy consumption, and cumbersome
operation [2,3]. The adsorption method, which possesses the characteristics of a wide source of
materials, low cost, high selectivity, fast treatment rate, and large capacity would provide a possibility
for the efficient uptake of uranium-bearing wastewater [4]. However, adsorbents are usually difficult to
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regenerate and have poor reusability. Recently, “smart” hydrogels have attracted much interest in the
treatment of wastewater contaminated with heavy metals. These “smart” hydrogels are characterized
by their high expansion capacity, biocompatibility, reversibility, and maneuverability compared with
traditional methods [5,6]. The intelligent responsiveness of hydrogels means that they are “smart” soft
materials with three-dimensional cross-linked network structures that can change volume/shape or
phase in sensitive response to environmental stimulation including temperature, pH, magnetic field,
electric field, light, and chemical substances [7–11]. The response characteristics of “smart” hydrogels
are important parameters for their wide application in the fields of drug control release and separation,
heavy metal adsorption, and biomedical treatments [5,12,13].

Poly(N-isopropylacrylamide) (PNIPAM) is the most representative temperature-sensitive polymer.
It undergoes an abrupt reversible phase transition near the lower critical solution temperature (LCST),
exhibiting a dramatic volume change from the swollen network to the shrunken state by expelling
free water [14,15]. Even though the PNIPAM hydrogel shows intelligent thermal sensitivity, which
is beneficial for the treatment of wastewater containing heavy metals, it exhibits a low capacity
of adsorption for metal ions. The presence of functional groups within polymer networks helps
in binding heavy metals via the formation of complex structures [16]. Ju et al. [17] prepared
poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (P(NIPAM-co-BCAm)) hydrogel by
crosslinking the ether group with NIPAM. The P(NIPAM-co-BACm) hydrogel adsorbed Pb2+ at
a temperature lower than the LCST and desorbed Pb2+ at a temperature higher than the LCST.
The calic-conjugated thermo-responsive poly(N-isopropylacrylamide-co-tetra(5-hexenyloxy)-p-tert-
butylcalix [4]arene) (P (NIPAM-co-HBCalix)) has also been manufactured for capturing Ni2+, and its
adsorption capacity was maintained above 90% after five cycles of adsorption-desorption [18].

Carboxymethyl cellulose (CMC) is a degradation and biocompatibility biomass material containing
a large amount of carboxyl oxygen and lone pair electrons in coordinated bonds that form chelates
with metal ions [19–21]. Chen et al. [22] produced a bio-based adsorbent consisting of polyacrylamide,
polyacrylic acid, and CMC (CMC-PAMA) by the thermal crosslinking of sodium carboxymethylcellulose,
polyacrylic acid, and polyacrylamide with good stability and recyclability, whose static adsorption
capacities for methylene blue (MB) and Pb(II) were, respectively, 1611.44 mg·g−1 and 840.11 mg·g−1.
Sun et al. [23] applied biomaterials (CMC/gelatin/starch) to stabilize FeS nanoparticles for the removal
of Hg(II). The experiments showed that the three biomaterial-stabilized nanoparticles could improve
the adsorption efficiency significantly. Among those CMC-based polymers, the interactions of the OH
group and metal ions would contribute to improve the stability and insolubility of water, which is
conducive to the separation of metal ions from water after adsorption [16].

Our experiments aimed to use N-isopropylacrylamide (NIPAM) as a matrix to prepare
a temperature sensitive intelligent hydrogel. During gel preparation, polymerization parameters
such as polymerization temperature, the ratio of crosslinker to monomer, and the type of polymer
composition could contribute to the desirable properties of thermo-sensitive hydrogels [24]. Even
though the polymers of NIPAM, CMC, and acrylic acid (AA) in Na-montmorillonite (MMT) have
been fabricated [25], the principal element of preparation of thermo-sensitive hydrogel and the
influence mechanism are still unclear. Moreover, temperature-sensitive hydrogels prepared by
pre-experiment were fragile after the adsorption of water, which did not meet the reusability demands
of uranium removal. Therefore, we have attempted to optimize the synthesis condition for the CMC/P
(NIPAM-co-AA) hydrogel through L16 (45) orthogonal experiments and determine the dominant
factor in the polymerization. The chemical structure, thermostability, and morphology have been
represented by a series of characterizations. The behaviors of composite hydrogel adsorption of
U(VI), including adsorption kinetics, isotherms, thermodynamics, and reusability performance, were
systematically investigated.
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2. Materials and Methods

2.1. Materials

The main materials for the preparation of thermo-sensitive hydrogels of CMC/P (NIPAM-co-AA)
include NIPAM, AA, CMC, N,N-methylene bis acrylamide (BIS), ammonium persulphate (APS),
and N,N,N′,N′-tetramethylethylenediamine (TEMED). The sources of these reagents/materials are
shown in Table 1. Among them, N-isopropyl acrylamide was recrystallized three times in n-hexane;
the rest of the materials were of analytical purity.

Table 1. List of the main materials for the preparation of the temperature sensitive hydrogel.

Materials Manufacturer

N-isopropylacrylamide (NIPAM) Chengdu Aikeda Chemical Reagent Co., Ltd.
(Chengdu, China)

acrylic acid (AA) Aladdin Reagent Co., Ltd. (Shanghai, China)

Carboxymethyl cellulose (CMC) Shanghai shanpu chemical Co., Ltd.
(Shanghai, China)

N,N-methylene bis acrylamide (BIS) Tianjin Kemiou Chemical Reagent Co., Ltd.
(Tianjin, China)

Ammonium persulfate (APS) Xilong Chemical Co., Ltd. (Guangdong, China)

N,N,N′,N′-tetramethylethylenediamine (TEMED) Tixiai Chemical Industry Development Co., Ltd.
(Shanghai, China)

2.2. Preparation of CMC/P (NIPAM-co-AA) Hydrogels by Orthogonal Experiments

The L16 (45) orthogonal experiments were designed for the optimization of the synthesis condition.
Intelligent hydrogels were made by free radical polymerization. Recrystallization NIPAM, AA, BIS
(crosslinking agent), and CMC (0.6 g of each) were added in sequence to three flasks containing
10 mL of deionized water under the nitrogen gas condition, which was well mixed using an electric
mixer. After half an hour of continuously admitting the nitrogen gas to the reaction flasks, the reaction
was initiated in the presence of APS (initiator) and TEMED (catalyst), then the mixture was quickly
transferred to a cylindrical sealed tube and placed in a water bath for 24 h at a temperature of 0, 25, 35
and 70 ◦C to prepare the hydrogel.

After polymerization, the composite hydrogel was washed in deionized water over a 48 h period
to remove the unreacted polymer monomer, changing the water every 12 h. Finally, the hydrogel
was sliced then vacuum freeze-dried over 24 h. The addition amounts of each polymer monomer are
shown in Tables 2 and 3.

Table 2. Level factor of the orthogonal experiment.

Level A (CMC/g) B (AA/g) C (APS/g) D (BIS/g) E (Temperature/◦C)

1 0.05 0.05 0.02 0.01 0
2 0.1 0.1 0.04 0.03 25
3 0.2 0.15 0.06 0.05 35
4 0.3 0.2 0.08 0.07 70
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Table 3. Arrangements of the 5-variable 4-level orthogonal experiment.

L16(45) (A) CMC/g (B) AA/g (C) Initiator/g (D) Crosslinker/g (F) Temperature/◦C

1 A10.05 B1 0.05 C1 0.02 D1 0.01 E1 0
2 A10.05 B2 0.1 C2 0.04 D2 0.03 E2 25
3 A1 0.05 B3 0.15 C3 0.06 D3 0.05 E3 35
4 A1 0.05 B4 0.2 C4 0.08 D4 0.07 E4 70
5 A2 0.1 B1 0.05 C2 0.04 D3 0.05 E4 70
6 A2 0.1 B2 0.1 C1 0.02 D4 0.07 E3 35
7 A2 0.1 B3 0.15 C4 0.08 D1 0.01 E2 25
8 A2 0.1 B4 0.2 C3 0.06 D2 0.03 E1 0
9 A3 0.2 B1 0.05 C3 0.06 D4 0.07 E2 25

10 A3 0.2 B2 0.1 C4 0.08 D3 0.05 E1 0
11 A3 0.2 B3 0.15 C1 0.02 D2 0.03 E4 70
12 A30.2 B4 0.2 C2 0.04 D1 0.01 E3 35
13 A4 0.3 B1 0.05 C4 0.08 D2 0.03 E3 35
14 A4 0.3 B2 0.1 C3 0.06 D1 0.01 E4 70
15 A4 0.3 B3 0.15 C2 0.04 D4 0.07 E1 0
16 A4 0.3 B4 0.2 C1 0.02 D3 0.05 E2 25

2.3. Index Test of Orthogonal Experiments

2.3.1. Swelling Behavior of Composite Hydrogel

The water absorption rate (SR) of the CMC/P-(NIPAM-co-AA) hydrogel was determined by the
tea-bag method [26]. Composite hydrogel samples were accurately weighed after drying through
vacuum freezing in the freeze dryer (FD5-series, SIM). The mass of the dried hydrogel samples were
recorded as Wg. The dry gel was placed in empty tea-bags of 5 cm × 6 cm, which was made of plant
fiber. The samples in the tea-bags were then immersed in a buffer solution of pH = 2 for 24 h. The data
was recorded to obtain the mass of the hydrogel after absorbing water as Ws. The water adsorption
ratio (SR) of the composite hydrogel was calculated as follows:

SR(%) =
Ws −Wg

Wg
. (1)

2.3.2. Adsorption Capacity of Uranium

The adsorption capacity of uranium was determined by immersing the 10 mg hydrogel in 30 mg L−1

U(VI) solutions at pH = 6 and a temperature of 298 K for 2 h. The adsorption uptake amount of U(VI)
by the hydrogel (qe, mg·g−1) and the removal rate (η, %) were determined by Equations (2) and (3),
respectively, as follow:

qe =
(C0 −Ct)V

m
(2)

η =
(C0 −Ct)

C0
× 100% (3)

where C0 (mg·L−1) and Ct (mg·L−1) represent the initial concentration and equilibrated concentration of
U(VI), and m (g) and V (mL) are the mass of the hydrogel and the volume of the solution, respectively.

2.3.3. Study on the Structure and Thermal Stability of Gel

The structure of hybrid hydrogels was confirmed by the Fourier-transform infrared (FTIR) spectra
of a Nicolet-460 spectrometer (Nicolet, Madison, WI, USA) from the wavenumber range of 400 to
4000 cm−1. The thermal stability of the gels was performed by thermogravimetric analysis (TGA) in
the temperature range of 30–600 ◦C with dried gel on a DSC 200-F3 (Netzsch, Bavaria, Germany).
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2.4. Batch Sorption Experiments

The evaluation of the adsorption properties of the CMC/P (NIPAM-co-AA) hydrogel for the uptake
of U(VI) was carried out. Different concentrations of the U(VI) solution (30 mL of each) were shaken
on a shaking table at 150 rpm so that proper reaction could take place with a constant temperature
and pH value. The pH value was regulated by HCl and NaOH solutions. The solid-liquid separation
was then done by filtration. The uranium concentration in the remaining solution was determined by
spectrophotometry (WFJ 2000, Unic, Shanghai, China).

2.5. Mechanism Analysis of Adsorption on U(VI)

2.5.1. Characterization

The CMC/P (NIPAM-co-AA) hydrogel, before and after the adsorption of U(VI), was characterized
by scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), and X-ray photoelectron
spectroscopy (XPS). The SEM images were obtained by a JSM-7500F SEM instrument (JEOL, Akishima,
Japan) after quenching in liquid nitrogen. The pore size of the hydrogel before and after U(VI)-loading
were examined by MIP AutoPore IV (Micromeritics, Norcross, GA, USA). XPS spectra were acquired
on an Escalab 250Xi (Thermo Fisher Scientific, Waltham, MA, USA).

2.5.2. Chemical Modification of the Hydrogel

In order to examine the functional groups that play a major role in the adsorption of U(VI),
the surface of the hydrogel was treated in series with methyl alcohol and concentrated hydrochloric
acid to shield the carboxyl group, and then with formaldehyde to mask the hydroxyl group [27,28].

Ten milligrams of hydrogel was mixed with 20 mL of methyl alcohol and 0.2 mL of concentrated
hydrochloric acid at 20 ◦C in a reaction flask and was then shaken on a shaking table for 8 h.
Ten milligrams of hydrogel was immersed in 10 mL of formaldehyde under the same condition for
8 h. Ten milligrams of the hydrogel was added into the mixture of 20 mL of formic acid and 10 mL of
formaldehyde to shield the amide group. Then, after treatment, the hydrogels were all washed three
times with distilled water and were added to 5 mg L−1 U(VI) solution for 1 h of adsorption reaction.
The remaining U(VI) solution was measured by spectrophotometry (WFJ 2000, Unic, Shanghai, China),
as mentioned above.

2.6. Desorption and Recycling Experiment

The hydrogel was placed under optimal adsorption conditions to achieve adsorption equilibrium
and was washed three times with distilled water. The desorption of U(VI) from the hydrogel was
monitored by placing the hydrogel in 0.1 mol L−1 of HNO3 solution at different temperatures, where it
was left for between 10 min and 5 h.

The regeneration ability of the hydrogel was evaluated by conducting a heating cycle of
adsorption-desorption. The alternated adsorption-desorption cycles were repeated five times at
20 and 50 ◦C. The remaining U(VI) concentration in the solution was determined by spectrophotometry.

3. Results and Discussion

3.1. Results and Range Analysis of Orthogonal Experiments

The results of the 5-variable 4-level orthogonal experiment are shown in Table 4. The water
adsorption ratio (SR) and U(VI) removal rate (η) were the two test indexes. This study used
a comprehensive scoring method. The results of the range analysis in this orthogonal experiment are
shown in Table 5. From the results, the order of the main influencing factors for preparing hydrogels is:
polymerization temperature > the dosage of AA > the dosage of CMC > the amount of cross-linker >

the amount of Initiator. The best combination of mechanical properties and uranium adsorption
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properties was A2B3C3D2E1, which was 0.1 g of CMC, 0.15 g of AA, 0.06 g of initiator, and 0.03 g of
cross-linker at the polymerization temperature of 0 ◦C.

Table 4. Results of the 5-variable 4-level orthogonal experiment.

L16 (45) A B C D F
Test Index

Water Adsorption
Ratio (SR)

U(VI) Removal
Rate (η)

1 A1 B1 C1 D1 E1 41 82.7
2 A1 B2 C2 D2 E2 13 94.2
3 A1 B3 C3 D3 E3 37 86.9
4 A1 B4 C4 D4 E4 3 4.1
5 A2 B1 C2 D3 E4 22 94.7
6 A2 B2 C1 D4 E3 25 93.6
7 A2 B3 C4 D1 E2 21 92.3
8 A2 B4 C3 D2 E1 50 97.3
9 A3 B1 C3 D4 E2 12 92.8
10 A3 B2 C4 D3 E1 18 92.7
11 A3 B3 C1 D2 E4 28 16.4
12 A3 B4 C2 D1 E3 4 42.3
13 A4 B1 C4 D2 E3 37 85.9
14 A4 B2 C3 D1 E4 25 37.0
15 A4 B3 C2 D4 E1 43 94.9
16 A4 B4 C1 D3 E2 12 92.1

Table 5. Range analysis of the L16 (45) experimental results.

Analysis A B C D E

K1 24.325 29.150 27.300 23.275 38.975
K2 30.475 21.000 21.375 32.950 15.375
K3 16.100 32.925 31.675 23.175 26.425
K4 30.025 17.850 20.575 21.525 20.150
R 14.375 15.075 11.100 11.425 23.600

Optimal level A2 B3 C3 D2 E1

3.2. Characterization of FTIR and TGA for Gel

Crosslinked network hydrogels are divided into two categories, one is the semi-interpenetrating
network (semi-IPN) hydrogel and the other is the interpenetrating network (IPN) hydrogel. The CMC/P
(NIPAM-co-AA) hydrogel belongs to the latter. The first layer of the crosslinked network is formed
by polymerization, while carboxymethyl cellulose is used as the second layer of the crosslinked
network by hydrogen bonding and Van der Waals interactions [29,30]. Figure 1 shows the proposed
schematic diagram of the fabrication process of the CMC/P (NIPAM-co-AA) hydrogel [31]. The first
network was the formation of the integration of NIPAM and AA, with APS as an initiator; BIS is
a cross-linker (a). CMC was immersed in the mixture of the first crosslinked network (b). Finally,
the IPN hydrogel was incorporated through the polymerization reaction at 0 ◦C (c). The photographs
of the CMC/P (NIPAM-co-AA) hydrogel after infusion in deionized water at 20 and 60 ◦C are shown in
Figure 2. The IPN hydrogel at 20 ◦C was translucent in comparison to the hydrogel at 60 ◦C. There was
a very significant discrepancy in the swelling capacity of the gel between 20 and 60 ◦C. The volume
change confirmed the temperature sensitivity of the gel, thus demonstrating the successful synthesis of
IPN gels.
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Figure 2. Photographs of the interpenetrating network (IPN) hydrogel after infusion in deionized
water at 20 and 60 ◦C.

In order to further confirm the IPN crosslinking structure of the gel, the FTIR spectra of CMC,
the PNIPAM hydrogel, and CMC/P (NIPAM-co-AA) are presented in Figure 3. (1) In the CMC FTIR
spectrum, the absorption peaks at 1608 and 1422 cm−1 were symmetric and asymmetric stretching
vibrations of the carbonyl group of carboxylic acid, respectively [32]. The adsorption peaks at 1326 and
1114 cm−1 belong to the stretching vibration and non-stretching vibration of C–O–C of the cellulose
ether bond, while that at 3446 cm−1 was from the hydrogen bond with a wide absorption peak [33].
(2) In the FTIR spectrum of the PNIPAM hydrogel, 1639 cm−1 indicated the telescopic vibration of C=O
of the amide group, 1387 cm−1 and 1368 cm−1 were the characteristic bimodal of isopropyl of NIPAM,
which were the C–H symmetric bending vibration peaks of two methyl groups. The absorption peak of
3444 cm−1 was related to the N–H telescopic vibration. (3) In the curve of the CMC/P (NIPAM-co-AA)
hydrogel, the absorption peak of 3449 cm−1 is much sharper and narrower in comparison to the
3444 cm−1 of the PNIPAM spectrum. This is possibly due to the synthesis of the acrylic acid containing
O–H group and the covering portion of the N–H peak. At the same time, the peak at 1634 cm−1 was
the interaction of the bending vibration of C=O and the stretching vibration of N–H. Meanwhile,
the peak of the C–O–C of CMC and the isopropyl characteristic peak of PNIPAM basically disappeared
in the curve of the CMC/P (NIPAM-co-AA) hydrogel due to the formation of the cross-linking network
between the chain of CMC and the polymerase chain of P (NIPAM-co-AA). Therefore, the spectra have
illustrated the successful linking of CMC onto the P (NIPAM-co-AA) polymer [34].
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The thermogravimetric (TGA) curves of PNIPAM, P (NIPAM-co-AA), P (NIPAM-co-CMC),
and CMC/P (NIPAM-co-AA) are presented in Figure 4. The thermal decomposition of P (NIPAM-co-AA),
P (NIPAM-co-CMC), and CMC/P (NIPAM-co-AA) is mainly divided into three stages, each with
elevated temperatures. The first stage is 50–100 ◦C and is due to the residual water evaporation.
The second stage is 100–370 ◦C and is mainly due to the fracture and digestion of the terminal and
side chain functional groups. Meanwhile, CMC/P (NIPAM-co-AA) was shown to have a large amount
of weightlessness in the second stage, indicating that its polymerization chain was fractured and the
digestion was more numerous than in the other two materials. The third stage is due to the degradation
of the polymerase chain of NIPAM at 370–550 ◦C. The thermal decomposition of PNIPAM involves
only two stages, which are residual water evaporation and self-degradation [35].
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3.3. Adsorption Performance of U(VI) under Different Conditions

3.3.1. The Contact Time and Adsorption Kinetics Analysis

The effect of contact time on the U(VI) adsorption by CMC/P (NIPAM-co-AA) and PNIPAM
were evaluated by carrying out an experiment under the reaction of pH = 6 and a temperature of 298
K, an initial concentration of U(VI) of 5 mg L−1, and 10 mg of PNIPAM or CMC/P (NIPAM-co-AA),
in the range of 5–240 min. The results are shown in Figure 5. The adsorption capacity of the PNIPAM
hydrogel for U(VI) was barely immutable over time, which indicates that the adsorption of uranium
by the gel is time-independent. For the CMC/P (NIPAM-co-AA) hydrogel, the adsorption reaction
reached equilibrium after one hour.
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The kinetics of the adsorption of U(VI) by PNIPAM and CMC/P (NIPAM-co-AA) were evaluated
by a pseudo-first-order kinetic model, Equation (4), and a pseudo-second-order kinetic model,
Equation (5), respectively.

In(qe − qt) = Inqe − k1t (4)

t
qt

=
1

k2 · q2
e
+

t
qe

(5)

where qe (mg g−1) and qt (mg g−1) represent the equilibrium adsorption quantity and the adsorption
amount, respectively; k1 and k2 are the constant of the first-order adsorption rate and the second-order
adsorption rate, respectively; and t (min) is the reaction time.

From Table 6, the correlation coefficient of U(VI) adsorption was matched by the pseudo-second-
order kinetic model, R2, for PNIPAM and CMC/P (NIPAM-co-AA), which were 0.9993 and 1, respectively.
Moreover, the theoretical maximum adsorption by the pseudo-second-order kinetic model of CMC/P
(NIPAM-co-AA) was 14.71 mg g−1, which was much closer to the actual maximum adsorption capacity
of 14.69 mg g−1. So was PNIPAM, whose theoretical maximum adsorption and actual maximum
adsorption capacity were 12.32 and 12.47 mg g−1 by the pseudo-second-order kinetic model, respectively.
Therefore, the adsorption process of U(VI) by PNIPAM and CMC/P (NIPAM-co-AA) conformed to
the secondary dynamic adsorption model, which indicates that the adsorption rate is controlled by
chemisorption [36].
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Table 6. Kinetic parameters of adsorption of PNIPAM and CMC/P (NIPAM-co-AA) at 298 K.

Material
qe,exp

(mg·g−1)

Pseudo-First-Order
Kinetic Model

Pseudo-Second-Order
Kinetic Model

k1 qe·cal R2 k2 qe·cal R2

PNIPAM 12.47 0.0124 0.49 0.412 0.1181 12.32 0.9993
CMC/P (NIPAM-co-AA) 14.69 0.0189 0.81 0.848 0.0922 14.71 1

3.3.2. Effect of pH

The effect of pH on the U(VI) adsorption was determined. Ten milligrams of CMC/P
(NIPAM-co-AA) or PNIPAM was added to an initial concentration of 5 mg L−1 of U(VI), under
the reaction condition of 298 K, at various pH values from 2.0 to 7.0 for 1 h of adsorption time.
The results in Figure 6 show that the adsorption quantity of U(VI) by CMC/P (NIPAM-co-AA) is
higher than by PNIPAM at a pH of 2.0 to 7.0, which illustrates that CMC and AA can promote the
adsorption of U(VI) more efficiently. The increase in pH can cause a gradual corresponding increase in
the adsorption capacity of CMC/P (NIPAM-co-AA) and PNIPAM. A plateau was reached at pH = 4.
At low pH values, the excessive H+ in the solution protonates the carboxyl group in the hydrogel,
weakening the electrostatic attraction between the carboxyl group and the uranium ion. At the same
time, the excess H+ generates H3O+, which competes with the uranium ion for adsorption, thus
affecting the U(VI) adsorption of the hydrogel [37].
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Figure 6. Effect of pH on U(VI) adsorption by CMC/P (NIPAM-co-AA) and PNIPAM.

3.3.3. Adsorption Isotherm

The effect of temperature (293, 303, 308 K) on U(VI) adsorption was studied under the condition
of pH = 4. Ten milligrams of CMC/P (NIPAM-co-AA) was placed in the range of 2–100 mg·L−1 initial
concentrations of U(VI) solutions, over 1 h. The adsorption isotherm was curve fitted by the Langmuir
isothermal adsorption model of Equation (6) and the Freundlich isothermal adsorption model of
Equation (7).

Ce
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1
b · qmax

+
Ce

qmax
(6)

Inqe = InkF +
1
n

InCe (7)
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where Ce (mg L−1) is the U(VI) concentration of the adsorption equilibrium, b is the constant of
Langmuir adsorption equilibrium, qmax (mg g−1) represents the amount of maximum adsorption, kF is
the constant of Freundlich adsorption equilibrium, and n is the symbol of adsorption index.

The adsorption isotherm can be carried out to study the interaction of the adsorbent with the U(VI)
to further determine the adsorption mechanism. Figure 7 shows the linear fittings curve of CMC/P
(NIPAM-co-AA) corresponding to the models of Langmuir and Freundlich. As the curve exhibits,
the adsorption isotherm fits well to the Langmuir isothermal adsorption model. Table 7 is the isothermal
adsorption model parameters calculated from fitting curves and equations. From those parameters,
the adsorption model of the gel is dominated by the Langmuir model. At lower temperatures, uranium
adsorption is more consistent with the Langmuir model, while adsorption is in line with two kinds
of isotherm, which reveals that adsorption is more easily carried out on the surface of the hydrogel
in a single layer; specifically adsorbed, with the temperature rising, the adsorption mode is uneven.
Meanwhile, the adsorption amount is negatively correlated with the characteristic coefficient, b,
for the degree of reaction adsorption, indicating that low temperature is favorable for adsorption.
The maximum theoretical adsorption capacity is up to 285.71 mg g−1. This value is higher than the
general hydrogel rather than the smart hydrogel that was determined for the graphene (rGO) hydrogel,
with a maximum U(VI) adsorption capacity of 134.23 mg g−1 [38].
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Figure 7. Fitting curve of Langmuir (a) and Freundlich (b) isothermal adsorption model of U(VI)
adsorption by CMC/P-(NIPAM-co-AA).

Table 7. Langmuir and Freundlich isothermal adsorption model parameters of U(VI) adsorption by
CMC/P (NIPAM-co-AA).

T/K
Langmuir Freundlich

qmax/(mg·g−1) b R1
2 kF n R2

2

293 285.71 0.2414 0.9954 36.9439 1.8896 0.9128
303 149.25 0.3807 0.9990 29.6571 1.7391 0.9673
308 105.26 0.5901 0.9937 28.2022 1.8008 0.9690

3.4. Characterization Analysis of Hydrogel Before and After U(VI) Adsorption

SEM images of the CMC/P (NIPAM-co-AA) hydrogel before (a,c) and after (b,d) adsorption of
U(VI) with different magnification are illustrated in Figure 8. The images of Figure 8a,c show the
obvious porous structure, but the porous structure of the hydrogel is non-uniform and has irregularities.
This is due to uneven polymerization reaction. Moreover, the SEM images after the uptake of UO2

2+

by the adsorbents show a reduced size in porous structure compared with those before the adsorption,
which may imply that UO2

2+ has been successfully bound to the adsorption site on the hydrogel.
To prove the change in the pores before and after adsorption, a mercury injection test was performed.
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Figure 9 shows the Log differential pore size distribution curves of the CMC/P (NIPAM-co-AA)
hydrogel before and after the uptake of U(VI). From Figure 9, pore size diameter is concentrated at
100,000 nm before and after U(VI)-loading, and in Table 8 the average pore diameter before adsorption
is much larger than that after adsorption. This result is consistent with previous SEM observations.
The phenomenon may result from the fact that the adsorbed U(VI) blocked the channel structure of
the hydrogel.
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Table 8. Mercury intrusion porosimetry (MIP) parameters of CMC/P (NIPAM-co-AA) hydrogel before
and after U(VI)-loading.

Sample Average Pore Diameter (nm) Porosity (%)

Before adsorption 90,195.76 97.89
After adsorption 21,469.33 94.82

The XPS spectra of the CMC/P (NIPAM-co-AA) hydrogel before and after the uptake of U(VI)
were examined to contrast the possible elemental composition and adsorption mechanism. Comparing
the XPS spectra in Figure 10, before and after adsorption, the two sharp and narrow peaks appeared at
391.08 and 379.74 eV, which belong to U4f5/2 and U4f7/2 [39], respectively. This phenomenon proved
that no redox reaction occurred between the hydrogel and U(VI) [40], which further reveals that the
uptake of U(VI) on the hydrogel was solely in the form of a positive hexavalent valence state [41]. Three
peaks of O1s have been divided, attributing to 530.69 eV for C=O oxygen, 531.88 eV for–C–OH and C–O
oxygen, and 533.35 eV for adsorbed H2O [42]. The O1s peaks of the carbonyl groups and the hydroxyl
groups shifted to low binding energy, which could perhaps be ascribed to the interaction between
C=O, –OH, and uranium via the covalent bond [43]. Bonding to UO2

2+ would lead to a decrease of the
electro-withdrawing ability of oxygen, so as to increase the electron density on the hydrogel, which in
turn reduces its binding energy [44]. In consequence, the dominant mechanism for UO2

2+ sorption on
the hydrogel was due to the complexes formed between the oxygen-containing group and U(VI).
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Figure 10. (a) XPS spectra of the CMC/P (NIPAM-co-AA) hydrogel before and after U(VI) adsorption, 
(b) high-resolution XPS spectra of U4f, and (c,d) O1s before and after adsorption.  
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3.5. Chemical Modification of Hydrogel

To confirm the successful chemical modification of the hydrogel, the FTIR of CMC/P
(NIPAM-co-AA) before and after the functional groups shielded are presented in Figure 11. The curve
of comparison is the untreated hydrogel. The peak of 1634 cm−1 was changed to 1645 cm−1 after the
carboxyl groups were shielded, which was attributed to the interaction by the bending vibration of
C=O and the stretching vibration of N–H. For comparison, the peak of 3449 cm−1 of the hydrogen bond
disappeared after the carboxyl groups and the acylamino groups were shielded. After the hydroxyl
groups were shielded, the peak of 3449 cm−1 of the hydrogen bond turned into 3304 cm−1. It has
been speculated before that the cross-linking network was formed between the chain of CMC and the
polymerase chain of P (NIPAM-co-AA), which caused some peaks to be covered. Interestingly, after
chemical modification of the hydrogel, some peaks appeared. This may be attributed to the fact that
the chemical modification of hydrogel exposes some parts of the hydrogel.
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After the chemical modification of the carboxyl groups, the hydroxyl groups, and the acylamino
groups, the gel was added to a 30 mL uranium solution under the optimum adsorption condition of
pH = 4 and temperature of 20 ◦C to analyze the effect of each reactive group on adsorption. From the
results in Figure 12, for comparison, the U(VI) adsorption was reduced by 15.58%, 13.01%, and 9.46%
after the carboxyl groups, the hydroxyl groups, and the acylamino groups, respectively, were shielded,
which indicated that the carboxyl groups, the hydroxyl groups, and the acylamino groups could
provide sorption sites for U(VI). Besides, the capability of the gel to adsorb U(VI) was legibly decreased
when the –COOH esterifies, while the hydrogel could hardly immobilize U(VI) after –CONH was
being shielded. Therefore, the inference was that the acylamino group has a greater impact on the
adsorption of U(VI) than the carboxyl groups and the hydroxyl groups, which may be associated with
the coordination mode of the functional groups with uranium [45] or more acylamino groups on the
surface of the gel [27]. This verdict may provide a reference for the uranium adsorption mechanism.
In Figure 13, two oxygen atoms belonging to the carboxyl groups or the hydroxyl groups can bind to
uranium atoms. The nitrogen atoms of the acylamino groups can coordinate with UO2

2+ [46,47].
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2+.

3.6. Desorption and Reusability Analysis

To examine the desorption property of the composite hydrogel after adsorption, the gel was
adsorbed to equilibrium under optimal adsorption conditions. The sorbed hydrogel was then washed
with deionized water and was immersed in 0.01 mol L−1 and in 0.1 mol L−1 of HNO3 solutions
separately for different times, the resolution of the U(VI) was calculated, and the result was shown that
the hydrogels have a good desorption effect in 0.1 mol L−1 HNO3 solution, so the 0.1 mol L−1 HNO3

solution was chosen as the desorption reagent.
As shown in Figure 14, within 5 to 60 min, the rate of desorption of the composite hydrogel

increased with time at different temperatures, and the resolution rate increased significantly with
the rise in temperature, which verified that the thermo-sensitive hydrogel was “adsorbed at low
temperature and desorbed at high temperature”. After desorption for 2 h, the desorption rate decreased
at different temperatures, indicating that the hydrogel had different degrees of re-absorption. Among
them, the curve decreased most at 20 ◦C while, at 50 ◦C, the decline was the slowest, which therefore
indicated that the composite hydrogel was suitable for adsorption at low temperatures, and the
desorption was faster with a smaller re-absorption amount at high temperatures.
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To examine the reusability of the CMC/P (NIPAM-co-AA) hydrogel, it was subjected to alternate
heating at 20 ◦C and then at 50 ◦C in five cycles to determine the adsorption-desorption of U(VI)
in solution. The five cycles of temperature swing adsorption-desorption are shown in Figure 15.
The experiment showed that the resolution rate was still available at approximately 77.74% after
five cycles of temperature swing adsorption-desorption. The results have shown that the composite
hydrogel has a high desorption efficiency and the sorbed U(VI) can be easily recovered to allow a high
recyclability of the hydrogel. Therefore, the hydrogel is suitable for treatment of wastewater containing
low concentrations of uranium. However, the specific reason for the amount of loss of the sorbed U(VI)
at 20 and 50 ◦C during the heating cycle is unclear. However, this phenomenon is consistent with
Tokuyama’s research [48].
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4. Conclusions

The optimized preparation method of the thermo-sensitive hydrogel of CMC/P (NIPAM-co-AA)
was evaluated by L16 (45) orthogonal experiments. The effect of polymerization temperature on the
properties of gels was the most significant of the synthesis factors. The hydrogel was used to determine
the U(VI) adsorption for wastewater treatment. The adsorption reached equilibrium within 1 h. Under
the reaction of pH = 6 and a temperature of 298 K, the initial concentration of U(VI) 5 mg·L−1, and 10 mg
of CMC/P (NIPAM-co-AA) hydrogel, the maximum adsorption capacity was 14.69 mg·g-1. The kinetics
fitted perfectly with the pseudo-second-order model, and the isotherms for composite hydrogel
adsorption of U(VI) was in accordance with the Langmuir model. In the desorption and reusability
study, low temperature has a beneficial effect for the adsorption of U(VI), while high temperature is
good for desorption. The resolution rate was about 77.74% after five cycles of alternate temperature
heating at 20 and 50 ◦C to determine the adsorption-desorption of the hydrogel. The chemical
modification of the hydrogel showed that the carboxyl group has the highest adsorption capacity for
uranium adsorption. The XPS spectra confirmed that the dominant mechanisms were the complexes
between the oxygen-containing group and U(VI) for UO2

2+ sorption by the hydrogel. Therefore,
the temperature-sensitive CMC/P (NIPAM-co-AA) hydrogel is a potential intelligent adsorption
material for the removal of U(VI) in low-concentration uranium-containing wastewater.

Author Contributions: Writing, J.T.; validation, G.W.; supervision, P.C.; project administration, S.X.; review and
editing, T.Z., C.W.Y., and H.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Scientific Foundation of China (NO.11475080) and
the Postgraduate Research Innovation Project at the University of South China (NO.193YXC017).

Acknowledgments: The authors are grateful to the Laboratory of Pollution Control and Resource Technology and
the Department of Municipal Engineering at the University of South China for providing the necessary facilities
for the research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Stassen, L.; Suthiram, J. Initial development of an alkaline process for recovery of uranium from Mo-99
production process waste residue. J. Radioanal. Nucl. Chem. 2015, 305, 41–50. [CrossRef]

2. Zhao, G.X.; Huang, X.B.; Tang, Z.W.; Huang, Q.F.; Niu, F.L.; Wang, X.K. Polymer-based nanocomposites for
heavy metal ions removal from aqueous solution: A review. Polym. Chem. 2018, 9, 3562–3582. [CrossRef]

3. Hui, L.; Zhai, F.W.; Gui, D.X.; Wang, X.X.; Wu, C.F.; Duo, Z.; Xing, D.; Hong, D.; Su, X.T.; Juan, D.; et al.
Powerful uranium extraction strategy with combined ligand complexation and photocatalytic reduction by
postsynthetically modified photoactive metal-organic frameworks. Appl. Catal. B-Environ. 2019, 254, 47–54.

4. Chen, T.; Zhang, J.; Li, M.X.; Ge, H.L.; Li, Y.; Duan, T.; Zhu, W.K. Biomass-derived composite aerogels with
novel structure for removal/recovery of uranium from simulated radioactive wastewater. Nanotechnology
2019, 30, 45. [CrossRef]

5. Irani, M.; Ismail, H.; Ahmad, Z. Preparation and properties of linear low-density polyethylene-g-poly
(acrylic acid)/organo-montmorillonite superabsorbent hydrogel composites. Polym. Test. 2013, 32, 502–512.
[CrossRef]

6. Wu, Y.H.; Pang, H.W.; Liu, Y.; Wang, X.X.; Yu, S.J.; Fu, D.; Chen, J.R.; Wang, X.K. Environmental remediation
of heavy metal ions by novel-nanomaterials: A review. Environ. Pollut. 2019, 246, 608–620. [CrossRef]

7. Depa, K.; Strachota, A.; Slouf, M.; Brus, J. Poly(N-isopropylacrylamide)-SiO2 nanocomposites interpenetrated
by starch: Stimuli-responsive hydrogels with attractive tensile properties. Eur. Polym. J. 2017, 88, 349–372.
[CrossRef]

8. Wei, Y.B.; Zeng, Q.; Wang, M.; Huang, J.Z.; Guo, X.R.; Wang, L.S. Near-infrared light-responsive
electrochemical protein imprinting biosensor based on a shape memory conducting hydrogel. Biosens.
Bioelectron. 2019, 131, 156–162. [CrossRef]

http://dx.doi.org/10.1007/s10967-015-3974-z
http://dx.doi.org/10.1039/C8PY00484F
http://dx.doi.org/10.1088/1361-6528/ab3991
http://dx.doi.org/10.1016/j.polymertesting.2013.01.001
http://dx.doi.org/10.1016/j.envpol.2018.12.076
http://dx.doi.org/10.1016/j.eurpolymj.2017.01.038
http://dx.doi.org/10.1016/j.bios.2019.02.015


Polymers 2020, 12, 151 18 of 20

9. Dai, H.J.; Zhang, H.; Ma, L.; Zhou, H.Y.; Yu, Y.; Guo, T.; Zhang, Y.H.; Huang, H.H. Green pH/magnetic
sensitive hydrogels based on pineapple peel cellulose and polyvinyl alcohol: Synthesis, characterization and
naringin prolonged release. Carbohydr. Polym. 2019, 209, 51–61. [CrossRef]

10. Liu, Z.J.; Xu, G.R.; Wang, C.N.; Li, C.Y.; Yao, P. Shear-responsive injectable supramolecular hydrogel releasing
doxorubicin loaded micelles with pH-sensitivity for local tumor chemotherapy. Int. J. Pharm. 2017, 530,
53–62. [CrossRef]

11. Suzuki, A.; Tanaka, T.J.N. Phase transition in polymer gels induced by visible light. Nature 1990, 346, 345–347.
[CrossRef]

12. Qin, H.L.; Zhang, T.; Li, N.; Cong, H.P.; Yu, S.H. Anisotropic and self-healing hydrogels with multi-responsive
actuating capability. Nat. Commun. 2019, 10, 2202. [CrossRef] [PubMed]

13. Wang, M.; Payne, K.A.; Tong, S.; Ergas, S.J. Hybrid algal photosynthesis and ion exchange (HAPIX) process
for high ammonium strength wastewater treatment. Water Res. 2018, 142, 65–74. [CrossRef] [PubMed]

14. Xia, M.; Pan, S.X.; Sun, Y.J.; Luo, Q.Z.; Fang, Z.P.; He, P.X.; Fu, J.; Zhang, Y.H. Dehydration
behaviours of isopropyl group initiate the surface wettability transition of temperature sensitive
poly(N-isopropylacrylamide) hydrogel. Mater. Res. Express 2019, 6, 095704. [CrossRef]

15. Iatridi, Z.; Saravanou, S.F.; Tsitsilianis, C. Injectable self-assembling hydrogel from alginate grafted by
P(N-isopropylacrylamide-co-N-tert-butylacrylamide) random copolymers. Carbohydr. Polym. 2019, 219,
344–352. [CrossRef] [PubMed]

16. Benhalima, T.; Ferfera-Harrar, H.; Lerari, D. Optimization of carboxymethyl cellulose hydrogels beads
generated by an anionic surfactant micelle templating for cationic dye uptake: Swelling, sorption and
reusability studies. Int. J. Biol. Macromol. 2017, 23, 2558–2564. [CrossRef]

17. Ju, X.J.; Zhang, S.B.; Zhou, M.Y.; Xie, R.; Yang, L.; Chu, L.Y. Novel heavy-metal adsorption material:
Ion-recognition P(NIPAM-co-BCAm) hydrogels for removal of lead(II) ions. J. Hazard. Mater. 2009, 167,
114–118. [CrossRef] [PubMed]

18. Yan, F.; Meng, W.; Cao, D.; Guo, S.; Li, C. Preparation of thermosensitive, calix[4]arene incorporated
P(NIPAM-co-HBCalix) hydrogel as a reusable adsorbent of nickel(II) ions. J. Polym. Sci. Part A Polym. Chem.
2013, 51, 2401–2408. [CrossRef]

19. Dewangan, T.; Tiwari, A.; Bajpai, A.K. Removal of Chromium(VI) Ions by Adsorption onto Binary
Biopolymeric Beads of Sodium Alginate and Carboxymethyl Cellulose. J. Dispers. Sci. Technol. 2011,
32, 1075–1082. [CrossRef]

20. Jin, H.X.; Xu, H.P.; Wang, N.; Yang, L.Y.; Wang, Y.G.; Yu, D.; Ouyang, X.K. Fabrication of
Carboxymethylcellulose/Metal-Organic Framework Beads for Removal of Pb(II) from Aqueous Solution.
Materials 2019, 12, 942. [CrossRef] [PubMed]

21. Godiya, C.B.; Cheng, X.; Li, D.W.; Chen, Z.; Lu, X.L. Carboxymethyl cellulose/polyacrylamide composite
hydrogel for cascaded treatment/reuse of heavy metal ions in wastewater. J. Hazard. Mater. 2019, 364, 28–38.
[CrossRef] [PubMed]

22. Chen, Y.S.; Long, Y.W.; Li, Q.; Chen, X.H.; Xu, X. Synthesis of high-performance sodium carboxymethyl
cellulose-based adsorbent for effective removal of methylene blue and Pb(II). Int. J. Biol. Macromol. 2019, 126,
107–117. [CrossRef] [PubMed]

23. Sun, Y.; Liu, Y.L.; Lou, Z.M.; Yang, K.L.; Lv, D.; Zhou, J.S.; Baig, S.A.; Xu, X.H. Enhanced performance for
Hg(II) removal using biomaterial (CMC/gelatin/starch) stabilized FeS nanoparticles: Stabilization effects and
removal mechanism. Chem. Eng. J. 2018, 344, 616–624. [CrossRef]
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